Propositional Logic

Combinatorial Problem Solving (CPS)

Albert Oliveras Enric Rodríguez-Carbonell

May 12, 2023

Overview of the session

- Definition of Propositional Logic
- General Concepts in Logic
- Reduction to SAT
- CNFs and DNFs
- Tseitin Transformation

■ Problem Solving with SAT
■ Resolution

Definition of Propositional Logic

SYNTAX (what is a formula?):
■ There is a set \mathcal{P} of propositional variables, usually denoted by (subscripted) p, q, r, \ldots
■ The set of propositional formulas over \mathcal{P} is defined as:

- Every propositional variable is a formula
- If F is a formula, $\neg F$ is also a formula
- If F and G are formulas, $(F \wedge G)$ is also a formula
- If F and G are formulas, $(F \vee G)$ is also a formula
- Nothing else is a formula

■ Formulas are usually denoted by (subscripted) F, G, H, \ldots
■ Examples:
$p \quad \neg p \quad(p \vee q) \quad \neg(p \wedge q)$

$$
(p \wedge(\neg p \vee q)) \quad((p \wedge q) \vee(r \vee \neg q)) \quad \ldots
$$

Definition of Propositional Logic

SEMANTICS (what is an interpretation I, when I satisfies F ?):

- An interpretation I over \mathcal{P} is a function $I: \mathcal{P} \rightarrow\{0,1\}$.

■ eval $I_{I}:$ Formulas $\rightarrow\{0,1\}$ is a function defined as follows:

- $\operatorname{eval}_{I}(p)=I(p)$
- $\operatorname{eval}_{I}(\neg F)=1-\operatorname{eval}_{I}(F)$
- $\operatorname{eval}_{I}((F \wedge G))=\min \left\{\operatorname{eval}_{I}(F), \operatorname{eval}_{I}(G)\right\}$
- $\operatorname{eval}_{I}((F \vee G))=\max \left\{\operatorname{eval}_{I}(F), \operatorname{eval}_{I}(G)\right\}$

■ I satisfies F (written $I \models F$) if and only if $\operatorname{eval}_{I}(F)=1$.
■ If $I \models F$ we say that

- $\quad I$ is a model of F or, equivalently
- F is true in I.

Definition of Propositional Logic

EXAMPLE:

■ Let F be the formula $(p \wedge(q \vee \neg r))$.

- Let I be such that $I(p)=I(r)=1$ and $I(q)=0$.

■ Let us compute eval $I_{I}(F)$ (use your intuition first!)

■ Is there any I such that $I \models F$?

Definition of Propositional Logic

EXAMPLE:

■ Let F be the formula $(p \wedge(q \vee \neg r))$.
■ Let I be such that $I(p)=I(r)=1$ and $I(q)=0$.
■ Let us compute eval $I_{I}(F)$ (use your intuition first!)

$$
\operatorname{eval}_{I}((p \wedge(q \vee \neg r)))=
$$

■ Is there any I such that $I \models F$?

Definition of Propositional Logic

EXAMPLE:

■ Let F be the formula $(p \wedge(q \vee \neg r))$.
■ Let I be such that $I(p)=I(r)=1$ and $I(q)=0$.
■ Let us compute eval $I_{I}(F)$ (use your intuition first!)

$$
\operatorname{eval}_{I}((p \wedge(q \vee \neg r)))=\min \left\{\operatorname{eval}_{I}(p), \operatorname{eval}_{I}((q \vee \neg r))\right\}
$$

■ Is there any I such that $I \models F$?

Definition of Propositional Logic

EXAMPLE:

■ Let F be the formula $(p \wedge(q \vee \neg r))$.
■ Let I be such that $I(p)=I(r)=1$ and $I(q)=0$.
■ Let us compute $\operatorname{eval}_{I}(F)$ (use your intuition first!)

$$
\begin{aligned}
\operatorname{eval}_{I}((p \wedge(q \vee \neg r))) & =\min \left\{\operatorname{eval}_{I}(p), \operatorname{eval}_{I}((q \vee \neg r))\right\} \\
& =\min \left\{\operatorname{eval}_{I}(p), \max \left\{\operatorname{eval}_{I}(q), \operatorname{eval}_{I}(\neg r)\right\}\right\}
\end{aligned}
$$

■ Is there any I such that $I \models F$?

