
Propositional Logic

Combinatorial Problem Solving (CPS)

Albert Oliveras Enric Rodŕıguez-Carbonell

May 12, 2023

Overview of the session

1 / 18

■ Definition of Propositional Logic

■ General Concepts in Logic

◆ Reduction to SAT

■ CNFs and DNFs

◆ Tseitin Transformation

■ Problem Solving with SAT

■ Resolution

Definition of Propositional Logic

2 / 18

SYNTAX (what is a formula?):

■ There is a set P of propositional variables,
usually denoted by (subscripted) p, q, r, . . .

■ The set of propositional formulas over P is defined as:

◆ Every propositional variable is a formula

◆ If F is a formula, ¬F is also a formula

◆ If F and G are formulas, (F ∧G) is also a formula

◆ If F and G are formulas, (F ∨G) is also a formula

◆ Nothing else is a formula

■ Formulas are usually denoted by (subscripted) F,G,H, . . .

■ Examples:

p ¬p (p ∨ q) ¬(p ∧ q)

(p ∧ (¬p ∨ q)) ((p ∧ q) ∨ (r ∨ ¬q)) . . .

Definition of Propositional Logic

3 / 18

SEMANTICS (what is an interpretation I, when I satisfies F?):

■ An interpretation I over P is a function I : P → {0, 1}.

■ evalI : Formulas → {0, 1} is a function defined as follows:

◆ evalI(p) = I(p)

◆ evalI(¬F) = 1− evalI(F)

◆ evalI((F ∧G)) = min{evalI(F), evalI(G)}

◆ evalI((F ∨G)) = max{evalI(F), evalI(G)}

■ I satisfies F (written I |= F) if and only if evalI(F) = 1.

■ If I |= F we say that

◆ I is a model of F or, equivalently

◆ F is true in I.

Definition of Propositional Logic

4 / 18

EXAMPLE:

■ Let F be the formula (p ∧ (q ∨ ¬r)).

■ Let I be such that I(p) = I(r) = 1 and I(q) = 0.

■ Let us compute evalI(F) (use your intuition first!)

■ Is there any I such that I |= F?

Definition of Propositional Logic

4 / 18

EXAMPLE:

■ Let F be the formula (p ∧ (q ∨ ¬r)).

■ Let I be such that I(p) = I(r) = 1 and I(q) = 0.

■ Let us compute evalI(F) (use your intuition first!)

evalI((p ∧ (q ∨ ¬r))) =

■ Is there any I such that I |= F?

Definition of Propositional Logic

4 / 18

EXAMPLE:

■ Let F be the formula (p ∧ (q ∨ ¬r)).

■ Let I be such that I(p) = I(r) = 1 and I(q) = 0.

■ Let us compute evalI(F) (use your intuition first!)

evalI((p ∧ (q ∨ ¬r))) = min{ evalI(p), evalI((q ∨ ¬r)) }

■ Is there any I such that I |= F?

Definition of Propositional Logic

4 / 18

EXAMPLE:

■ Let F be the formula (p ∧ (q ∨ ¬r)).

■ Let I be such that I(p) = I(r) = 1 and I(q) = 0.

■ Let us compute evalI(F) (use your intuition first!)

evalI((p ∧ (q ∨ ¬r))) = min{ evalI(p), evalI((q ∨ ¬r)) }
= min{ evalI(p), max{ evalI(q), evalI(¬r)} }

■ Is there any I such that I |= F?

Definition of Propositional Logic

4 / 18

EXAMPLE:

■ Let F be the formula (p ∧ (q ∨ ¬r)).

■ Let I be such that I(p) = I(r) = 1 and I(q) = 0.

■ Let us compute evalI(F) (use your intuition first!)

evalI((p ∧ (q ∨ ¬r))) = min{ evalI(p), evalI((q ∨ ¬r)) }
= min{ evalI(p), max{ evalI(q), evalI(¬r)} }
= min{ evalI(p), max{ evalI(q), 1− evalI(r)} }

■ Is there any I such that I |= F?

