Propositional Logic

Combinatorial Problem Solving (CPS)

Albert Oliveras Enric Rodríguez-Carbonell

May 12, 2023

Overview of the session

- Definition of Propositional Logic
 - General Concepts in Logic
 - Reduction to SAT
 - CNFs and DNFs
 - Tseitin Transformation
- Problem Solving with SAT
- Resolution

Definition of Propositional Logic

SYNTAX (what is a formula?):

- There is a set \mathcal{P} of propositional variables, usually denoted by (subscripted) p, q, r, \ldots
- The set of propositional formulas over \mathcal{P} is defined as:
 - Every propositional variable is a formula
 - If F is a formula, $\neg F$ is also a formula
 - If F and G are formulas, $(F \wedge G)$ is also a formula
 - If F and G are formulas, $(F \lor G)$ is also a formula
 - Nothing else is a formula
 - Formulas are usually denoted by (subscripted) F, G, H, \dots Examples:

 $p \qquad \neg p \qquad (p \lor q) \quad \neg (p \land q)$ $(p \land (\neg p \lor q)) \quad ((p \land q) \lor (r \lor \neg q)) \qquad \dots$

Definition of Propositional Logic

SEMANTICS (what is an interpretation I, when I satisfies F?):

- An interpretation I over \mathcal{P} is a function $I: \mathcal{P} \to \{0, 1\}$.
- $eval_I : Formulas \rightarrow \{0, 1\}$ is a function defined as follows:

$$\bullet \quad eval_I(p) = I(p)$$

•
$$eval_I(\neg F) = 1 - eval_I(F)$$

- $eval_I((F \land G)) = \min\{eval_I(F), eval_I(G)\}$
- $eval_I((F \lor G)) = \max\{eval_I(F), eval_I(G)\}$
- I I satisfies F (written $I \models F$) if and only if $eval_I(F) = 1$.
- If $I \models F$ we say that
 - I is a model of F or, equivalently
 - F is true in I.

• Let F be the formula $(p \land (q \lor \neg r))$.

- Let I be such that I(p) = I(r) = 1 and I(q) = 0.
- Let us compute $eval_I(F)$ (use your intuition first!)

• Let F be the formula $(p \land (q \lor \neg r))$.

- Let I be such that I(p) = I(r) = 1 and I(q) = 0.
 - Let us compute $eval_I(F)$ (use your intuition first!)

$$eval_I((p \land (q \lor \neg r))) =$$

• Let F be the formula $(p \land (q \lor \neg r))$.

• Let I be such that I(p) = I(r) = 1 and I(q) = 0.

Let us compute $eval_I(F)$ (use your intuition first!)

 $eval_I((p \land (q \lor \neg r))) = \min\{ eval_I(p), eval_I((q \lor \neg r)) \}$

• Let F be the formula $(p \land (q \lor \neg r))$.

• Let I be such that I(p) = I(r) = 1 and I(q) = 0.

Let us compute $eval_I(F)$ (use your intuition first!)

$$eval_{I}((p \land (q \lor \neg r))) = \min\{eval_{I}(p), eval_{I}((q \lor \neg r))\} \\ = \min\{eval_{I}(p), \max\{eval_{I}(q), eval_{I}(\neg r)\}\}$$

• Let
$$F$$
 be the formula $(p \land (q \lor \neg r))$.

• Let I be such that I(p) = I(r) = 1 and I(q) = 0.

Let us compute $eval_I(F)$ (use your intuition first!)

$$eval_{I}((p \land (q \lor \neg r))) = \min\{ eval_{I}(p), eval_{I}((q \lor \neg r)) \}$$

$$= \min\{ eval_{I}(p), \max\{ eval_{I}(q), eval_{I}(\neg r) \} \}$$

$$= \min\{ eval_{I}(p), \max\{ eval_{I}(q), 1 - eval_{I}(r) \} \}$$

• Let
$$F$$
 be the formula $(p \land (q \lor \neg r))$.

• Let I be such that I(p) = I(r) = 1 and I(q) = 0.

Let us compute $eval_I(F)$ (use your intuition first!)

$$eval_{I}((p \land (q \lor \neg r))) = \min\{eval_{I}(p), eval_{I}((q \lor \neg r))\}$$

$$= \min\{eval_{I}(p), \max\{eval_{I}(q), eval_{I}(\neg r)\}\}$$

$$= \min\{eval_{I}(p), \max\{eval_{I}(q), 1 - eval_{I}(r)\}\}$$

$$= \min\{I(p), \max\{I(q), 1 - I(r)\}\}$$

• Let
$$F$$
 be the formula $(p \land (q \lor \neg r))$.