Definition of Propositional Logic

EXAMPLE:

■ Let F be the formula $(p \wedge(q \vee \neg r))$.
■ Let I be such that $I(p)=I(r)=1$ and $I(q)=0$.
■ Let us compute $\operatorname{eval}_{I}(F)$ (use your intuition first!)

$$
\begin{aligned}
\operatorname{eval}_{I}((p \wedge(q \vee \neg r))) & =\min \left\{\operatorname{eval}_{I}(p), \operatorname{eval}_{I}((q \vee \neg r))\right\} \\
& =\min \left\{\operatorname{eval}_{I}(p), \max \left\{\operatorname{eval}_{I}(q), \operatorname{eval}_{I}(\neg r)\right\}\right\} \\
& =\min \left\{\operatorname{eval}_{I}(p), \max \left\{\operatorname{eval}_{I}(q), 1-\operatorname{eval}_{I}(r)\right\}\right\}
\end{aligned}
$$

■ Is there any I such that $I \models F$?

Definition of Propositional Logic

EXAMPLE:

■ Let F be the formula $(p \wedge(q \vee \neg r))$.
■ Let I be such that $I(p)=I(r)=1$ and $I(q)=0$.
■ Let us compute $\operatorname{eval}_{I}(F)$ (use your intuition first!)

$$
\begin{aligned}
\operatorname{eval}_{I}((p \wedge(q \vee \neg r))) & =\min \left\{\operatorname{eval}_{I}(p), \operatorname{eval}_{I}((q \vee \neg r))\right\} \\
& =\min \left\{\operatorname{eval}_{I}(p), \max \left\{\operatorname{eval}_{I}(q), \operatorname{eval}_{I}(\neg r)\right\}\right\} \\
& =\min \left\{\operatorname{eval}_{I}(p), \max \left\{\operatorname{eval}_{I}(q), 1-\operatorname{eval}_{I}(r)\right\}\right\} \\
& =\min \{I(p), \max \{I(q), 1-I(r)\}\}
\end{aligned}
$$

■ Is there any I such that $I \models F$?

Definition of Propositional Logic

EXAMPLE:

■ Let F be the formula $(p \wedge(q \vee \neg r))$.
■ Let I be such that $I(p)=I(r)=1$ and $I(q)=0$.
■ Let us compute $\operatorname{eval}_{I}(F)$ (use your intuition first!)

$$
\begin{aligned}
\operatorname{eval}_{I}((p \wedge(q \vee \neg r))) & =\min \left\{\operatorname{eval}_{I}(p), \operatorname{eval}_{I}((q \vee \neg r))\right\} \\
& =\min \left\{\operatorname{eval}_{I}(p), \max \left\{\operatorname{eval}_{I}(q), \operatorname{eval}_{I}(\neg r)\right\}\right\} \\
& =\min \left\{\operatorname{eval}_{I}(p), \max \left\{\operatorname{eval}_{I}(q), 1-\operatorname{eval}_{I}(r)\right\}\right\} \\
& =\min \{I(p), \max \{I(q), 1-I(r)\}\} \\
& =\min \{1, \max \{0,1-1\}\}
\end{aligned}
$$

■ Is there any I such that $I \models F$?

Definition of Propositional Logic

EXAMPLE:

■ Let F be the formula $(p \wedge(q \vee \neg r))$.

- Let I be such that $I(p)=I(r)=1$ and $I(q)=0$.

■ Let us compute $\operatorname{eval}_{I}(F)$ (use your intuition first!)

$$
\begin{aligned}
& \operatorname{eval}_{I}((p \wedge(q \vee \neg r)))=\min \left\{\operatorname{eval}_{I}(p), \operatorname{eval}_{I}((q \vee \neg r))\right\} \\
& =\min \left\{\operatorname{eval}_{I}(p), \max \left\{\operatorname{eval}_{I}(q), \operatorname{eval}_{I}(\neg r)\right\}\right\} \\
& =\min \left\{\operatorname{eval}_{I}(p), \max \left\{\operatorname{eval}_{I}(q), 1-e v a l_{I}(r)\right\}\right\} \\
& =\min \{I(p), \max \{I(q), 1-I(r)\}\} \\
& =\min \{1, \max \{0,1-1\}\} \\
& =0
\end{aligned}
$$

■ Is there any I such that $I \models F$?

Definition of Propositional Logic

EXAMPLE:

■ Let F be the formula $(p \wedge(q \vee \neg r))$.

- Let I be such that $I(p)=I(r)=1$ and $I(q)=0$.

