Introduction to SMT
Solving CSP’s with SMT

Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, ...

SAT and SMT for Solving CSP’s - Session 2
Seminar on Constraint Programming
31 March 2011
University of Bergen
Overview of the Session

- Pros/cons of SAT & Constraint Programming

- Satisfiability Modulo Theories

- Theories for Global Constraints
What’s **GOOD**?

- SAT solvers *outperform* other tools on *real-world problems*
- with a *single, fully automatic* variable selection strategy!
- Hence problem solving is essentially *declarative*

What’s **BAD**?

- very low-level language: *needs modeling and encoding tools*
- no good encodings for many aspects: *arithmetic, ...*
- **Optimization** not as well studied as satisfiability
Good vs. Bad in CP Solvers

What’s GOOD?
- Expressive modeling constructs and languages
- Specialized algorithms for many (global) constraints
- Optimization aspects better studied

What’s BAD, or, well, not so good?
- Biased by random or artificial problems (not realistic)
- Performance(?)
 (no learning, backtracking instead of backjumping, ...)
- Not quite automatic or push-button
 Heuristics tuning per problem (or even per instance)
Why Are SAT Solvers Really Good?

Three key ingredients that only work if used TOGETHER:

- **Learn** at each conflict the backjump clause as a lemma:
 - makes UnitPropagate more powerful
 - prevents future similar conflicts

- **Decide** on variable with most occurrences in recent conflicts:
 - so-called activity-based heuristics
 - idea: work off clusters of tightly related variables

- **Forget** from time to time low-activity lemmas:
 - crucial to keep UnitPropagate fast and afford memory usage
 - idea: lemmas from worked off clusters no longer needed!
Not the Same Success in CP...

Not easy to get everything together right

Heuristics make solver work simultaneously on too unrelated vars

would require storing too many lemmas at the same time

No simple uniform underlying language (as SAT’s clauses):

hard to express lemmas (in SAT, 1st-class citizens: clauses)
hard to understand conflict analysis
hard to implement things really efficiently

Learning lemmas not found very useful...

misled by random/academic pbs
Indeed, it is useless isolatedly, and also on random pbs!

Can we get the best of the two worlds?
See next slides for a solution
Overview of the Session

- Pros/cons of SAT & Constraint Programming

- Satisfiability Modulo Theories

- Theories for Global Constraints
What is Satisfiability Modulo Theories (SMT)?

Some problems are more naturally expressed in other logics than propositional logic, e.g:

- Software verification needs reasoning about equality, arithmetic, data structures, ...

SMT consists in deciding the satisfiability of a (ground) first-order formula with respect to a background theory

Example (Equality with Uninterpreted Functions – EUF):

\[g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d \]

SMT is widely applied in hardware/software verification

Theories of interest here:
EUF, arithmetic, arrays, bit vectors, combinations of these

With other theories SMT can also be used to solve Constraint Satisfaction Problems
Lazy Approach to SMT

Methodology:

Example: consider EUF and

\[
g(a) = c \quad \land \quad (f(g(a)) \neq f(c) \quad \lor \quad g(a) = d) \quad \land \quad c \neq d
\]

\(1\) \quad \(2\) \quad \(3\) \quad \(4\)

Send \(\{1, 2 \lor 3, 4\}\) to SAT solver

SAT solver returns model \([1, 2, 4]\)

Theory solver says \(T\)-inconsistent
Lazy Approach to SMT

Methodology:
Example: consider EUF and

\[
g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d
\]

- Send \(\{1, 2 \lor 3, 4\} \) to SAT solver
 - SAT solver returns model \([1, 2, 4]\)
 - Theory solver says \(T\)-inconsistent

- Send \(\{1, 2 \lor 3, 4, \bar{1} \lor 2 \lor 4\} \) to SAT solver
 - SAT solver returns model \([1, 2, 3, 4]\)
 - Theory solver says \(T\)-inconsistent
Lazy Approach to SMT

Methodology:
Example: consider EUF and

\[g(a) = c \quad \land \quad (f(g(a)) \neq f(c) \quad \lor \quad g(a) = d) \quad \land \quad c \neq d \]

1. Send \{1, \overline{2} \lor 3, \overline{4}\} to SAT solver
 SAT solver returns model [1, \overline{2}, \overline{4}]
 Theory solver says \(T\)-inconsistent