• Let I be such that I(p) = I(r) = 1 and I(q) = 0.

Let us compute $eval_I(F)$ (use your intuition first!)

$$eval_{I}((p \land (q \lor \neg r))) = \min\{eval_{I}(p), eval_{I}((q \lor \neg r))\} \\ = \min\{eval_{I}(p), \max\{eval_{I}(q), eval_{I}(\neg r)\}\} \\ = \min\{eval_{I}(p), \max\{eval_{I}(q), 1 - eval_{I}(r)\}\} \\ = \min\{I(p), \max\{I(q), 1 - I(r)\}\} \\ = \min\{1, \max\{0, 1 - 1\}\}$$

• Let
$$F$$
 be the formula $(p \land (q \lor \neg r))$.

• Let I be such that I(p) = I(r) = 1 and I(q) = 0.

Let us compute $eval_I(F)$ (use your intuition first!)

$$eval_{I}((p \land (q \lor \neg r))) = \min\{ eval_{I}(p), eval_{I}((q \lor \neg r)) \} \\ = \min\{ eval_{I}(p), \max\{ eval_{I}(q), eval_{I}(\neg r) \} \} \\ = \min\{ eval_{I}(p), \max\{ eval_{I}(q), 1 - eval_{I}(r) \} \} \\ = \min\{ I(p), \max\{ I(q), 1 - I(r) \} \} \\ = \min\{ 1, \max\{ 0, 1 - 1 \} \} \\ = 0$$

• Let
$$F$$
 be the formula $(p \land (q \lor \neg r))$.

• Let I be such that I(p) = I(r) = 1 and I(q) = 0.

Let us compute $eval_I(F)$ (use your intuition first!)

$$eval_{I}((p \land (q \lor \neg r))) = \min\{ eval_{I}(p), eval_{I}((q \lor \neg r)) \} \\ = \min\{ eval_{I}(p), \max\{ eval_{I}(q), eval_{I}(\neg r) \} \} \\ = \min\{ eval_{I}(p), \max\{ eval_{I}(q), 1 - eval_{I}(r) \} \} \\ = \min\{ I(p), \max\{ I(q), 1 - I(r) \} \} \\ = \min\{ 1, \max\{ 0, 1 - 1 \} \} \\ = 0$$

• Let
$$F$$
 be the formula $(p \land (q \lor \neg r))$.

• Let I be such that I(p) = I(r) = 1 and I(q) = 0.

Let us compute $eval_I(F)$ (use your intuition first!)

$$eval_{I}((p \land (q \lor \neg r))) = \min\{eval_{I}(p), eval_{I}((q \lor \neg r))\} \\ = \min\{eval_{I}(p), \max\{eval_{I}(q), eval_{I}(\neg r)\}\} \\ = \min\{eval_{I}(p), \max\{eval_{I}(q), 1 - eval_{I}(r)\}\} \\ = \min\{I(p), \max\{I(q), 1 - I(r)\}\} \\ = \min\{1, \max\{0, 1 - 1\}\} \\ = 0$$

Is there any I such that $I \models F$? YES, I(p) = I(q) = I(r) = 1 is a possible model.

Definition of Propositional Logic

EXAMPLE

- We have 3 pigeons and 2 holes.
 If each hole can have at most one pigeon, is it possible to place all pigeons in the holes?
- Vocabulary: $p_{i,j}$ means *i*-th pigeon is in *j*-th hole
- Each pigeon is placed in at least one hole:

 $(p_{1,1} \lor p_{1,2}) \land (p_{2,1} \lor p_{2,2}) \land (p_{3,1} \lor p_{3,2})$

Each hole can hold at most one pigeon:

$$\neg (p_{1,1} \land p_{2,1}) \land \neg (p_{1,1} \land p_{3,1}) \land \neg (p_{2,1} \land p_{3,1}) \land \\ \neg (p_{1,2} \land p_{2,2}) \land \neg (p_{1,2} \land p_{3,2}) \land \neg (p_{2,2} \land p_{3,2})$$

Resulting formula has no model

Definition of Propositional Logic

A small syntax extension:

- We will write $(F \to G)$ as an abbreviation for $(\neg F \lor G)$
- Similarly, $(F \leftrightarrow G)$ is an abbreviation of $((F \rightarrow G) \land (G \rightarrow F))$

Overview of the session

- Definition of Propositional Logic
 General Concepts in Logic
 - Reduction to SAT
 - CNFs and DNFs
 - Tseitin Transformation
 - Problem Solving with SAT
 - Resolution

Let F and G be arbitrary formulas. Then:

- F is satisfiable if it has at least one model
- F is unsatisfiable (also a contradiction) if it has no model
- F is a tautology if every interpretation is a model of F
- G is a logical consequence of F, denoted $F \models G$, if every model of F is a model of G
- F and G are logically equivalent, denoted $F \equiv G$, if F and G have the same models

Note that:

- All definitions are only based on the concept of model.
 - I Hence they are independent of the logic.

