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SYNTAX (what is a formula?):

■ There is a set P of propositional variables,
usually denoted by (subscripted) p, q, r, . . .

■ The set of propositional formulas over P is defined as:

◆ Every propositional variable is a formula

◆ If F is a formula, ¬F is also a formula

◆ If F and G are formulas, (F ∧G) is also a formula

◆ If F and G are formulas, (F ∨G) is also a formula

◆ Nothing else is a formula

■ Formulas are usually denoted by (subscripted) F,G,H, . . .

■ Examples:

p ¬p (p ∨ q) ¬(p ∧ q)

(p ∧ (¬p ∨ q)) ((p ∧ q) ∨ (r ∨ ¬q)) . . .
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SEMANTICS (what is an interpretation I, when I satisfies F?):

■ An interpretation I over P is a function I : P → {0, 1}.

■ evalI : Formulas → {0, 1} is a function defined as follows:

◆ evalI(p) = I(p)

◆ evalI(¬F ) = 1− evalI(F )

◆ evalI( (F ∧G) ) = min{evalI(F ), evalI(G)}

◆ evalI( (F ∨G) ) = max{evalI(F ), evalI(G)}

■ I satisfies F (written I |= F ) if and only if evalI(F ) = 1.

■ If I |= F we say that

◆ I is a model of F or, equivalently

◆ F is true in I.
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EXAMPLE:

■ Let F be the formula (p ∧ (q ∨ ¬r)).

■ Let I be such that I(p) = I(r) = 1 and I(q) = 0.

■ Let us compute evalI(F ) (use your intuition first!)

■ Is there any I such that I |= F?
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EXAMPLE:

■ Let F be the formula (p ∧ (q ∨ ¬r)).

■ Let I be such that I(p) = I(r) = 1 and I(q) = 0.

■ Let us compute evalI(F ) (use your intuition first!)

evalI((p ∧ (q ∨ ¬r))) = min{ evalI(p), evalI((q ∨ ¬r)) }
= min{ evalI(p), max{ evalI(q), evalI(¬r)} }
= min{ evalI(p), max{ evalI(q), 1− evalI(r)} }
= min{ I(p), max{ I(q), 1− I(r)} }
= min{ 1, max{ 0, 1− 1} }
= 0

■ Is there any I such that I |= F?

YES, I(p) = I(q) = I(r) = 1 is a possible model.
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EXAMPLE

■ We have 3 pigeons and 2 holes.
If each hole can have at most one pigeon,
is it possible to place all pigeons in the holes?

■ Vocabulary: pi,j means i-th pigeon is in j-th hole

■ Each pigeon is placed in at least one hole:

(p1,1 ∨ p1,2) ∧ (p2,1 ∨ p2,2) ∧ (p3,1 ∨ p3,2)

■ Each hole can hold at most one pigeon:

¬(p1,1 ∧ p2,1) ∧ ¬(p1,1 ∧ p3,1) ∧ ¬(p2,1 ∧ p3,1) ∧
¬(p1,2 ∧ p2,2) ∧ ¬(p1,2 ∧ p3,2) ∧ ¬(p2,2 ∧ p3,2)

■ Resulting formula has no model
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A small syntax extension:

■ We will write (F → G) as an abbreviation for (¬F ∨G)

■ Similarly, (F ↔ G) is an abbreviation of ((F → G) ∧ (G → F ))
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Let F and G be arbitrary formulas. Then:

■ F is satisfiable if it has at least one model

■ F is unsatisfiable (also a contradiction) if it has no model

■ F is a tautology if every interpretation is a model of F

■ G is a logical consequence of F , denoted F |= G,
if every model of F is a model of G

■ F and G are logically equivalent, denoted F ≡ G,
if F and G have the same models

Note that:

■ All definitions are only based on the concept of model.