2. Send \{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4\} to SAT solver
 SAT solver returns model [1, 2, 3, \overline{4}]
 Theory solver says \(T\)-inconsistent

3. Send \{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{2} \lor \overline{3} \lor 4\} to SAT solver
 SAT solver says UNSATISFIABLE
Lazy Approach to SMT (2)

Why “lazy”?
Theory information used lazily when checking T-consistency of propositional models

Characteristics:
+ Modular and flexible
- Theory information does not guide the search

Tools:
- Barcelogic (UPC)
- CVC3 (Univ. New York + Iowa)
- DPT (Intel)
- MathSAT (Univ. Trento)
- Yices (SRI)
- Z3 (Microsoft)
- ...

Introduction to SMT Solving CSP’s with SMT – p.10/35
Lazy Approach to SMT - Optimizations

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models
Lazy Approach to SMT - Optimizations

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models
- Check T-consistency of partial assignment while being built
Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models—

- Check T-consistency of partial assignment while being built

- Given a T-inconsistent assignment M, add $\neg M$ as a clause
Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models.
- Check T-consistency of partial assignment while being built.
- Given a T-inconsistent assignment M, add $\neg M$ as a clause.
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_0 \subseteq M$ and add $\neg M_0$ as a clause.
Several optimizations for enhancing efficiency:

- Check \(T \)-consistency only of full propositional models.
- Check \(T \)-consistency of partial assignment while being built.

- Given a \(T \)-inconsistent assignment \(M \), add \(\neg M \) as a clause.
- Given a \(T \)-inconsistent assignment \(M \), identify a \(T \)-inconsistent subset \(M_0 \subseteq M \) and add \(\neg M_0 \) as a clause.

- Upon a \(T \)-inconsistency, add clause and restart.
Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models.
- Check T-consistency of partial assignment while being built.
- Given a T-inconsistent assignment M, add $\neg M$ as a clause.
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_0 \subseteq M$ and add $\neg M_0$ as a clause.
- Upon a T-inconsistency, add clause and restart.
- Upon a T-inconsistency, do conflict analysis and backjump.
Lazy Approach to SMT - Important Points

Advantages of the lazy approach:

- Everyone does what it is good at:
 - SAT solver takes care of Boolean information
 - Theory solver takes care of theory information

- Theory solver only receives conjunctions of literals

- Modular approach:
 - SAT solver and T-solver communicate via a simple API
 - SMT for a new theory only requires new T-solver
 - SAT solver can be extended to a lazy SMT system with very few new lines of code (40?)
As pointed out the lazy approach has one drawback:
- Theory information does not guide the search

How can we improve that? **Theory propagation**

T-Propagate

\[M \parallel F \Rightarrow M \langle l \rangle \parallel F \quad \text{if} \quad \begin{cases} M \models_T l \\ l \text{ or } \neg l \text{ occurs in } F \text{ and not in } M \end{cases} \]

Search **guided by** *T*-Solver by finding *T*-consequences, instead of only validating it as in basic lazy approach.

Naive implementation: Add \(\neg l \). If *T*-inconsistent then infer *l*. But for efficient **T-Propagate** we need specialized *T*-Solvers

This approach has been named **DPLL(\(T \))**
Consider again **EUF** and the formula:

\[
\begin{align*}
g(a) = c & \land \left(f(g(a)) \neq f(c) \lor g(a) = d \right) \land c \neq d \\
\end{align*}
\]

\[
\emptyset \parallel 1, 2 \lor 3, 4 \Rightarrow \text{(UnitPropagate)}
\]
Consider again EUF and the formula:

\[
\begin{align*}
g(a) &= c & \land & & \big(f(g(a)) \neq f(c) \lor g(a) = d \big) \land c \neq d \\
\end{align*}
\]

\[
\begin{align*}
0 \parallel 1, \overline{2} \lor 3, \overline{4} & \Rightarrow (\text{UnitPropagate}) \\
1 \parallel 1, \overline{2} \lor 3, \overline{4} & \Rightarrow (\text{T-Propagate})
\end{align*}
\]
Consider again EUF and the formula:

\[
g(a) = c \quad \land \quad (f(g(a)) \neq f(c) \lor g(a) = d) \quad \land \quad c \neq d
\]

\[
0 \; \parallel \; 1, \; \overline{2} \lor 3, \; \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate})
\]

\[
1 \; \parallel \; 1, \; \overline{2} \lor 3, \; \overline{4} \quad \Rightarrow \quad (T-\text{Propagate})
\]

\[
1 \; \overline{2} \; \parallel \; 1, \; \overline{2} \lor 3, \; \overline{4} \quad \Rightarrow \quad (\text{UnitPropagate})
\]
Consider again EUF and the formula:

\[
g(a) = c \land \left(f(g(a)) \neq f(c) \lor g(a) = d \right) \land c \neq d
\]

\[
\begin{align*}
0 \ || & \ 1, \ 2 \lor 3, \ 4 \ \Rightarrow \ (\text{UnitPropagate}) \\
1 \ || & \ 1, \ 2 \lor 3, \ 4 \ \Rightarrow \ (T\text{-Propagate}) \\
1 \ 2 \ || & \ 1, \ 2 \lor 3, \ 4 \ \Rightarrow \ (\text{UnitPropagate}) \\
1 \ 2 \ 3 \ || & \ 1, \ 2 \lor 3, \ 4 \ \Rightarrow \ (T\text{-Propagate})
\end{align*}
\]
Consider again EUF and the formula:

\[g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d \]

\[0 \parallel 1, \overline{2} \lor 3, \overline{4} \Rightarrow (\text{UnitPropagate}) \]

\[1 \parallel 1, \overline{2} \lor 3, \overline{4} \Rightarrow (\text{T-Propagate}) \]

\[1 \, 2 \parallel 1, \overline{2} \lor 3, \overline{4} \Rightarrow (\text{UnitPropagate}) \]

\[1 \, 2 \, 3 \parallel 1, \overline{2} \lor 3, \overline{4} \Rightarrow (\text{T-Propagate}) \]

\[1 \, 2 \, 3 \, 4 \parallel 1, \overline{2} \lor 3, \overline{4} \Rightarrow (\text{Fail}) \]
Consider again EUF and the formula:

\[
\begin{align*}
g(a) &= c \\ 1 \\
(f(g(a)) \neq f(c) \lor g(a) = d) &\land c \neq d \\ 2 \\
\end{align*}
\]

\[
\begin{align*}
0 \parallel 1, \overline{2} \lor 3, \overline{4} &\Rightarrow (\text{UnitPropagate}) \\
1 \parallel 1, \overline{2} \lor 3, \overline{4} &\Rightarrow (\text{T-Propagate}) \\
1 2 \parallel 1, \overline{2} \lor 3, \overline{4} &\Rightarrow (\text{UnitPropagate}) \\
1 2 3 \parallel 1, \overline{2} \lor 3, \overline{4} &\Rightarrow (\text{T-Propagate}) \\
1 2 3 4 \parallel 1, \overline{2} \lor 3, \overline{4} &\Rightarrow (\text{Fail}) \\
\end{align*}
\]

\textit{fail}
Consider again EUF and the formula:

\[
g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d
\]

\[
\begin{align*}
0 & \parallel 1, \bar{2} \lor 3, \bar{4} \quad \Rightarrow \quad (\text{UnitPropagate}) \\
1 & \parallel 1, \bar{2} \lor 3, \bar{4} \quad \Rightarrow \quad (\text{T-Propagate}) \\
1 2 & \parallel 1, \bar{2} \lor 3, \bar{4} \quad \Rightarrow \quad (\text{UnitPropagate}) \\
1 2 3 & \parallel 1, \bar{2} \lor 3, \bar{4} \quad \Rightarrow \quad (\text{T-Propagate}) \\
1 2 3 4 & \parallel 1, \bar{2} \lor 3, \bar{4} \quad \Rightarrow \quad (\text{Fail}) \\
\end{align*}
\]

\text{fail}

No search!
DPLL(T) - Overall algorithm

High-level view gives the same algorithm as a CDCL SAT solver:

while(true){
 while (propagate_gives_conflict()){
 if (decision_level==0) return UNSAT;
 else analyze_conflict();
 }
 restart_if_applicable();
 remove_lemmas_if_applicable();
 if (!decide()) returns SAT; // All vars assigned
}

