Propositional Logic

Combinatorial Problem Solving (CPS)

Albert Oliveras Enric Rodríguez-Carbonell

May 12, 2022
Overview of the session

- Definition of Propositional Logic
- General Concepts in Logic
 - Reduction to SAT
- CNFs and DNFs
 - Tseitin Transformation
- Problem Solving with SAT
- Resolution
Definition of Propositional Logic

SYNTAX (what is a formula?):

- There is a set \mathcal{P} of propositional variables, usually denoted by (subscripted) p, q, r, \ldots
- The set of propositional formulas over \mathcal{P} is defined as:
 - Every propositional variable is a formula
 - If F is a formula, $\neg F$ is also a formula
 - If F and G are formulas, $(F \land G)$ is also a formula
 - If F and G are formulas, $(F \lor G)$ is also a formula
 - Nothing else is a formula
- Formulas are usually denoted by (subscripted) F, G, H, \ldots
- Examples:

 p, $\neg p$, $(p \lor q)$, $\neg(p \land q)$, $((p \land \neg p) \lor q)$, $(p \land (\neg p \lor q))$, $((p \land q) \lor (r \lor \neg q))$, \ldots
Definition of Propositional Logic

SEMANTICS (what is an interpretation I, when I satisfies F?):

- **An interpretation** I over \mathcal{P} is a function $I : \mathcal{P} \rightarrow \{0, 1\}$.
- $eval_I : \text{Formulas} \rightarrow \{0, 1\}$ is a function defined as follows:
 - $eval_I(p) = I(p)$
 - $eval_I(\neg F) = 1 - eval_I(F)$
 - $eval_I((F \land G)) = \min\{eval_I(F), eval_I(G)\}$
 - $eval_I((F \lor G)) = \max\{eval_I(F), eval_I(G)\}$

- I satisfies F (written $I \models F$) if and only if $eval_I(F) = 1$.
- If $I \models F$ we say that
 - I is a **model** of F or, equivalently
 - F is true in I.

Definition of Propositional Logic

EXAMPLE:

■ Let F be the formula $(p \land (q \lor \neg r))$.

■ Let I be such that $I(p) = I(r) = 1$ and $I(q) = 0$.

■ Let us compute $eval_I(F)$ (use your intuition first!)

■ Is there any I such that $I \models F$?
Definition of Propositional Logic

EXAMPLE:

- Let F be the formula $(p \land (q \lor \neg r))$.
- Let I be such that $I(p) = I(r) = 1$ and $I(q) = 0$.
- Let us compute $eval_I(F)$ (use your intuition first!)

$$eval_I((p \land (q \lor \neg r))) =$$

- Is there any I such that $I \models F$?
Definition of Propositional Logic

EXAMPLE:

- Let F be the formula $(p \land (q \lor \neg r))$.
- Let I be such that $I(p) = I(r) = 1$ and $I(q) = 0$.
- Let us compute $eval_I(F)$ (use your intuition first!)

$$eval_I((p \land (q \lor \neg r))) = \min\{ eval_I(p), eval_I((q \lor \neg r)) \}$$

- Is there any I such that $I \models F$?
Definition of Propositional Logic

EXAMPLE:

- Let F be the formula $(p \land (q \lor \neg r))$.
- Let I be such that $I(p) = I(r) = 1$ and $I(q) = 0$.
- Let us compute $eval_I(F)$ (use your intuition first!)

\[
eval_I((p \land (q \lor \neg r))) = \min \{ \eval_I(p), \eval_I((q \lor \neg r)) \} \\
= \min \{ \eval_I(p), \max \{ \eval_I(q), \eval_I(\neg r) \} \}
\]

- Is there any I such that $I \models F$?
Definition of Propositional Logic

EXAMPLE:

Let F be the formula $(p \land (q \lor \neg r))$.

Let I be such that $I(p) = I(r) = 1$ and $I(q) = 0$.