- Circuit corresponds to formula $(\neg p \land p)$
- Formula unsatisfiable amounts to "circuit output is always 0"

• Circuit corresponds to formula $(\neg p \lor p)$

Formula is a tautology amounts to *"circuit output is always 1"*

- Circuit on the left corresponds to formula $F := \neg (p \land q)$
- Circuit on the right corresponds to formula $G := (\neg p \lor \neg q)$
- They are functionally equivalent, i.e. same inputs produce same output
- $\blacksquare \quad \text{That corresponds to saying } F \equiv G$
- Cheapest / fastest / less power-consuming circuit is then chosen

Reduction to SAT

Assume we have a black box **SAT** that given a formula F:

- **SAT**(F) = YES iff F is satisfiable
- **SAT**(F) = NO iff F is unsatisfiable

How to reuse **SAT** for detecting tautology, logical consequences, ...?

- F tautology iff $SAT(\neg F) = NO$
- $F \models G$ iff $SAT(F \land \neg G) = NO$
- $F \equiv G$ iff $SAT((F \land \neg G) \lor (\neg F \land G)) = NO$

Reduction to SAT

Assume we have a black box **SAT** that given a formula F:

- **SAT**(F) = YES iff F is satisfiable
- **SAT**(F) = NO iff F is unsatisfiable

How to reuse **SAT** for detecting tautology, logical consequences, ...?

- **F** not taut. iff $SAT(\neg F) = YES$
- $\blacksquare F \not\models G \qquad \text{iff} \quad \mathsf{SAT}(F \land \neg G) = \mathsf{YES}$
- $F \not\equiv G$ iff $SAT((F \land \neg G) \lor (\neg F \land G)) = YES$

Reduction to SAT

Assume we have a black box **SAT** that given a formula F:

- **SAT**(F) = YES iff F is satisfiable
- **SAT**(F) = NO iff F is unsatisfiable

How to reuse **SAT** for detecting tautology, logical consequences, ...?

- F tautology iff $SAT(\neg F) = NO$
- $F \models G$ iff $SAT(F \land \neg G) = NO$
- $F \equiv G$ iff $SAT((F \land \neg G) \lor (\neg F \land G)) = NO$

Hence, a single tool suffices: all problems can be reduced to SAT (propositional SAT is fiability)

The black box **SAT** will be called a **SAT** solver

GOAL: learn how to build a SAT solver

Overview of the session

- Definition of Propositional Logic
- General Concepts in Logic
 - Reduction to SAT
- CNFs and DNFs
 - ◆ Tseitin Transformation
- Problem Solving with SAT
- Resolution

In order to construct our SAT solver

it will simplify our job to assume that the formula F has a given format.

- A literal is a propositional variable (p) or a negation of one $(\neg p)$
- A clause is a disjunction of zero or more literals $(l_1 \lor \ldots l_n)$
- The empty clause (zero literals) is denoted with □ and is unsatisfiable
- A formula is in Conjunctive Normal Form (CNF) if it is a conjunction of zero or more disjunctions of literals (i.e., clauses)
- A formula is in Disjunctive Normal Form (DNF) if it is a disjunction of zero or more conjunctions of literals (i.e., cubes)

Examples:

 $\begin{array}{l} p \wedge (q \vee \neg r) \wedge (q \vee p \vee \neg r) \text{ is in CNF} \\ p \vee (q \wedge \neg r) \vee (q \wedge p \wedge \neg r) \text{ is in DNF} \end{array}$

■ Given a formula *F* there exist formulas

- G in CNF with $F \equiv G$ and
- H in DNF with $F \equiv H$

(G is said to be a CNF of F) (H is said to be a DNF of F)

Which is the complexity of deciding whether F is satisfiable...

- ... if F is an arbitrary formula?
- ... if F is in CNF?
- ... if F is in DNF?