Differences are in:
- propagate_gives_conflict
- analyze_conflict
propagate_gives_conflict() returns Bool

// unit propagate
if (unit_prop_gives_conflict()) then return true

return false
propagate_gives_conflict() returns Bool

do {

// unit propagate
if (unit_prop_gives_conflict()) **then return** true

// check T-consistency of the model
if (solver.is_model_inconsistent()) **then return** true

// theory propagate
solver.theory_propagate()

} **while** (doneSomeTheoryPropagation)

return false
DPLL\((T)\) - Propagation (2)

- Three operations:
 - Unit propagation (SAT solver)
 - Consistency checks (\(T\)-solver)
 - Theory propagation (\(T\)-solver)

- Cheap operations are computed first

- If theory is expensive, calls to \(T\)-solver are sometimes skipped
 - Only strictly necessary to call \(T\)-consistency at the leaves (i.e. when we have a full propositional model)
 - \(T\)-propagation is not necessary for correctness
Remember conflict analysis in SAT solvers:

\[C := \text{conflicting clause} \]

\[\textbf{while} \ C \ \text{contains more than one lit of last DL} \]
\[\quad l := \text{last literal assigned in } C \]
\[\quad C := \text{Resolution}(C, \text{reason}(l)) \]
\[\textbf{end while} \]

\[// \ \text{let } C = C' \lor l \ \text{where } l \ \text{is the only lit of last DL} \]
\[\text{backjump} \left(\text{maxDL} \left(C' \right) \right) \]
\[\text{add } l \ \text{to the model with reason } C \]
\[\text{learn}(C) \]
Conflict analysis in DPLL(T):

\[
\text{if boolean conflict then } C := \text{conflicting clause} \\
\text{else } C := \neg (\text{solver.explain_inconsistency()})
\]

\[
\text{while } C \text{ contains more than one lit of last DL} \\
\quad l := \text{last literal assigned in } C \\
\quad C := \text{Resolution}(C, \text{reason}(l))
\]

\[
\text{end while}
\]

// let \(C = C' \lor l \) where \(l \) is the only lit of last DL \\
\text{backjump(maxDL}(C')) \\
\text{add } l \text{ to the model with reason } C \\
\text{learn}(C)
DPLL(T) - Conflict Analysis (2)

What does `explain_inconsistency` return?

- An explanation of the inconsistency:
 A (small) conjunction of literals $l_1 \land \ldots \land l_n$ such that:
 - It is T-inconsistent
 - Lits were in the model when T-inconsistency was detected

What is now `reason(l)`?

- If l was unit propagated: clause that propagated it
- If l was T-propagated:
 - An explanation of the propagation:
 A (small) clause $\neg l_1 \lor \ldots \lor \neg l_n \lor l$ such that:
 - $l_1 \land \ldots \land l_n \models_T l$
 - l_1, \ldots, l_n were in the model when l was T-propagated
 - Pre-compute explanations at each T-Propagate?
 Better only on demand, during conflict analysis
Let M be $c = b$ and let F contain

$$a = b \lor g(a) \neq g(b), \quad h(a) = h(c) \lor p, \quad g(a) = g(b) \lor \neg p$$

Take the following sequence:

1. **Decide** $h(a) \neq h(c)$
2. **T-Propagate** $a \neq b$ (due to $h(a) \neq h(c)$ and $c = b$)
3. **UnitPropagate** $g(a) \neq g(b)$
4. **UnitPropagate** p
5. **Conflicting clause** $g(a) = g(b) \lor \neg p$

Explain($a \neq b$) is $\{h(a) \neq h(c), c = b\}$

\[
\begin{align*}
&h(a) = h(c) \lor c \neq b \lor a \neq b \quad \quad
\end{align*}
\]
What does \text{DPLL}(T) need from \text{T}-Solver?

- \text{T}-consistency check of a set of literals \(M \), with:
 - Explain of \(T \)-inconsistency:
 find small \(T \)-inconsistent subset of \(M \)
 - Incrementality: if \(l \) is added to \(M \),
 check for \(M \cup l \) faster than reprocessing \(M \cup l \) from scratch.