Let us compute $eval_I(F)$ (use your intuition first!)

\[
eval_I((p \land (q \lor \neg r))) = \min \{ \eval_I(p), \eval_I((q \lor \neg r)) \} \\
= \min \{ \eval_I(p), \max \{ \eval_I(q), \eval_I(\neg r) \} \} \\
= \min \{ \eval_I(p), \max \{ \eval_I(q), 1 - \eval_I(r) \} \}
\]

Is there any I such that $I \models F$?
Definition of Propositional Logic

EXAMPLE:

Let F be the formula $(p \land (q \lor \neg r))$.

Let I be such that $I(p) = I(r) = 1$ and $I(q) = 0$.

Let us compute $\text{eval}_I(F)$ (use your intuition first!)

\[
\text{eval}_I((p \land (q \lor \neg r))) = \min\{ \text{eval}_I(p), \text{eval}_I((q \lor \neg r)) \} \\
= \min\{ \text{eval}_I(p), \max\{ \text{eval}_I(q), \text{eval}_I(\neg r) \} \} \\
= \min\{ \text{eval}_I(p), \max\{ \text{eval}_I(q), 1 - \text{eval}_I(r) \} \} \\
= \min\{ I(p), \max\{ I(q), 1 - I(r) \} \}
\]

Is there any I such that $I \models F$?
Definition of Propositional Logic

EXAMPLE:

■ Let F be the formula $(p \land (q \lor \neg r))$.

■ Let I be such that $I(p) = I(r) = 1$ and $I(q) = 0$.

■ Let us compute $eval_I(F)$ (use your intuition first!)

\[
eval_I((p \land (q \lor \neg r))) = \min\{ eval_I(p), eval_I((q \lor \neg r)) \} \\
= \min\{ eval_I(p), \max\{ eval_I(q), eval_I(\neg r) \} \} \\
= \min\{ eval_I(p), \max\{ eval_I(q), 1 - eval_I(r) \} \} \\
= \min\{ I(p), \max\{ I(q), 1 - I(r) \} \} \\
= \min\{ 1, \max\{ 0, 1 - 1 \} \}
\]

■ Is there any I such that $I \models F$?
Definition of Propositional Logic

EXAMPLE:

- Let F be the formula $(p \land (q \lor \neg r))$.
- Let I be such that $I(p) = I(r) = 1$ and $I(q) = 0$.
- Let us compute $eval_I(F)$ (use your intuition first!)

\[
\begin{align*}
\text{eval}_I((p \land (q \lor \neg r))) &= \min\{ \text{eval}_I(p), \text{eval}_I((q \lor \neg r)) \} \\
&= \min\{ \text{eval}_I(p), \max\{ \text{eval}_I(q), \text{eval}_I(\neg r) \} \} \\
&= \min\{ \text{eval}_I(p), \max\{ \text{eval}_I(q), 1 - \text{eval}_I(r) \} \} \\
&= \min\{ I(p), \max\{ I(q), 1 - I(r) \} \} \\
&= \min\{ 1, \max\{ 0, 1 - 1 \} \} \\
&= 0
\end{align*}
\]

- Is there any I such that $I \models F$?
Definition of Propositional Logic

EXAMPLE:

- Let F be the formula $(p \land (q \lor \neg r))$.

- Let I be such that $I(p) = I(r) = 1$ and $I(q) = 0$.

- Let us compute $eval_I(F)$ (use your intuition first!)

\[
eval_I((p \land (q \lor \neg r))) = \min\{ \eval_I(p), \eval_I((q \lor \neg r)) \}
\]
\[
= \min\{ \eval_I(p), \max\{ \eval_I(q), \eval_I(\neg r) \} \}
\]
\[
= \min\{ \eval_I(p), \max\{ \eval_I(q), 1 - \eval_I(r) \} \}
\]
\[
= \min\{ I(p), \max\{ I(q), 1 - I(r) \} \}
\]
\[
= \min\{ 1, \max\{ 0, 1 - 1 \} \}
\]
\[
= 0
\]

- Is there any I such that $I \models F$?
Definition of Propositional Logic

EXAMPLE:

- Let F be the formula $(p \land (q \lor \neg r))$.
- Let I be such that $I(p) = I(r) = 1$ and $I(q) = 0$.
- Let us compute $\text{eval}_I(F)$ (use your intuition first!)