■ Given a formula *F* there exist formulas

- G in CNF with $F \equiv G$ and (G is said to be a CNF of F)
 - H in DNF with $F \equiv H$

(H is said to be a ONF of F)

Which is the complexity of deciding whether F is satisfiable...

- ... if F is an arbitrary formula? NP-complete (Cook's Theorem)
- ... if F is in CNF?
- ... if F is in DNF?

■ Given a formula *F* there exist formulas

- G in CNF with $F \equiv G$ and (G is said to be a CNF of F)
- H in DNF with $F \equiv H$

(H is said to be a DNF of F)

Which is the complexity of deciding whether F is satisfiable...

- ... if F is an arbitrary formula? NP-complete (Cook's Theorem)
- ... if F is in CNF? NP-complete (even if clauses have ≤ 3 literals!)
- ... if F is in DNF?

■ Given a formula *F* there exist formulas

- G in CNF with $F \equiv G$ and (G is said to be a CNF of F)
- H in DNF with $F \equiv H$

(H is said to be a DNF of F)

Which is the complexity of deciding whether F is satisfiable...

- ... if F is an arbitrary formula? NP-complete (Cook's Theorem)
- ... if F is in CNF? NP-complete (even if clauses have ≤ 3 literals!)
- ... if F is in DNF? linear

Procedure **SAT**(F)

Input: formula F in DNF

Output: **YES** if there exists I such that $I \models F$, **NO** otherwise

1. If the DNF is empty then return **NO**. Else take a cube C of the DNF

2. If there is a variable p such that both p, $\neg p$ appear in C, then C cannot be made true: remove it and go to step 1. Else define I to make C true and return **YES**.

Idea: given F, find a DNF of F and apply the linear-time algorithm
 Why this does not work?

- Idea: given F, find a DNF of F and apply the linear-time algorithm
- Why this does not work? Finding a DNF of *F* may take exponential time
- In fact there are formulas for which CNFs/DNFs have exponential size

- Idea: given F, find a DNF of F and apply the linear-time algorithm
- Why this does not work? Finding a DNF of F may take exponential time
- In fact there are formulas for which CNFs/DNFs have exponential size
 - Consider xor defined as $\operatorname{xor}(x_1) = x_1$ and if n > 1: $\operatorname{xor}(x_1, ..., x_n) = (\operatorname{xor}(x_1, ..., x_{\lfloor \frac{n}{2} \rfloor}) \land \neg \operatorname{xor}(x_{\lfloor \frac{n}{2} \rfloor + 1}, ..., x_n)) \lor (\neg \operatorname{xor}(x_1, ..., x_{\lfloor \frac{n}{2} \rfloor}) \land \operatorname{xor}(x_{\lfloor \frac{n}{2} \rfloor + 1}, ..., x_n))$
 - I The size of $xor(x_1, ..., x_n)$ is $\Theta(n^2)$
- Cubes (conjunctions of literals) of a DNF of $xor(x_1, ..., x_n)$ have n literals
- Any DNF of xor(x₁,...,x_n) has at least 2ⁿ⁻¹ cubes (one for each of the assignments with an odd number of 1s)
- Any CNF of $xor(x_1, ..., x_n)$ also has an exponential number of clauses

- Idea: given F, find a DNF of F and apply the linear-time algorithm
- Why this does not work? Finding a DNF of F may take exponential time
- In fact there are formulas for which CNFs/DNFs have exponential size
 - Consider xor defined as $\operatorname{xor}(x_1) = x_1$ and if n > 1: $\operatorname{xor}(x_1, ..., x_n) = (\operatorname{xor}(x_1, ..., x_{\lfloor \frac{n}{2} \rfloor}) \land \neg \operatorname{xor}(x_{\lfloor \frac{n}{2} \rfloor + 1}, ..., x_n)) \lor (\neg \operatorname{xor}(x_1, ..., x_{\lfloor \frac{n}{2} \rfloor}) \land \operatorname{xor}(x_{\lfloor \frac{n}{2} \rfloor + 1}, ..., x_n))$
 - I The size of $xor(x_1,...,x_n)$ is $\Theta(n^2)$
- Cubes (conjunctions of literals) of a DNF of $xor(x_1, ..., x_n)$ have n literals
- Any DNF of xor(x₁,...,x_n) has at least 2ⁿ⁻¹ cubes (one for each of the assignments with an odd number of 1s)
- Any CNF of $xor(x_1, ..., x_n)$ also has an exponential number of clauses
 - Next we'll see a workaround