- Theory propagation: find input \(T \)-consequences of \(M \), with:
 - Explain \(T \)-Propagate of \(l \):
 find (small) subset of \(M \) that \(T \)-entails \(l \).

- Backtrack \(n \): undo last \(n \) literals added
Overview of the Session

- Pros/cons of SAT & Constraint Programming

- Satisfiability Modulo Theories

- Theories for Global Constraints
all_different\((x_1, \ldots, x_n)\) if \(x_1, \ldots, x_n\) take different values

Global constraint appearing in many CSP’s

Example 1: Round-Robin Sports Scheduling

Example 2: Quasi-Group Completion (QGC)
Each row, column in a part. filled grid \(n \times n\) must contain 1, \ldots n

Vars \(x_{ij}\) standing for value at row \(i\), column \(j\)

\[
\begin{align*}
\text{no repetitions in rows} & \\
\left\{ \begin{array}{l}
\text{all_different}(x_{11}, x_{12}, \ldots, x_{1n-1}, x_{1n}) \\
\text{...} \\
\text{all_different}(x_{n1}, x_{n2}, \ldots, x_{nn-1}, x_{nn})
\end{array} \right.
\end{align*}
\]

\[
\begin{align*}
\text{no repetitions in cols} & \\
\left\{ \begin{array}{l}
\text{all_different}(x_{11}, x_{21}, \ldots, x_{n-11}, x_{n1}) \\
\text{...} \\
\text{all_different}(x_{1n}, x_{2n}, \ldots, x_{n-1n}, x_{nn})
\end{array} \right.
\end{align*}
\]

Specialized filtering algorithms exist in CP
3-D SAT encoding infers no value here by unit propagation

\textbf{all_different} filtering infers $z = 3$

Why?
3-D SAT encoding infers no value here by unit propagation.

all_different filtering infers \(z = 3 \)

Why? Because \(\{x, y\} = \{1, 2\} \)
3-D SAT encoding infers no value here by unit propagation

all_different filtering infers \(z = 3 \)

Why? Because \(\{x, y\} = \{1, 2\} \)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Idea:

Use 3-D encoding + SMT where \(T \) is all_different

\(T \)-solver is incremental CP filtering but with explain:
in our example, the literal \(p_{133} \) (meaning \(z = 3 \)) is entailed by \(\overline{p_{113}}, \overline{p_{114}}, \ldots, \overline{p_{135}} \) (meaning \(x \neq 3, x \neq 4, \ldots, z \neq 5 \))

From time to time invoke \(T \)-solver before Decide, but do always cheap SAT stuff first: Backjump, UnitPropagate, etc.
A graph $G = (V,E)$ is bipartite if V can be partitioned into two disjoint sets U and V such that all edges have one endpoint in U and the other in V.

Given variables $X = \{x_1, \ldots, x_n\}$ with domains D_1, \ldots, D_n, $(x_1 = \alpha_1, \ldots, x_n = \alpha_n)$ is a solution to $\text{all_different}(x_1, \ldots, x_n)$ iff $\alpha_i \in D_i$, and $i \neq j$ implies $\alpha_i \neq \alpha_j$.

The value graph of $\text{all_different}(x_1, \ldots, x_n)$ is the bipartite graph $G = (X \cup \bigcup_{i=1}^n D_i, E)$ where $(x_i, d) \in E$ iff $d \in D_i$.

For simplicity, we will assume that $|X| = |\bigcup_{i=1}^n D_i|$.

\[
\text{all_different}(x_1, x_2, x_3)
\]
\[
D_1 = \{1, 2\}
\]
\[
D_2 = \{2, 3\}
\]
\[
D_3 = \{2, 3\}
\]
Matching Theory

- A matching M in a graph $G = (V, E)$ is a subset of edges in E without common vertices.
- A maximum matching is a matching of maximum size.
- A matching M covers a set X if every vertex in X is an endpoint of an edge in M.
- Solutions to all_different(X) = matchings covering X.

Illustration:

```
all_different($x_1, x_2, x_3$)

$D_1 = \{1, 2\}$  $x_1 = 1$

$D_2 = \{2, 3\}$  $x_2 = 2$

$D_3 = \{2, 3\}$  $x_3 = 3$
```

- $D_1 = \{1, 2\}$ with $x_1 = 1$
- $D_2 = \{2, 3\}$ with $x_2 = 2$
- $D_3 = \{2, 3\}$ with $x_3 = 3$
A matching \(M \) in a graph \(G = (V, E) \) is a subset of edges in \(E \) without common vertices.