■ Let us compute $\operatorname{eval}_{I}(F)$ (use your intuition first!)

$$
\begin{aligned}
& \operatorname{eval}_{I}((p \wedge(q \vee \neg r)))=\min \left\{\operatorname{eval}_{I}(p), \operatorname{eval}_{I}((q \vee \neg r))\right\} \\
& =\min \left\{\operatorname{eval}_{I}(p), \max \left\{\operatorname{eval}_{I}(q), \operatorname{eval}_{I}(\neg r)\right\}\right\} \\
& =\min \left\{\operatorname{eval}_{I}(p), \max \left\{\operatorname{eval}_{I}(q), 1-e v a l_{I}(r)\right\}\right\} \\
& =\min \{I(p), \max \{I(q), 1-I(r)\}\} \\
& =\min \{1, \max \{0,1-1\}\} \\
& =0
\end{aligned}
$$

■ Is there any I such that $I \models F$?

Definition of Propositional Logic

EXAMPLE:

■ Let F be the formula $(p \wedge(q \vee \neg r))$.

- Let I be such that $I(p)=I(r)=1$ and $I(q)=0$.

■ Let us compute $\operatorname{eval}_{I}(F)$ (use your intuition first!)

$$
\begin{aligned}
& \operatorname{eval}_{I}((p \wedge(q \vee \neg r)))=\min \left\{\operatorname{eval}_{I}(p), \operatorname{eval}_{I}((q \vee \neg r))\right\} \\
& =\min \left\{\operatorname{eval}_{I}(p), \max \left\{\operatorname{eval}_{I}(q), \operatorname{eval}_{I}(\neg r)\right\}\right\} \\
& =\min \left\{\operatorname{eval}_{I}(p), \max \left\{\operatorname{eval}_{I}(q), 1-e v a l_{I}(r)\right\}\right\} \\
& =\min \{I(p), \max \{I(q), 1-I(r)\}\} \\
& =\min \{1, \max \{0,1-1\}\} \\
& =0
\end{aligned}
$$

■ Is there any I such that $I \models F$?
YES, $I(p)=I(q)=I(r)=1$ is a possible model.

Definition of Propositional Logic

EXAMPLE

- We have 3 pigeons and 2 holes.

If each hole can have at most one pigeon, is it possible to place all pigeons in the holes?

- Vocabulary: $p_{i, j}$ means i-th pigeon is in j-th hole
- Each pigeon is placed in at least one hole:

$$
\left(p_{1,1} \vee p_{1,2}\right) \wedge\left(p_{2,1} \vee p_{2,2}\right) \wedge\left(p_{3,1} \vee p_{3,2}\right)
$$

■ Each hole can hold at most one pigeon:

$$
\begin{aligned}
& \neg\left(p_{1,1} \wedge p_{2,1}\right) \wedge \neg\left(p_{1,1} \wedge p_{3,1}\right) \wedge \neg\left(p_{2,1} \wedge p_{3,1}\right) \wedge \\
& \neg\left(p_{1,2} \wedge p_{2,2}\right) \wedge \neg\left(p_{1,2} \wedge p_{3,2}\right) \wedge \neg\left(p_{2,2} \wedge p_{3,2}\right)
\end{aligned}
$$

- Resulting formula has no model

Definition of Propositional Logic

A small syntax extension:
■ We will write $(F \rightarrow G)$ as an abbreviation for $(\neg F \vee G)$
■ Similarly, $(F \leftrightarrow G)$ is an abbreviation of $((F \rightarrow G) \wedge(G \rightarrow F))$

Overview of the session

- Definition of Propositional Logic
- General Concepts in Logic
- Reduction to SAT
- CNFs and DNFs
- Tseitin Transformation
- Problem Solving with SAT
- Resolution

General Concepts in Logic

Let F and G be arbitrary formulas. Then:
■ F is satisfiable if it has at least one model

- F is unsatisfiable (also a contradiction) if it has no model
- F is a tautology if every interpretation is a model of F
- G is a logical consequence of F, denoted $F \models G$, if every model of F is a model of G
- F and G are logically equivalent, denoted $F \equiv G$, if F and G have the same models

Note that:

- All definitions are only based on the concept of model.

■ Hence they are independent of the logic.