Definition of Propositional Logic

4 / 18

EXAMPLE:

■ Let F be the formula (p ∧ (q ∨ ¬r)).

■ Let I be such that I(p) = I(r) = 1 and I(q) = 0.

■ Let us compute evalI(F) (use your intuition first!)

evalI((p ∧ (q ∨ ¬r))) = min{ evalI(p), evalI((q ∨ ¬r)) }
= min{ evalI(p), max{ evalI(q), evalI(¬r)} }
= min{ evalI(p), max{ evalI(q), 1− evalI(r)} }
= min{ I(p), max{ I(q), 1− I(r)} }

■ Is there any I such that I |= F?

Definition of Propositional Logic

4 / 18

EXAMPLE:

■ Let F be the formula (p ∧ (q ∨ ¬r)).

■ Let I be such that I(p) = I(r) = 1 and I(q) = 0.

■ Let us compute evalI(F) (use your intuition first!)

evalI((p ∧ (q ∨ ¬r))) = min{ evalI(p), evalI((q ∨ ¬r)) }
= min{ evalI(p), max{ evalI(q), evalI(¬r)} }
= min{ evalI(p), max{ evalI(q), 1− evalI(r)} }
= min{ I(p), max{ I(q), 1− I(r)} }
= min{ 1, max{ 0, 1− 1} }

■ Is there any I such that I |= F?

Definition of Propositional Logic

4 / 18

EXAMPLE:

■ Let F be the formula (p ∧ (q ∨ ¬r)).

■ Let I be such that I(p) = I(r) = 1 and I(q) = 0.

■ Let us compute evalI(F) (use your intuition first!)

evalI((p ∧ (q ∨ ¬r))) = min{ evalI(p), evalI((q ∨ ¬r)) }
= min{ evalI(p), max{ evalI(q), evalI(¬r)} }
= min{ evalI(p), max{ evalI(q), 1− evalI(r)} }
= min{ I(p), max{ I(q), 1− I(r)} }
= min{ 1, max{ 0, 1− 1} }
= 0

■ Is there any I such that I |= F?

Definition of Propositional Logic

4 / 18

EXAMPLE:

■ Let F be the formula (p ∧ (q ∨ ¬r)).

■ Let I be such that I(p) = I(r) = 1 and I(q) = 0.

■ Let us compute evalI(F) (use your intuition first!)

evalI((p ∧ (q ∨ ¬r))) = min{ evalI(p), evalI((q ∨ ¬r)) }
= min{ evalI(p), max{ evalI(q), evalI(¬r)} }
= min{ evalI(p), max{ evalI(q), 1− evalI(r)} }
= min{ I(p), max{ I(q), 1− I(r)} }
= min{ 1, max{ 0, 1− 1} }
= 0

■ Is there any I such that I |= F?

Definition of Propositional Logic

4 / 18

EXAMPLE:

■ Let F be the formula (p ∧ (q ∨ ¬r)).

■ Let I be such that I(p) = I(r) = 1 and I(q) = 0.

■ Let us compute evalI(F) (use your intuition first!)

evalI((p ∧ (q ∨ ¬r))) = min{ evalI(p), evalI((q ∨ ¬r)) }
= min{ evalI(p), max{ evalI(q), evalI(¬r)} }
= min{ evalI(p), max{ evalI(q), 1− evalI(r)} }
= min{ I(p), max{ I(q), 1− I(r)} }
= min{ 1, max{ 0, 1− 1} }
= 0

■ Is there any I such that I |= F?

YES, I(p) = I(q) = I(r) = 1 is a possible model.

Definition of Propositional Logic

5 / 18

EXAMPLE

■ We have 3 pigeons and 2 holes.
If each hole can have at most one pigeon,
is it possible to place all pigeons in the holes?