■ Hence they are independent of the logic.
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p

■ Circuit corresponds to formula (¬p ∧ p)

■ Formula unsatisfiable amounts to “circuit output is always 0”

p

■ Circuit corresponds to formula (¬p ∨ p)

■ Formula is a tautology amounts to “circuit output is always 1”
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p p

q q

■ Circuit on the left corresponds to formula F := ¬(p ∧ q)

■ Circuit on the right corresponds to formula G := (¬p ∨ ¬q)

■ They are functionally equivalent, i.e. same inputs produce same output

■ That corresponds to saying F ≡ G

■ Cheapest / fastest / less power-consuming circuit is then chosen
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r

s

e1

e2

e3

e4

e5

e6

e7

p

p

q

q

Is e1 always dif-
ferent from e5?

e1 6= e5 in the circuit amounts to

e1 ↔ (p ∧ q) ∧
e2 ↔ (r ∨ s) ∧
e3 ↔ (e1 ∧ e2) ∧
e4 ↔ (e3 ∨ e5) ∧
e5 ↔ (e6 ∧ e7) ∧
e6 ↔ (¬p) ∧
e7 ↔ (¬q)







































|= e1 ↔ ¬e5
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Assume we have a black box SAT that given a formula F :

■ SAT(F ) = YES iff F is satisfiable

■ SAT(F ) = NO iff F is unsatisfiable

How to reuse SAT for detecting tautology, logical consequences, ...?

■ F tautology iff SAT(¬F ) = NO

■ F |= G iff SAT(F ∧ ¬G) = NO

■ F ≡ G iff SAT((F ∧ ¬G) ∨ (¬F ∧G)) = NO
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Assume we have a black box SAT that given a formula F :

■ SAT(F ) = YES iff F is satisfiable

■ SAT(F ) = NO iff F is unsatisfiable

How to reuse SAT for detecting tautology, logical consequences, ...?

■ F tautology iff SAT(¬F ) = NO

■ F |= G iff SAT(F ∧ ¬G) = NO

■ F ≡ G iff SAT((F ∧ ¬G) ∨ (¬F ∧G)) = NO

Hence, a single tool suffices: all problems can be reduced to SAT
(propositional SATisfiability)

The black box SAT will be called a SAT solver

GOAL: learn how to build a SAT solver
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In order to construct our SAT solver
it will simplify our job to assume that the formula F has a given format.

■ A literal is a propositional variable (p) or a negation of one (¬p)

■ A clause is a disjunction of zero or more literals (l1 ∨ . . . ln)

■ The empty clause (zero literals) is denoted with ✷ and is unsatisfiable

■ A formula is in Conjunctive Normal Form (CNF) if
it is a conjunction of zero or more disjunctions of literals (i.e., clauses)

■ A formula is in Disjunctive Normal Form (DNF) if
it is a disjunction of zero or more conjunctions of literals (i.e., cubes)

Examples:
p ∧ (q ∨ ¬r) ∧ (q ∨ p ∨ ¬r) is in CNF
p ∨ (q ∧ ¬r) ∨ (q ∧ p ∧ ¬r) is in DNF
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■ Given a formula F there exist formulas

◆ G in CNF with F ≡ G and (G is said to be a CNF of F )

◆ H in DNF with F ≡ H (H is said to be a DNF of F )

■ Which is the complexity of deciding whether F is satisfiable...

◆ ... if F is an arbitrary formula?

◆ ... if F is in CNF?

◆ ... if F is in DNF?
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■ Given a formula F there exist formulas

◆ G in CNF with F ≡ G and (G is said to be a CNF of F )

◆ H in DNF with F ≡ H (H is said to be a DNF of F )

■ Which is the complexity of deciding whether F is satisfiable...

◆ ... if F is an arbitrary formula? NP-complete (Cook’s Theorem)

◆ ... if F is in CNF? NP-complete (even if clauses have ≤ 3 literals!)

◆ ... if F is in DNF? linear

Procedure SAT(F )

Input: formula F in DNF
Output: YES if there exists I such that I |= F , NO otherwise

1. If the DNF is empty then return NO.
Else take a cube C of the DNF

2. If there is a variable p such that both p, ¬p appear in C,
then C cannot be made true: remove it and go to step 1.
Else define I to make C true and return YES.