General Concepts in Logic

- Circuit corresponds to formula ($\neg p \wedge p$)

■ Formula unsatisfiable amounts to "circuit output is always 0 "

- Circuit corresponds to formula ($\neg p \vee p$)

■ Formula is a tautology amounts to "circuit output is always 1"

General Concepts in Logic

- Circuit on the left corresponds to formula $F:=\neg(p \wedge q)$

■ Circuit on the right corresponds to formula $G:=(\neg p \vee \neg q)$
■ They are functionally equivalent, i.e. same inputs produce same output
■ That corresponds to saying $F \equiv G$
■ Cheapest / fastest / less power-consuming circuit is then chosen

General Concepts in Logic

Reduction to SAT

Assume we have a black box SAT that given a formula F :

■ SAT $(F)=$ YES iff $\quad F$ is satisfiable
■ $\mathbf{S A T}(F)=\mathrm{NO} \quad$ iff $\quad F$ is unsatisfiable

How to reuse SAT for detecting tautology, logical consequences, ...?

- F tautology iff $\mathbf{S A T}(\neg F)=\mathrm{NO}$
- $F \models G \quad$ iff $\operatorname{SAT}(F \wedge \neg G)=\mathrm{NO}$

■ $F \equiv G \quad$ iff $\quad \mathbf{S A T}((F \wedge \neg G) \vee(\neg F \wedge G))=\mathrm{NO}$

Reduction to SAT

Assume we have a black box SAT that given a formula F :

■ SAT $(F)=$ YES iff $\quad F$ is satisfiable
■ $\mathbf{S A T}(F)=\mathrm{NO} \quad$ iff $\quad F$ is unsatisfiable

How to reuse SAT for detecting tautology, logical consequences, ...?

■ F not taut. iff $\operatorname{SAT}(\neg F)=\mathrm{YES}$

- $F \not \vDash G \quad$ iff $\quad \mathbf{S A T}(F \wedge \neg G)=\mathrm{YES}$

■ $F \not \equiv G \quad$ iff $\operatorname{SAT}((F \wedge \neg G) \vee(\neg F \wedge G))=\mathrm{YES}$

Reduction to SAT

Assume we have a black box SAT that given a formula F :

- SAT $(F)=\mathrm{YES}$ iff F is satisfiable

■ $\mathbf{S A T}(F)=\mathrm{NO} \quad$ iff $\quad F$ is unsatisfiable

How to reuse SAT for detecting tautology, logical consequences, ...?

- F tautology iff $\mathbf{S A T}(\neg F)=\mathrm{NO}$
- $F \models G \quad$ iff $\quad \mathbf{S A T}(F \wedge \neg G)=\mathrm{NO}$
- $F \equiv G \quad$ iff $\quad \boldsymbol{S A T}((F \wedge \neg G) \vee(\neg F \wedge G))=\mathrm{NO}$

Hence, a single tool suffices: all problems can be reduced to SAT (propositional SATisfiability)
The black box SAT will be called a SAT solver

GOAL: learn how to build a SAT solver

Overview of the session

- Definition of Propositional Logic
- General Concepts in Logic
- Reduction to SAT
- CNFs and DNFs
- Tseitin Transformation
- Problem Solving with SAT

■ Resolution

CNFs and DNFs

In order to construct our SAT solver
it will simplify our job to assume that the formula F has a given format.

- A literal is a propositional variable (p) or a negation of one $(\neg p)$
- A clause is a disjunction of zero or more literals $\left(l_{1} \vee \ldots l_{n}\right)$

■ The empty clause (zero literals) is denoted with \square and is unsatisfiable
■ A formula is in Conjunctive Normal Form (CNF) if it is a conjunction of zero or more disjunctions of literals (i.e., clauses)

- A formula is in Disjunctive Normal Form (DNF) if it is a disjunction of zero or more conjunctions of literals (i.e., cubes)

Examples:

$$
\begin{aligned}
& p \wedge(q \vee \neg r) \wedge(q \vee p \vee \neg r) \text { is in CNF } \\
& p \vee(q \wedge \neg r) \vee(q \wedge p \wedge \neg r) \text { is in DNF }
\end{aligned}
$$

CNFs and DNFs

- Given a formula F there exist formulas
- G in CNF with $F \equiv G$ and (G is said to be a CNF of F)
- H in DNF with $F \equiv H$ (H is said to be a DNF of F)

■ Which is the complexity of deciding whether F is satisfiable...
... if F is an arbitrary formula?
... if F is in CNF?
... if F is in DNF?

CNFs and DNFs

- Given a formula F there exist formulas
- G in CNF with $F \equiv G$ and (G is said to be a CNF of F)
- H in DNF with $F \equiv H$

■ Which is the complexity of deciding whether F is satisfiable...
... if F is an arbitrary formula? NP-complete (Cook's Theorem)
... if F is in CNF?
... if F is in DNF?