■ Vocabulary: pi,j means i-th pigeon is in j-th hole

■ Each pigeon is placed in at least one hole:

(p1,1 ∨ p1,2) ∧ (p2,1 ∨ p2,2) ∧ (p3,1 ∨ p3,2)

■ Each hole can hold at most one pigeon:

¬(p1,1 ∧ p2,1) ∧ ¬(p1,1 ∧ p3,1) ∧ ¬(p2,1 ∧ p3,1) ∧
¬(p1,2 ∧ p2,2) ∧ ¬(p1,2 ∧ p3,2) ∧ ¬(p2,2 ∧ p3,2)

■ Resulting formula has no model

Definition of Propositional Logic

6 / 18

A small syntax extension:

■ We will write (F → G) as an abbreviation for (¬F ∨G)

■ Similarly, (F ↔ G) is an abbreviation of ((F → G) ∧ (G → F))

Overview of the session

6 / 18

■ Definition of Propositional Logic

■ General Concepts in Logic

◆ Reduction to SAT

■ CNFs and DNFs

◆ Tseitin Transformation

■ Problem Solving with SAT

■ Resolution

General Concepts in Logic

7 / 18

Let F and G be arbitrary formulas. Then:

■ F is satisfiable if it has at least one model

■ F is unsatisfiable (also a contradiction) if it has no model

■ F is a tautology if every interpretation is a model of F

■ G is a logical consequence of F , denoted F |= G,
if every model of F is a model of G

■ F and G are logically equivalent, denoted F ≡ G,
if F and G have the same models

Note that:

■ All definitions are only based on the concept of model.

■ Hence they are independent of the logic.

General Concepts in Logic

8 / 18

p

■ Circuit corresponds to formula (¬p ∧ p)

■ Formula unsatisfiable amounts to “circuit output is always 0”

p

■ Circuit corresponds to formula (¬p ∨ p)

■ Formula is a tautology amounts to “circuit output is always 1”

General Concepts in Logic

9 / 18

p p

q q

■ Circuit on the left corresponds to formula F := ¬(p ∧ q)

■ Circuit on the right corresponds to formula G := (¬p ∨ ¬q)

■ They are functionally equivalent, i.e. same inputs produce same output

■ That corresponds to saying F ≡ G

■ Cheapest / fastest / less power-consuming circuit is then chosen

General Concepts in Logic

10 / 18

r

s

e1

e2

e3

e4

e5

e6

e7

p

p

q

q

Is e1 always dif-
ferent from e5?

e1 6= e5 in the circuit amounts to

e1 ↔ (p ∧ q) ∧
e2 ↔ (r ∨ s) ∧
e3 ↔ (e1 ∧ e2) ∧
e4 ↔ (e3 ∨ e5) ∧
e5 ↔ (e6 ∧ e7) ∧
e6 ↔ (¬p) ∧
e7 ↔ (¬q)

|= e1 ↔ ¬e5

Reduction to SAT

11 / 18

Assume we have a black box SAT that given a formula F :

■ SAT(F) = YES iff F is satisfiable

■ SAT(F) = NO iff F is unsatisfiable

How to reuse SAT for detecting tautology, logical consequences, ...?

■ F tautology iff SAT(¬F) = NO

■ F |= G iff SAT(F ∧ ¬G) = NO

■ F ≡ G iff SAT((F ∧ ¬G) ∨ (¬F ∧G)) = NO

Reduction to SAT

11 / 18

Assume we have a black box SAT that given a formula F :

■ SAT(F) = YES iff F is satisfiable

■ SAT(F) = NO iff F is unsatisfiable

How to reuse SAT for detecting tautology, logical consequences, ...?

■ F not taut. iff SAT(¬F) = YES

■ F 6|= G iff SAT(F ∧ ¬G) = YES

■ F 6≡ G iff SAT((F ∧ ¬G) ∨ (¬F ∧G)) = YES

Reduction to SAT

11 / 18

Assume we have a black box SAT that given a formula F :

■ SAT(F) = YES iff F is satisfiable

■ SAT(F) = NO iff F is unsatisfiable

How to reuse SAT for detecting tautology, logical consequences, ...?