A maximum matching is a matching of maximum size.

A matching \(M \) covers a set \(X \) if every vertex in \(X \) is an endpoint of an edge in \(M \).

Solutions to all_different(\(X \)) = matchings covering \(X \).

Algorithm for checking satisfiability of all_different(\(X \)):

```c
// Returns true if there is a solution, otherwise false
M = Compute\_maximum\_matching(G)
if ( |M| < |X| ) return false
return true
```
A matching M in a graph $G = (V, E)$ is a subset of edges in E without common vertices.

A maximum matching is a matching of maximum size.

A matching M covers a set X if every vertex in X is an endpoint of an edge in M.

Solutions to all_different(X) = matchings covering X.

Algorithm for checking satisfiability of all_different(X):

- Can be extended to filter out arc-inconsistent edges.

```c
// Returns true if there is a solution, otherwise false
M = Compute_maximun_matching(G)
if ( |M| < |X| ) return false
Remove_edges_from_graph(G, M)
return true
```
Matching Theory (2)

Theorem. \(\text{all
different}(X) \) is arc-consistent iff every edge of the graph belongs to a matching covering \(X \)

A matching edge belongs to the matching, else it is free

An alternating cycle is a simple cycle whose edges are alternately matching and free

A vital edge belongs to any maximum matching

Theorem. A non-vital edge belongs to a maximum matching iff for an arbitrary maximum matching \(M \) it belongs to an even-length alternating cycle wrt. \(M \)
Matching Theory (2)

- **Theorem.** `all_different(X)` is arc-consistent iff every edge of the graph belongs to a matching covering `X`.
- A matching edge belongs to the matching, else it is free.
- An alternating cycle is a simple cycle whose edges are alternately matching and free.
- A vital edge belongs to any maximum matching.
- **Theorem.** A non-vital edge belongs to a maximum matching iff for an arbitrary maximum matching `M` it belongs to an even-length alternating cycle wrt. `M`.

![Graph with nodes and edges demonstrating the concept of matching and vital edges.](image-url)
Matching Theory (3)

- It simplifies things to orient edges:
 - Matching edges are oriented from left to right
 - Free edges are oriented from right to left

![Diagram](image)

Theorem. A non-vital edge belongs to a max matching iff for any max matching M it belongs to a cycle in oriented graph

![Diagram](image)
Removing Arc-Inconsistent Edges

Remove_edges_from_graph(G)
 mark all edges in G as UNUSED
 compute SCCs, mark as USED edges with vertexs in same SCC
 mark matching UNUSED edges as vital
 remove remaining UNUSED edges

- Removed edges are free edges whose endpoints belong to different SCCs
- Explanation of removed edge \((x, d)\) requires expressing \(x\) and \(d\) do not belong to the same SCC

\((x_1, 2)\) since \(\{(x_2, 1), (x_3, 1)\}\)
 since \(x_2, x_3\) consume 2, 3
A pseudo-boolean (PB) constraint is of the form
\[a_1 x_1 + \ldots + a_n x_n \leq k \] where \(x_i \in \{0, 1\} \), \(a_i, k \in \mathbb{Z} \)

PB constraints appear in many contexts (e.g. weighted Max-SAT, cumulative: see later)

SAT encodings not appropriate if there are many PB cons: too big formulas!

Idea:

- Use \(T \)-solver for each PB constraint:
 \(T \)-solver enforces arc-consistency of its PB constraint
- Alternatively, a single \(T \)-solver can take care of all PB cons and share information for better filtering
Example of filtering by arc-consistency:

- Assume: \(a_1 x_1 + \ldots + a_n x_n \leq k \) with \(a_i \geq 0 \)
- Let \(I_0 = \{ i \mid x_i = 0 \} \), \(I_1 = \{ i \mid x_i = 1 \} \), \(I_\perp = \{ i \mid x_i = \perp \} \)
- Then \(a_1 x_1 + \ldots + a_n x_n \leq k \) becomes

\[
\underbrace{\sum_{i \in I_0} a_i \cdot 0}_{0} \ + \ \sum_{i \in I_1} a_i \cdot 1 \ + \ \sum_{i \in I_\perp} a_i x_i \leq k
\]

\[
\sum_{i \in I_1} a_i \ + \ \sum_{i \in I_\perp} a_i x_i \leq k
\]

\[
\sum_{i \in I_\perp} a_i x_i \leq k - \sum_{i \in I_1} a_i
\]

- If \(j \in I_\perp \) is such that \(a_j > k - \sum_{i \in I_1} a_i \), then it must be \(x_j = 0 \)

Explanation?
SMT (PB Constraints) (2)

Example of filtering by arc-consistency:

- Assume: \(a_1 x_1 + \ldots + a_n x_n \leq k \) with \(a_i \geq 0 \)
- Let \(I_0 = \{ i \mid x_i = 0 \} \), \(I_1 = \{ i \mid x_i = 1 \} \), \(I_\perp = \{ i \mid x_i = \perp \} \)
- Then \(a_1 x_1 + \ldots + a_n x_n \leq k \) becomes

\[
\begin{align*}
\sum_{i \in I_0} a_i \cdot 0 + \sum_{i \in I_1} a_i \cdot 1 + \sum_{i \in I_\perp} a_i x_i & \leq k \\
\sum_{i \in I_1} a_i + \sum_{i \in I_\perp} a_i x_i & \leq k \\
\sum_{i \in I_\perp} a_i x_i & \leq k - \sum_{i \in I_1} a_i
\end{align*}
\]

- If \(j \in I_\perp \) is such that \(a_j > k - \sum_{i \in I_1} a_i \), then it must be \(x_j = 0 \)
- Explanation?

- A set \(\{ x_i = 1 \mid i \in J \} \) where \(J \subseteq I_1 \) is such that \(a_j > k - \sum_{i \in J} a_i \)
n tasks share common resource with capacity c. Each task:

- has a duration d_i
- consumes r_i units of resource per hour
- must start not before est_i (earliest starting time)
- must end not after let_i (latest ending time)
- once started, cannot be interrupted

horizon $h_{\text{max}} = \text{latest time any task can end} = \max_{i \in \{1...n\}} let_i$

cumulative($s_1, ..., s_n$) is satisfied by starting times $s_1, ..., s_n$ if:

- at all times used resources do not exceed capacity:

\[\forall h \in \{0, \ldots, h_{\text{max}} - 1\} : \sum_{i \in \{1...n\}} r_i \leq c \]

\[\sum_{s_i \leq h \leq s_i+d_i} r_i \leq c \]

starting times respect feasible window:

\[\forall i \in \{1...n\} : est_i \leq s_i, \quad s_i + d_i \leq let_i \]
Pure SMT approach, modeling with variables $s_{i,h}$:

- $s_{i,h}$ means $s_i \leq h$ (so $s_{i,h-1} \land s_{i,h}$ means $s_i = h$)
- T-solver propagates using CP filtering algs. with explanations

Better “decomposition” approach, adding variables $a_{i,h}$:

- $a_{i,h}$ means task i is active at hour h
- Time-resource decomposition:
 quadratic no. of clauses like
 - $s_{i,h-d_i} \land s_{i,h} \rightarrow a_{i,h}$
 - $a_{i,h} \rightarrow s_{i,h-d_i}$
 - $a_{i,h} \rightarrow s_{i,h}$
- T-solver handles, for each hour h and each resource r, PB constraints like $3a_{i,h} + 4a_{i',h} + \ldots \leq \text{capacity}(r)$
Comparison with Lazy Clause Generation

Lazy Clause Generation (LCG) was the instance of SMT where:

- each time the T-solver detects that lit can be propagated, it generates and adds (forever) the explanation clause so the SAT-solver can UnitPropagate lit with it.

But as we have seen in this seminar, it is usually better to:

- Generate explanations only when needed: at conflict analysis time
- Never add explanations as clauses. Otherwise: die keeping too many explanations (or the whole SAT encoding).

Remember: Forget of the usual lemmas is already crucial to keep UnitPropagate fast and memory affordable!

Since recently, with these improvements, LCG = SMT.
Bibliography - Some further reading