CNFs and DNFs

- Given a formula F there exist formulas
- G in CNF with $F \equiv G$ and (G is said to be a CNF of F)
- H in DNF with $F \equiv H$

■ Which is the complexity of deciding whether F is satisfiable...
... if F is an arbitrary formula? NP-complete (Cook's Theorem)
... if F is in CNF? NP-complete (even if clauses have ≤ 3 literals!)
... if F is in DNF?

CNFs and DNFs

- Given a formula F there exist formulas
- G in CNF with $F \equiv G$ and $\quad(G$ is said to be a CNF of $F)$
- H in DNF with $F \equiv H$ (H is said to be a DNF of F)

■ Which is the complexity of deciding whether F is satisfiable...
... if F is an arbitrary formula? NP-complete (Cook's Theorem)
... if F is in CNF? NP-complete (even if clauses have ≤ 3 literals!)
... if F is in DNF? linear
Procedure SAT (F)
Input: formula F in DNF
Output: YES if there exists I such that $I \models F$, NO otherwise

1. If the DNF is empty then return NO.

Else take a cube C of the DNF
2. If there is a variable p such that both $p, \neg p$ appear in C, then C cannot be made true: remove it and go to step 1 .
Else define I to make C true and return YES.

CNFs and DNFs

■ Idea: given F, find a DNF of F and apply the linear-time algorithm

- Why this does not work?

CNFs and DNFs

■ Idea: given F, find a DNF of F and apply the linear-time algorithm
■ Why this does not work? Finding a DNF of F may take exponential time
■ In fact there are formulas for which CNFs/DNFs have exponential size

CNFs and DNFs

■ Idea: given F, find a DNF of F and apply the linear-time algorithm
■ Why this does not work? Finding a DNF of F may take exponential time
■ In fact there are formulas for which CNFs/DNFs have exponential size

- Consider xor defined as $\operatorname{xor}\left(x_{1}\right)=x_{1}$ and if $n>1$:

$$
\begin{aligned}
\operatorname{xor}\left(x_{1}, \ldots, x_{n}\right)= & \left(\operatorname{xor}\left(x_{1}, \ldots, x_{\left\lfloor\frac{n}{2}\right\rfloor}\right) \wedge \quad \neg \operatorname{xor}\left(x_{\left\lfloor\frac{n}{2}\right\rfloor+1}, \ldots, x_{n}\right)\right) \vee \\
& \left(\neg \operatorname{xor}\left(x_{1}, \ldots, x_{\left\lfloor\frac{n}{2}\right\rfloor}\right) \wedge \quad \operatorname{xor}\left(x_{\left\lfloor\frac{n}{2}\right\rfloor+1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

- The size of $\operatorname{xor}\left(x_{1}, \ldots, x_{n}\right)$ is $\Theta\left(n^{2}\right)$

■ Cubes (conjunctions of literals) of a DNF of $\operatorname{xor}\left(x_{1}, \ldots, x_{n}\right)$ have n literals

- Any DNF of $\operatorname{xor}\left(x_{1}, \ldots, x_{n}\right)$ has at least 2^{n-1} cubes (one for each of the assignments with an odd number of 1 s)
- Any CNF of $\operatorname{xor}\left(x_{1}, \ldots, x_{n}\right)$ also has an exponential number of clauses

CNFs and DNFs

■ Idea: given F, find a DNF of F and apply the linear-time algorithm
■ Why this does not work? Finding a DNF of F may take exponential time
■ In fact there are formulas for which CNFs/DNFs have exponential size

- Consider xor defined as $\operatorname{xor}\left(x_{1}\right)=x_{1}$ and if $n>1$:

$$
\begin{aligned}
\operatorname{xor}\left(x_{1}, \ldots, x_{n}\right)= & \left(\operatorname{xor}\left(x_{1}, \ldots, x_{\left\lfloor\frac{n}{2}\right\rfloor}\right) \wedge \quad \neg \operatorname{xor}\left(x_{\left\lfloor\frac{n}{2}\right\rfloor+1}, \ldots, x_{n}\right)\right) \vee \\
& \left(\neg \operatorname{xor}\left(x_{1}, \ldots, x_{\left\lfloor\frac{n}{2}\right\rfloor}\right) \wedge \quad \operatorname{xor}\left(x_{\left\lfloor\frac{n}{2}\right\rfloor+1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