\[
\begin{align*}
\text{eval}_I((p \land (q \lor \neg r))) &= \min \{ \text{eval}_I(p), \text{eval}_I((q \lor \neg r)) \} \\
&= \min \{ \text{eval}_I(p), \max \{ \text{eval}_I(q), \text{eval}_I(\neg r) \} \} \\
&= \min \{ \text{eval}_I(p), \max \{ \text{eval}_I(q), 1 - \text{eval}_I(r) \} \} \\
&= \min \{ I(p), \max \{ I(q), 1 - I(r) \} \} \\
&= \min \{ 1, \max \{ 0, 1 - 1 \} \} \\
&= 0
\end{align*}
\]

- Is there any I such that $I \models F$?

 YES, $I(p) = I(q) = I(r) = 1$ is a possible model.
Definition of Propositional Logic

EXAMPLE

- We have 3 pigeons and 2 holes. If each hole can have at most one pigeon, is it possible to place all pigeons in the holes?

- Vocabulary: $p_{i,j}$ means i-th pigeon is in j-th hole

- Each pigeon is placed in at least one hole:

$$ (p_{1,1} \lor p_{1,2}) \land (p_{2,1} \lor p_{2,2}) \land (p_{3,1} \lor p_{3,2}) $$

- Each hole can hold at most one pigeon:

$$ \neg(p_{1,1} \land p_{2,1}) \land \neg(p_{1,1} \land p_{3,1}) \land \neg(p_{2,1} \land p_{3,1}) \land $$
$$ \neg(p_{1,2} \land p_{2,2}) \land \neg(p_{1,2} \land p_{3,2}) \land \neg(p_{2,2} \land p_{3,2}) $$

- Resulting formula has no model
Definition of Propositional Logic

A small syntax extension:

- We will write \((F \rightarrow G)\) as an abbreviation for \((\neg F \lor G)\)
- Similarly, \((F \leftrightarrow G)\) is an abbreviation of \(((F \rightarrow G) \land (G \rightarrow F))\)
Overview of the session

- Definition of Propositional Logic
- **General Concepts in Logic**
 - Reduction to SAT
- CNFs and DNFs
 - Tseitin Transformation
- Problem Solving with SAT
- Resolution
General Concepts in Logic

Let F and G be arbitrary formulas. Then:

- F is **satisfiable** if it has at least one model
- F is **unsatisfiable** (also a contradiction) if it has no model
- F is a **tautology** if every interpretation is a model of F
- G is a **logical consequence** of F, denoted $F \models G$, if every model of F is a model of G
- F and G are **logically equivalent**, denoted $F \equiv G$, if F and G have the same models

Note that:

- All definitions are only based on the concept of **model**.
- Hence they are independent of the logic.
Circuit corresponds to formula \((\neg p \land p)\)

Formula **unsatisfiable** amounts to "circuit output is always 0"

Circuit corresponds to formula \((\neg p \lor p)\)

Formula is a **tautology** amounts to "circuit output is always 1"
General Concepts in Logic

- Circuit on the left corresponds to formula $F := \neg(p \land q)$
- Circuit on the right corresponds to formula $G := \neg p \lor \neg q$
- They are functionally equivalent, i.e. same inputs produce same output
- That corresponds to saying $F \equiv G$
- Cheapest / fastest / less power-consuming circuit is then chosen
Is e_1 always different from e_5?

$e_1 \neq e_5$ in the circuit amounts to

\[
\begin{align*}
&\quad \begin{array}{l}
 e_1 \iff (p \land q) \\
 e_2 \iff (r \lor s) \\
 e_3 \iff (e_1 \land e_2) \\
 e_4 \iff (e_3 \lor e_5) \\
 e_5 \iff (e_6 \land e_7) \\
 e_6 \iff (\neg p) \\
 e_7 \iff (\neg q)
\end{array}
\end{align*}
\]

$\models e_1 \iff \neg e_5$
Reduction to SAT

Assume we have a black box SAT that given a formula F:

- $\text{SAT}(F) = \text{YES}$ iff F is satisfiable
- $\text{SAT}(F) = \text{NO}$ iff F is unsatisfiable

How to reuse SAT for detecting tautology, logical consequences, ...?