■ F tautology iff SAT(¬F) = NO

■ F |= G iff SAT(F ∧ ¬G) = NO

■ F ≡ G iff SAT((F ∧ ¬G) ∨ (¬F ∧G)) = NO

Hence, a single tool suffices: all problems can be reduced to SAT
(propositional SATisfiability)

The black box SAT will be called a SAT solver

GOAL: learn how to build a SAT solver

Overview of the session

11 / 18

■ Definition of Propositional Logic

■ General Concepts in Logic

◆ Reduction to SAT

■ CNFs and DNFs

◆ Tseitin Transformation

■ Problem Solving with SAT

■ Resolution

CNFs and DNFs

12 / 18

In order to construct our SAT solver
it will simplify our job to assume that the formula F has a given format.

■ A literal is a propositional variable (p) or a negation of one (¬p)

■ A clause is a disjunction of zero or more literals (l1 ∨ . . . ln)

■ The empty clause (zero literals) is denoted with ✷ and is unsatisfiable

■ A formula is in Conjunctive Normal Form (CNF) if
it is a conjunction of zero or more disjunctions of literals (i.e., clauses)

■ A formula is in Disjunctive Normal Form (DNF) if
it is a disjunction of zero or more conjunctions of literals (i.e., cubes)

Examples:
p ∧ (q ∨ ¬r) ∧ (q ∨ p ∨ ¬r) is in CNF
p ∨ (q ∧ ¬r) ∨ (q ∧ p ∧ ¬r) is in DNF

CNFs and DNFs

13 / 18

■ Given a formula F there exist formulas

◆ G in CNF with F ≡ G and (G is said to be a CNF of F)

◆ H in DNF with F ≡ H (H is said to be a DNF of F)

■ Which is the complexity of deciding whether F is satisfiable...

◆ ... if F is an arbitrary formula?

◆ ... if F is in CNF?

◆ ... if F is in DNF?

CNFs and DNFs

13 / 18

■ Given a formula F there exist formulas

◆ G in CNF with F ≡ G and (G is said to be a CNF of F)

◆ H in DNF with F ≡ H (H is said to be a DNF of F)

■ Which is the complexity of deciding whether F is satisfiable...

◆ ... if F is an arbitrary formula? NP-complete (Cook’s Theorem)

◆ ... if F is in CNF?

◆ ... if F is in DNF?

CNFs and DNFs

13 / 18

■ Given a formula F there exist formulas

◆ G in CNF with F ≡ G and (G is said to be a CNF of F)

◆ H in DNF with F ≡ H (H is said to be a DNF of F)

■ Which is the complexity of deciding whether F is satisfiable...

◆ ... if F is an arbitrary formula? NP-complete (Cook’s Theorem)

◆ ... if F is in CNF? NP-complete (even if clauses have ≤ 3 literals!)

◆ ... if F is in DNF?

CNFs and DNFs

13 / 18

■ Given a formula F there exist formulas

◆ G in CNF with F ≡ G and (G is said to be a CNF of F)

◆ H in DNF with F ≡ H (H is said to be a DNF of F)

■ Which is the complexity of deciding whether F is satisfiable...

◆ ... if F is an arbitrary formula? NP-complete (Cook’s Theorem)

◆ ... if F is in CNF? NP-complete (even if clauses have ≤ 3 literals!)

◆ ... if F is in DNF? linear

Procedure SAT(F)

Input: formula F in DNF
Output: YES if there exists I such that I |= F , NO otherwise

1. If the DNF is empty then return NO.
Else take a cube C of the DNF

2. If there is a variable p such that both p, ¬p appear in C,
then C cannot be made true: remove it and go to step 1.
Else define I to make C true and return YES.

CNFs and DNFs

14 / 18

■ Idea: given F , find a DNF of F and apply the linear-time algorithm

■ Why this does not work?