- The size of $\operatorname{xor}\left(x_{1}, \ldots, x_{n}\right)$ is $\Theta\left(n^{2}\right)$

■ Cubes (conjunctions of literals) of a DNF of $\operatorname{xor}\left(x_{1}, \ldots, x_{n}\right)$ have n literals
■ Any DNF of $\operatorname{xor}\left(x_{1}, \ldots, x_{n}\right)$ has at least 2^{n-1} cubes (one for each of the assignments with an odd number of 1 s)
■ Any CNF of $\operatorname{xor}\left(x_{1}, \ldots, x_{n}\right)$ also has an exponential number of clauses

- Next we'll see a workaround

Tseitin Transformation

Let F be $(p \wedge q) \vee \neg(\neg p \wedge(q \vee \neg r))$

Tseitin Transformation

Let F be $(p \wedge q) \vee \neg(\neg p \wedge(q \vee \neg r))$

Tseitin Transformation

Let F be $(p \wedge q) \vee \neg(\neg p \wedge(q \vee \neg r))$

Tseitin Transformation

Let F be $(p \wedge q) \vee \neg(\neg p \wedge(q \vee \neg r))$

Tseitin Transformation

Let F be $(p \wedge q) \vee \neg(\neg p \wedge(q \vee \neg r))$

$$
\begin{aligned}
& e_{1} \\
& \square e_{1} \leftrightarrow e_{2} \vee e_{3} \\
& \begin{array}{lllll}
\neg e_{1} & \vee & e_{2} & \vee & e_{3} \\
\neg e_{2} & \vee & e_{1} & & \\
\neg e_{3} & \vee & e_{1} & &
\end{array} \\
& \text { - } e_{2} \leftrightarrow p \wedge q \\
& \begin{array}{lllll}
\neg p & \vee & \neg q & \vee & e_{2} \\
\neg e_{2} & \vee & p & & \\
\neg e_{2} & \vee & q & &
\end{array} \\
& \text { - } e_{3} \leftrightarrow \neg e_{4} \\
& \text { - } e_{4} \leftrightarrow e_{5} \wedge e_{6} \\
& \text { - } e_{5} \leftrightarrow \neg p \\
& \text { - } e_{6} \leftrightarrow q \vee \neg e_{7} \\
& \text { - } e_{7} \leftrightarrow \neg r
\end{aligned}
$$

Tseitin Transformation

Tseitin Transformation

■ Variations of Tseitin transformation are used in practice in SAT solvers
■ Tseitin transformation does not produce an equivalent CNF: for example, the Tseitin transformation of $F=\neg p$ is $G=e \wedge(\neg e \vee \neg p) \wedge(e \vee p)$, and

e	p	F	G
0	0	1	0
0	1	0	0
1	0	1	1
1	1	0	0

- Still, CNF obtained from F via Tseitin transformation has nice properties:
- It is equisatisfiable to F
- Any model of CNF projected to the variables in F gives a model of F
- Any model of F can be completed to a model of the CNF
- Can be computed in linear time in the size of F

Overview of the session

■ Definition of Propositional Logic

- General Concepts in Logic
- Reduction to SAT
- CNFs and DNFs
- Tseitin Transformation
- Problem Solving with SAT
- Resolution

Problem Solving with SAT

■ This is the standard flow when solving problems with SAT

- Transformation from P to F is called the encoding into SAT

Already seen some examples: pigeon-hole problem
Other examples will be seen in the next classes

- CNF transformation already explained
- Let us see now how to design efficient SAT solvers

Overview of the session

- Definition of Propositional Logic
- General Concepts in Logic
- Reduction to SAT
- CNFs and DNFs
- Tseitin Transformation

■ Problem Solving with SAT

- Resolution

Resolution

■ The resolution rule is

$$
\frac{p \vee C \neg p \vee D}{C \vee D}
$$

■ $\operatorname{Res}(S)=$ closure of set of clauses S under resolution $=$ $=$ clauses inferred in zero or more steps of resolution from S

- Properties:
- Resolution is correct:
$\operatorname{Res}(S)$ only contains logical consequences
- Resolution is refutationally complete:
if S is unsatisfiable, then $\square \in \operatorname{Res}(S)$
- $\operatorname{Res}(S)$ is a finite set of clauses

■ So, given a set of clauses S, its satisfiability can be checked by:

1. Computing $\operatorname{Res}(S)$
2. If $\square \in \operatorname{Res}(S)$ Then UNSAT ; Else SAT