- F tautology iff $\text{SAT}(\neg F) = \text{NO}$
- $F \models G$ iff $\text{SAT}(F \land \neg G) = \text{NO}$
- $F \equiv G$ iff $\text{SAT}((F \land \neg G) \lor (\neg F \land G)) = \text{NO}$
Reduction to SAT

Assume we have a black box SAT that given a formula F:

- $\text{SAT}(F) = \text{YES}$ iff F is satisfiable
- $\text{SAT}(F) = \text{NO}$ iff F is unsatisfiable

How to reuse SAT for detecting tautology, logical consequences, ...?

- F not taut. iff $\text{SAT}(\neg F) = \text{YES}$
- $F \not\models G$ iff $\text{SAT}(F \land \neg G) = \text{YES}$
- $F \not\equiv G$ iff $\text{SAT}((F \land \neg G) \lor (\neg F \land G)) = \text{YES}$
Reduction to SAT

Assume we have a black box SAT that given a formula F:

- $\text{SAT}(F) = \text{YES}$ iff F is satisfiable
- $\text{SAT}(F) = \text{NO}$ iff F is unsatisfiable

How to reuse SAT for detecting tautology, logical consequences, ...?

- F tautology iff $\text{SAT}(\neg F) = \text{NO}$
- $F \models G$ iff $\text{SAT}(F \land \neg G) = \text{NO}$
- $F \equiv G$ iff $\text{SAT}((F \land \neg G) \lor (\neg F \land G)) = \text{NO}$

Hence, a single tool suffices: all problems can be reduced to SAT (propositional SATisfiability)

The black box SAT will be called a SAT solver

GOAL: learn how to build a SAT solver
Overview of the session

- Definition of Propositional Logic
- General Concepts in Logic
 - Reduction to SAT
- CNFs and DNFs
 - Tseitin Transformation
- Problem Solving with SAT
- Resolution
CNFs and DNFs

In order to construct our SAT solver it will simplify our job to assume that the formula F has a given format.

- **A literal** is a propositional variable (p) or a negation of one ($\neg p$)
- **A clause** is a disjunction of zero or more literals ($l_1 \lor \ldots \lor l_n$)
- The **empty clause** (zero literals) is denoted with \square and is unsatisfiable
- A formula is in **Conjunctive Normal Form (CNF)** if it is a conjunction of zero or more disjunctions of literals (i.e., clauses)
- A formula is in **Disjunctive Normal Form (DNF)** if it is a disjunction of zero or more conjunctions of literals (i.e., cubes)

Examples:

$$p \land (q \lor \neg r) \land (q \lor p \lor \neg r)$$ is in CNF

$$p \lor (q \land \neg r) \lor (q \land p \land \neg r)$$ is in DNF
Given a formula F there exist formulas

- G in CNF with $F \equiv G$ and $(G$ is said to be a CNF of F)
- H in DNF with $F \equiv H$ $(H$ is said to be a DNF of F)

Which is the complexity of deciding whether F is satisfiable...

- ... if F is an arbitrary formula?
- ... if F is in CNF?
- ... if F is in DNF?
Given a formula F there exist formulas
- G in CNF with $F \equiv G$ and (G is said to be a CNF of F)
- H in DNF with $F \equiv H$ (H is said to be a DNF of F)

Which is the complexity of deciding whether F is satisfiable...
- ... if F is an arbitrary formula? NP-complete (Cook’s Theorem)
- ... if F is in CNF?
- ... if F is in DNF?
CNFs and DNFs

Given a formula F there exist formulas

- G in CNF with $F \equiv G$ and
- H in DNF with $F \equiv H$

(G is said to be a CNF of F)
(H is said to be a DNF of F)

Which is the complexity of deciding whether F is satisfiable...