CNFs and DNFs

14 / 18

■ Idea: given F , find a DNF of F and apply the linear-time algorithm

■ Why this does not work?
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■ Idea: given F , find a DNF of F and apply the linear-time algorithm

■ Why this does not work? Finding a DNF of F may take exponential time

■ In fact there are formulas for which CNFs/DNFs have exponential size

■ Consider xor defined as xor(x1) = x1 and if n > 1:

xor(x1, ..., xn) = (xor(x1, ..., x⌊n

2
⌋) ∧ ¬xor(x⌊n

2
⌋+1, ..., xn)) ∨

(¬xor(x1, ..., x⌊n

2
⌋) ∧ xor(x⌊n

2
⌋+1, ..., xn))

■ The size of xor(x1, ..., xn) is Θ(n2)

■ Cubes (conjunctions of literals) of a DNF of xor(x1, ..., xn) have n literals

■ Any DNF of xor(x1, ..., xn) has at least 2
n−1 cubes

(one for each of the assignments with an odd number of 1s)

■ Any CNF of xor(x1, ..., xn) also has an exponential number of clauses
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■ Idea: given F , find a DNF of F and apply the linear-time algorithm

■ Why this does not work? Finding a DNF of F may take exponential time

■ In fact there are formulas for which CNFs/DNFs have exponential size

■ Consider xor defined as xor(x1) = x1 and if n > 1:

xor(x1, ..., xn) = (xor(x1, ..., x⌊n

2
⌋) ∧ ¬xor(x⌊n
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(¬xor(x1, ..., x⌊n

2
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■ The size of xor(x1, ..., xn) is Θ(n2)

■ Cubes (conjunctions of literals) of a DNF of xor(x1, ..., xn) have n literals

■ Any DNF of xor(x1, ..., xn) has at least 2
n−1 cubes

(one for each of the assignments with an odd number of 1s)

■ Any CNF of xor(x1, ..., xn) also has an exponential number of clauses

■ Next we’ll see a workaround
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Let F be (p ∧ q) ∨ ¬( ¬p ∧ (q ∨ ¬r) )

^ ¬

^

¬

¬ ∨

∨
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p
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q
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¬p ∨ ¬q ∨ e2
¬e2 ∨ p
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■ e3 ↔ ¬e4
¬e3 ∨ ¬e4
e3 ∨ e4

■ e4 ↔ e5 ∧ e6

■ e5 ↔ ¬p

■ e6 ↔ q ∨ ¬e7

■ e7 ↔ ¬r
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■ Variations of Tseitin transformation are used in practice in SAT solvers

■ Tseitin transformation does not produce an equivalent CNF: for example,
the Tseitin transformation of F = ¬p is G = e ∧ (¬e ∨ ¬p) ∧ (e ∨ p), and

e p F G

0 0 1 0

0 1 0 0

1 0 1 1

1 1 0 0

■ Still, CNF obtained from F via Tseitin transformation has nice properties:

◆ It is equisatisfiable to F

◆ Any model of CNF projected to the variables in F gives a model of F

◆ Any model of F can be completed to a model of the CNF

◆ Can be computed in linear time in the size of F

■ Hence no model is lost nor added in the transformation
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No

Yes + model

CNF SAT solver
FormulaProblem

FP

Solutions P = Models F

■ This is the standard flow when solving problems with SAT

■ Transformation from P to F is called the encoding into SAT

Already seen some examples: pigeon-hole problem
Other examples will be seen in the next classes

■ CNF transformation already explained

■ Let us see now how to design efficient SAT solvers
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■ The resolution rule is
p ∨ C ¬p ∨D

C ∨D

■ Res(S) = closure of set of clauses S under resolution =
= clauses inferred in zero or more steps of resolution from S

■ Properties:

◆ Resolution is correct:
Res(S) only contains logical consequences

◆ Resolution is refutationally complete:
if S is unsatisfiable, then ✷ ∈ Res(S)

◆ Res(S) is a finite set of clauses

■ So, given a set of clauses S, its satisfiability can be checked by:

1. Computing Res(S)

2. If ✷ ∈ Res(S) Then UNSAT ; Else SAT
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