CNFs and DNFs

14 / 18

■ Idea: given F , find a DNF of F and apply the linear-time algorithm

■ Why this does not work? Finding a DNF of F may take exponential time

■ In fact there are formulas for which CNFs/DNFs have exponential size

CNFs and DNFs

14 / 18

■ Idea: given F , find a DNF of F and apply the linear-time algorithm

■ Why this does not work? Finding a DNF of F may take exponential time

■ In fact there are formulas for which CNFs/DNFs have exponential size

■ Consider xor defined as xor(x1) = x1 and if n > 1:

xor(x1, ..., xn) = (xor(x1, ..., x⌊n

2
⌋) ∧ ¬xor(x⌊n

2
⌋+1, ..., xn)) ∨

(¬xor(x1, ..., x⌊n

2
⌋) ∧ xor(x⌊n

2
⌋+1, ..., xn))

■ The size of xor(x1, ..., xn) is Θ(n2)

■ Cubes (conjunctions of literals) of a DNF of xor(x1, ..., xn) have n literals

■ Any DNF of xor(x1, ..., xn) has at least 2
n−1 cubes

(one for each of the assignments with an odd number of 1s)

■ Any CNF of xor(x1, ..., xn) also has an exponential number of clauses

CNFs and DNFs

14 / 18

■ Idea: given F , find a DNF of F and apply the linear-time algorithm

■ Why this does not work? Finding a DNF of F may take exponential time

■ In fact there are formulas for which CNFs/DNFs have exponential size

■ Consider xor defined as xor(x1) = x1 and if n > 1:

xor(x1, ..., xn) = (xor(x1, ..., x⌊n

2
⌋) ∧ ¬xor(x⌊n

2
⌋+1, ..., xn)) ∨

(¬xor(x1, ..., x⌊n

2
⌋) ∧ xor(x⌊n

2
⌋+1, ..., xn))

■ The size of xor(x1, ..., xn) is Θ(n2)

■ Cubes (conjunctions of literals) of a DNF of xor(x1, ..., xn) have n literals

■ Any DNF of xor(x1, ..., xn) has at least 2
n−1 cubes

(one for each of the assignments with an odd number of 1s)

■ Any CNF of xor(x1, ..., xn) also has an exponential number of clauses

■ Next we’ll see a workaround

Tseitin Transformation

15 / 18

Let F be (p ∧ q) ∨ ¬(¬p ∧ (q ∨ ¬r))

^ ¬

^

¬

¬ ∨

∨

p

p

q

q

r

Tseitin Transformation

15 / 18

Let F be (p ∧ q) ∨ ¬(¬p ∧ (q ∨ ¬r))

^ ¬

^

¬

1

2 3

4

5

7

6¬

∨

∨

p

p

q

q

r

e

e

e

e

ee

e

Tseitin Transformation

15 / 18

Let F be (p ∧ q) ∨ ¬(¬p ∧ (q ∨ ¬r))

^ ¬

^

¬

1

2 3

4

5

7

6¬

∨

∨

p

p

q

q

r

e

e

e

e

ee

e
■ e1

■ e1 ↔ e2 ∨ e3

■ e2 ↔ p ∧ q

■ e3 ↔ ¬e4

■ e4 ↔ e5 ∧ e6

■ e5 ↔ ¬p

■ e6 ↔ q ∨ ¬e7

■ e7 ↔ ¬r

Tseitin Transformation

15 / 18

Let F be (p ∧ q) ∨ ¬(¬p ∧ (q ∨ ¬r))

^ ¬

^

¬

1

2 3

4

5

7

6¬

∨

∨

p

p

q

q

r

e

e

e

e

ee

e
■ e1

■ e1 ↔ e2 ∨ e3
¬e1 ∨ e2 ∨ e3
¬e2 ∨ e1
¬e3 ∨ e1

■ e2 ↔ p ∧ q

■ e3 ↔ ¬e4

■ e4 ↔ e5 ∧ e6

■ e5 ↔ ¬p

■ e6 ↔ q ∨ ¬e7

■ e7 ↔ ¬r

Tseitin Transformation

15 / 18

Let F be (p ∧ q) ∨ ¬(¬p ∧ (q ∨ ¬r))