- ... if F is an arbitrary formula? NP-complete (Cook’s Theorem)
- ... if F is in CNF? NP-complete (even if clauses have ≤ 3 literals!)
- ... if F is in DNF?
CNFs and DNFs

Given a formula F there exist formulas
- G in CNF with $F \equiv G$ and (G is said to be a CNF of F)
- H in DNF with $F \equiv H$ (H is said to be a DNF of F)

Which is the complexity of deciding whether F is satisfiable...
- ... if F is an arbitrary formula? NP-complete (Cook’s Theorem)
- ... if F is in CNF? NP-complete (even if clauses have ≤ 3 literals!)
- ... if F is in DNF? linear

Procedure $\text{SAT}(F)$

Input: formula F in DNF
Output: YES if there exists I such that $I \models F$, NO otherwise

1. If the DNF is empty then return NO.
 Else take a cube C of the DNF
2. If there is a variable p such that both p, $\neg p$ appear in C, then C cannot be made true: remove it and go to step 1.
 Else define I to make C true and return YES.
CNFs and DNFs

- Idea: given F, find a DNF of F and apply the linear-time algorithm
- Why this does not work?
CNFs and DNFs

- Idea: given F, find a DNF of F and apply the linear-time algorithm
- Why this does not work? Finding a DNF of F may take exponential time
- In fact there are formulas for which CNFs/DNFs have exponential size
Idea: given F, find a DNF of F and apply the linear-time algorithm

Why this does not work? Finding a DNF of F may take exponential time

In fact there are formulas for which CNFs/DNFs have exponential size

Consider xor defined as $\text{xor}(x_1) = x_1$ and if $n > 1$:

$$
\text{xor}(x_1, ..., x_n) = (\text{xor}(x_1, ..., x_{\lfloor n/2 \rfloor}) \land \neg \text{xor}(x_{\lfloor n/2 \rfloor}+1, ..., x_n)) \lor (\neg \text{xor}(x_1, ..., x_{\lfloor n/2 \rfloor}) \land \text{xor}(x_{\lfloor n/2 \rfloor}+1, ..., x_n))
$$

The size of $\text{xor}(x_1, ..., x_n)$ is $\Theta(n^2)$

Cubes (conjunctions of literals) of a DNF of $\text{xor}(x_1, ..., x_n)$ have n literals

Any DNF of $\text{xor}(x_1, ..., x_n)$ has at least 2^{n-1} cubes
(one for each of the assignments with an odd number of 1s)

Any CNF of $\text{xor}(x_1, ..., x_n)$ also has an exponential number of clauses
CNFs and DNFs

- Idea: given F, find a DNF of F and apply the linear-time algorithm
- Why this does not work? Finding a DNF of F may take exponential time
- In fact there are formulas for which CNFs/DNFs have exponential size

Consider xor defined as $\text{xor}(x_1) = x_1$ and if $n > 1$:

$$\text{xor}(x_1, \ldots, x_n) = (\text{xor}(x_1, \ldots, x_{\lfloor n/2 \rfloor}) \land \neg \text{xor}(x_{\lfloor n/2 \rfloor}+1, \ldots, x_n)) \lor (\neg \text{xor}(x_1, \ldots, x_{\lfloor n/2 \rfloor}) \land \text{xor}(x_{\lfloor n/2 \rfloor}+1, \ldots, x_n))$$

- The size of $\text{xor}(x_1, \ldots, x_n)$ is $\Theta(n^2)$
- Cubes (conjunctions of literals) of a DNF of $\text{xor}(x_1, \ldots, x_n)$ have n literals
- Any DNF of $\text{xor}(x_1, \ldots, x_n)$ has at least 2^{n-1} cubes (one for each of the assignments with an odd number of 1s)
- Any CNF of $\text{xor}(x_1, \ldots, x_n)$ also has an exponential number of clauses
- Next we’ll see a workaround
Let F be $(p \land q) \lor \neg(\neg p \land (q \lor \neg r))$
Let F be $(p \land q) \lor \neg(\neg p \land (q \lor \neg r))$
Let F be $(p \land q) \lor \neg(\neg p \land (q \lor \neg r))$
Let F be $(p \land q) \lor \neg(\neg p \land (q \lor \neg r))$
Tseitin Transformation