Let F be $(p \wedge q) \vee \neg (\ \neg p \wedge (q \vee \neg r) \)$

Let F be $(p \wedge q) \vee \neg (\ \neg p \wedge (q \vee \neg r) \)$

Let F be $(p \wedge q) \vee \neg (\ \neg p \wedge (q \vee \neg r) \)$

Let F be $(p \wedge q) \vee \neg (\ \neg p \wedge (q \vee \neg r) \)$

 $\begin{array}{c|ccc} \bullet & e_1 \\ \bullet & e_1 \leftrightarrow e_2 \lor e_3 \\ \neg e_1 \lor e_2 \lor e_3 \\ \neg e_2 \lor e_1 \\ \neg e_3 \lor e_1 \end{array}$

- $e_2 \leftrightarrow p \land q$
- $\bullet e_3 \leftrightarrow \neg e_4$
- $\bullet_4 \leftrightarrow e_5 \wedge e_6$
- $\bullet e_5 \leftrightarrow \neg p$
- $\blacksquare \quad e_6 \leftrightarrow q \lor \neg e_7$
- $\blacksquare \quad e_7 \leftrightarrow \neg r$

Let F be $(p \wedge q) \vee \neg (\ \neg p \wedge (q \vee \neg r) \)$

 e_{1} $e_{1} \leftrightarrow e_{2} \vee e_{3}$ $\neg e_{1} \vee e_{2} \vee e_{3}$ $\neg e_{2} \vee e_{1}$ $\neg e_{3} \vee e_{1}$ $e_{2} \leftrightarrow p \wedge q$ $\neg p \vee \neg q \vee e_{2}$

- $\begin{array}{ccccc} \neg p & \lor & \neg q & \lor & e_2 \\ \neg e_2 & \lor & p & & \\ \neg e_2 & \lor & q & & \end{array}$
- $e_3 \leftrightarrow \neg e_4$
- $\bullet e_4 \leftrightarrow e_5 \wedge e_6$
- $\bullet e_5 \leftrightarrow \neg p$
- $\blacksquare \quad e_6 \leftrightarrow q \lor \neg e_7$

 $\bullet e_7 \leftrightarrow \neg r$

Let F be $(p \wedge q) \vee \neg (\ \neg p \wedge (q \vee \neg r) \)$

 \bullet e_1

- $\bullet e_4 \leftrightarrow e_5 \wedge e_6$
- $\bullet \quad e_5 \leftrightarrow \neg p$
- $\blacksquare \quad e_6 \leftrightarrow q \lor \neg e_7$
- $\bullet e_7 \leftrightarrow \neg r$

- Variations of Tseitin transformation are used in practice in SAT solvers
- Tseitin transformation does not produce an equivalent CNF: for example, the Tseitin transformation of $F = \neg p$ is $G = e \land (\neg e \lor \neg p) \land (e \lor p)$, and

- I Still, CNF obtained from F via Tseitin transformation has nice properties:
 - It is equisatisfiable to F
 - Any model of CNF projected to the variables in F gives a model of F
 - Any model of F can be completed to a model of the CNF
 - Can be computed in linear time in the size of F
 - Hence no model is lost nor added in the transformation

Overview of the session

- Definition of Propositional Logic
- General Concepts in Logic
 - Reduction to SAT
- CNFs and DNFs
 - Tseitin Transformation
- Problem Solving with SAT
- Resolution

Problem Solving with SAT

- I This is the standard flow when solving problems with SAT
- Transformation from P to F is called the encoding into SAT Already seen some examples: pigeon-hole problem Other examples will be seen in the next classes
- CNF transformation already explained
 - Let us see now how to design efficient SAT solvers

Overview of the session

- Definition of Propositional Logic
- General Concepts in Logic
 - Reduction to SAT
- CNFs and DNFs
 - Tseitin Transformation
- Problem Solving with SAT
 Resolution

Resolution

The resolution rule is

$$\frac{p \vee C \quad \neg p \vee D}{C \vee D}$$

- Res(S) = closure of set of clauses S under resolution = clauses inferred in zero or more steps of resolution from S
- Properties:
 - Resolution is correct:
 Res(S) only contains logical consequences
 - Resolution is refutationally complete: if S is unsatisfiable, then $\Box \in Res(S)$
 - Res(S) is a finite set of clauses
 - So, given a set of clauses S, its satisfiability can be checked by:
 - 1. Computing Res(S)
 - 2. If $\Box \in Res(S)$ Then UNSAT ; Else SAT