^ ¬

^

¬

1

2 3

4

5

7

6¬

∨

∨

p

p

q

q

r

e

e

e

e

ee

e

■ e1

■ e1 ↔ e2 ∨ e3
¬e1 ∨ e2 ∨ e3
¬e2 ∨ e1
¬e3 ∨ e1

■ e2 ↔ p ∧ q

¬p ∨ ¬q ∨ e2
¬e2 ∨ p
¬e2 ∨ q

■ e3 ↔ ¬e4

■ e4 ↔ e5 ∧ e6

■ e5 ↔ ¬p

■ e6 ↔ q ∨ ¬e7

■ e7 ↔ ¬r

Tseitin Transformation

15 / 18

Let F be (p ∧ q) ∨ ¬(¬p ∧ (q ∨ ¬r))

^ ¬

^

¬

1

2 3

4

5

7

6¬

∨

∨

p

p

q

q

r

e

e

e

e

ee

e

■ e1

■ e1 ↔ e2 ∨ e3
¬e1 ∨ e2 ∨ e3
¬e2 ∨ e1
¬e3 ∨ e1

■ e2 ↔ p ∧ q

¬p ∨ ¬q ∨ e2
¬e2 ∨ p
¬e2 ∨ q

■ e3 ↔ ¬e4
¬e3 ∨ ¬e4
e3 ∨ e4

■ e4 ↔ e5 ∧ e6

■ e5 ↔ ¬p

■ e6 ↔ q ∨ ¬e7

■ e7 ↔ ¬r

Tseitin Transformation

16 / 18

■ Variations of Tseitin transformation are used in practice in SAT solvers

■ Tseitin transformation does not produce an equivalent CNF: for example,
the Tseitin transformation of F = ¬p is G = e ∧ (¬e ∨ ¬p) ∧ (e ∨ p), and

e p F G

0 0 1 0

0 1 0 0

1 0 1 1

1 1 0 0

■ Still, CNF obtained from F via Tseitin transformation has nice properties:

◆ It is equisatisfiable to F

◆ Any model of CNF projected to the variables in F gives a model of F

◆ Any model of F can be completed to a model of the CNF

◆ Can be computed in linear time in the size of F

■ Hence no model is lost nor added in the transformation

Overview of the session

16 / 18

■ Definition of Propositional Logic

■ General Concepts in Logic

◆ Reduction to SAT

■ CNFs and DNFs

◆ Tseitin Transformation

■ Problem Solving with SAT

■ Resolution

Problem Solving with SAT

17 / 18

No

Yes + model

CNF SAT solver
FormulaProblem

FP

Solutions P = Models F

■ This is the standard flow when solving problems with SAT

■ Transformation from P to F is called the encoding into SAT

Already seen some examples: pigeon-hole problem
Other examples will be seen in the next classes

■ CNF transformation already explained

■ Let us see now how to design efficient SAT solvers

Overview of the session

17 / 18

■ Definition of Propositional Logic

■ General Concepts in Logic

◆ Reduction to SAT

■ CNFs and DNFs

◆ Tseitin Transformation

■ Problem Solving with SAT

■ Resolution

Resolution

18 / 18

■ The resolution rule is
p ∨ C ¬p ∨D

C ∨D

■ Res(S) = closure of set of clauses S under resolution =
= clauses inferred in zero or more steps of resolution from S

■ Properties:

◆ Resolution is correct:
Res(S) only contains logical consequences

◆ Resolution is refutationally complete:
if S is unsatisfiable, then ✷ ∈ Res(S)

◆ Res(S) is a finite set of clauses

■ So, given a set of clauses S, its satisfiability can be checked by:

1. Computing Res(S)

2. If ✷ ∈ Res(S) Then UNSAT ; Else SAT

	Overview of the session
	Definition of Propositional Logic
	Definition of Propositional Logic
	Definition of Propositional Logic
	Definition of Propositional Logic
	Definition of Propositional Logic
	Overview of the session
	General Concepts in Logic
	General Concepts in Logic
	General Concepts in Logic
	General Concepts in Logic
	Reduction to SAT
	Overview of the session
	CNFs and DNFs
	CNFs and DNFs
	CNFs and DNFs
	Tseitin Transformation
	Tseitin Transformation
	Overview of the session
	Problem Solving with SAT
	Overview of the session
	Resolution