Let F be $(p \land q) \lor \neg(\neg p \land (q \lor \neg r))$

- e_1
- $e_1 \leftrightarrow e_2 \lor e_3$
 $\neg e_1 \lor e_2 \lor e_3$
 $\neg e_2 \lor e_1$
 $\neg e_3 \lor e_1$
- $e_2 \leftrightarrow p \land q$
 $\neg p \lor \neg q \lor e_2$
 $\neg e_2 \lor p$
 $\neg e_2 \lor q$
- $e_3 \leftrightarrow \neg e_4$
- $e_4 \leftrightarrow e_5 \land e_6$
- $e_5 \leftrightarrow \neg p$
- $e_6 \leftrightarrow q \lor \neg e_7$
- $e_7 \leftrightarrow \neg r$
Tseitin Transformation

Let F be $(p \land q) \lor \neg(\neg p \land (q \lor \neg r))$

\[
\begin{align*}
&\neg e_1 \\
&\quad \neg e_1 \lor e_2 \lor e_3 \\
&\quad \neg e_2 \lor e_1 \\
&\quad \neg e_3 \lor e_1 \\
&\quad e_2 \leftrightarrow p \land q \\
&\quad \neg p \lor \neg q \lor e_2 \\
&\quad \neg e_2 \lor p \\
&\quad \neg e_2 \lor q \\
&\quad e_3 \leftrightarrow \neg e_4 \\
&\quad \neg e_3 \lor \neg e_4 \\
&\quad e_3 \lor e_4 \\
&\quad e_4 \leftrightarrow e_5 \land e_6 \\
&\quad e_5 \leftrightarrow \neg p \\
&\quad e_6 \leftrightarrow q \lor \neg e_7 \\
&\quad e_7 \leftrightarrow \neg r
\end{align*}
\]
Tseitin Transformation

- Variations of Tseitin transformation are used in practice in SAT solvers.
- Tseitin transformation does not produce an equivalent CNF: for example, the Tseitin transformation of \(F = \neg p \) is \(G = e \land (\neg e \lor \neg p) \land (e \lor p) \), and

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Still, CNF obtained from \(F \) via Tseitin transformation has nice properties:
 - It is equisatisfiable to \(F \)
 - Any model of CNF projected to the variables in \(F \) gives a model of \(F \)
 - Any model of \(F \) can be completed to a model of the CNF
 - Can be computed in linear time in the size of \(F \)
- Hence no model is lost nor added in the transformation.
Overview of the session

- Definition of Propositional Logic
- General Concepts in Logic
 - Reduction to SAT
- CNFs and DNFs
 - Tseitin Transformation
- Problem Solving with SAT
- Resolution
Problem Solving with SAT

Problem P \rightarrow Formula F \rightarrow CNF \rightarrow SAT solver

Solutions $P = \text{Models } F$

- This is the standard flow when solving problems with SAT
- Transformation from P to F is called the encoding into SAT
 - Already seen some examples: pigeon-hole problem
 - Other examples will be seen in the next classes
- CNF transformation already explained
- Let us see now how to design efficient SAT solvers
Overview of the session

- Definition of Propositional Logic
- General Concepts in Logic
 - Reduction to SAT
- CNFs and DNFs
 - Tseitin Transformation
- Problem Solving with SAT
- Resolution
Resolution

- The resolution rule is
 \[
 \frac{p \lor C}{\neg p \lor D} \quad \frac{\neg p \lor D}{C \lor D}
 \]

- \(Res(S) = \text{closure of set of clauses } S \text{ under resolution} = \)
 = clauses inferred in zero or more steps of resolution from \(S \)

- Properties:
 - Resolution is correct:
 \(Res(S) \) only contains logical consequences
 - Resolution is refutationally complete:
 if \(S \) is unsatisfiable, then \(\square \in Res(S) \)
 - \(Res(S) \) is a finite set of clauses

- So, given a set of clauses \(S \), its satisfiability can be checked by:
 1. Computing \(Res(S) \)
 2. If \(\square \in Res(S) \), Then UNSAT ; Else SAT