Encodings into SAT

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell

May 19, 2022
What is an encoding?

- Language of SAT solvers: **CNF propositional formulas**

- To solve combinatorial problems with SAT solvers, constraints have to be represented in this language.

- An **encoding** of a constraint C into SAT is a CNF F that expresses C, so that there is a bijection:

 \[
 \text{solutions to } C \iff \text{models of } F
 \]
Examples: AMO constraints

- An AMO constraint is of the form $x_0 + \ldots + x_{n-1} \leq 1$
 where each x_i is 0-1
 (At Most One of the variables can be true)

- Quadratic encoding.
 - Variables: the same x_0, \ldots, x_{n-1}
 - Clauses: for $0 \leq i < j < n$, $\overline{x_i} \lor \overline{x_j}$
 - Requires $\binom{n}{2} = O(n^2)$ clauses

- Other encodings try to use fewer clauses,
 at the cost of introducing new variables
Examples: AMO constraints

- **Logarithmic encoding.** Let \(m = \lceil \log_2 n \rceil \). Then:

 - Variables: the \(x_i \) and new variables \(y_0, y_1, \ldots, y_{m-1} \)
 - Clauses: for \(0 \leq i < n, \ 0 \leq j < m \)
 - \(\overline{x_i} \lor y_j \) if the \(j \)-th digit in binary of \(i \) is 1
 - \(\overline{x_i} \lor \overline{y_j} \) otherwise

 - Requires \(O(\log n) \) new variables, \(O(n \log n) \) clauses
Examples: AMO constraints

- Heule encoding.
 - If $n \leq 3$, the encoding is the quadratic encoding.
 - If $n \geq 4$, introduce an auxiliary variable y and encode $x_0 + x_1 + y \leq 1$ and $x_2 + \cdots + x_{n-1} + \overline{y} \leq 1$ (this one recursively).
 - Requires $O(n)$ new variables, $O(n)$ clauses

- Other encodings exist (see next)
Consistency and Arc-Consistency

- Let us consider an encoding of a constraint \(C \) such that there is a correspondence between assignments of the variables of \(C \) to their domains, and partial assignments of the boolean variables of the encoding.

- The encoding is consistent if whenever \(M \) is not compatible with any solution to \(C \), unit propagation on the boolean assignment of \(M \) leads to a conflict.

- The encoding is arc-consistent if:
 - it is consistent, and
 - unit propagation discards arc-inconsistent values (i.e., values without a support).

- These are good properties for encodings: SAT solvers are very good at unit propagation!
Consistency and Arc-Consistency

- In the case of an AMO constraint $x_0 + \ldots + x_{n-1} \leq 1$:
 - **Consistency** ≡ if there are two true vars x_i in M or more, then unit propagation should give a conflict.
 - **Arc-consistency** ≡ Consistency + if there is one true var x_i in M, then unit propagation should set all others x_j to false.
 - The quadratic, logarithmic and Heule encodings are all arc-consistent.
Cardinality Constraints

- A cardinality constraint is of the form \(x_1 + \ldots + x_n \bowtie k \)
 where each \(x_i \) is 0-1 and \(\bowtie \in \{\leq, <, \geq, >, =\} \)
- AMO are a particular case of card. constraints where \(k = 1 \) and \(\bowtie \) is \(\leq \)
- Without loss of generality we may assume \(\bowtie \) is \(< \), i.e.,
 \[
x_1 + \ldots + x_n < k
 \]
- Naive encoding.
 - Variables: the same \(x_1, \ldots, x_n \)
 - Clauses: for all \(1 \leq i_1 < i_2 < \ldots < i_k \leq n \),
 \[
 \overline{x_{i_1}} \lor \overline{x_{i_2}} \lor \ldots \lor \overline{x_{i_k}}
 \]
 - This is \(\binom{n}{k} \) clauses!
Adders

- Again, other encodings try to use fewer clauses, at the cost of introducing new variables

- Adder encoding.
 Build an adder circuit by using bit-adders as building blocks:

 \[
 s \leftrightarrow \text{XOR}(x, y, z) \\
 c \leftrightarrow (x \land y) \lor (x \land z) \lor (y \land z)
 \]

 where \(\text{XOR}(x, y, z)\) is short for

 \[
 (x \land \overline{y} \land \overline{z}) \lor (\overline{x} \land y \land \overline{z}) \lor (\overline{x} \land \overline{y} \land z) \lor (x \land y \land z)
 \]
Adders

- Encodings of this kind are not arc-consistent.

- Consider $x + y + z \leq 0$.
 Then unit propagation should propagate $\overline{x}, \overline{y}, \overline{z}$.

- Let us encode the constraint with a full adder.

- The encoding is the Tseitin transformation of $\overline{s}, \overline{c}$ and

 \[
 \begin{align*}
 s & \leftrightarrow \text{XOR}(x, y, z) \\
 c & \leftrightarrow (x \land y) \lor (x \land z) \lor (y \land z)
 \end{align*}
 \]

- Note that

 \[
 \begin{align*}
 \overline{s} & \rightarrow (\overline{x} \lor y \lor z) \land (x \lor \overline{y} \lor z) \land (x \lor y \lor \overline{z}) \land (\overline{x} \lor \overline{y} \lor \overline{z}) \\
 \overline{c} & \rightarrow (\overline{x} \lor \overline{y}) \land (\overline{x} \lor \overline{z}) \land (\overline{y} \lor \overline{z})
 \end{align*}
 \]

- Unit propagation cannot propagate anything!
Sorting Networks

- Sorting Network encoding.

Pass x_1, \ldots, x_n as inputs to a circuit that sorts (say, decreasingly) n bits.

Let y_1, \ldots, y_n be the outputs of this circuit.

Then if the constraint to be encoded is

- $\sum_{i=1}^{n} x_i \geq k$, then add clause y_k
- $\sum_{i=1}^{n} x_i \leq k$, then add clause $\overline{y_{k+1}}$
- $\sum_{i=1}^{n} x_i = k$, then add clauses $y_k, \overline{y_{k+1}}$
Sorting Networks

- How to build such a sorting circuit?
- A possibility is to implement mergesort
- In what follows: so-called odd-even sorting networks
- The basic block of odd-even sorting networks are 2-comparators
A 2-comparator is a sorting network of size 2:

- it has 2 input variables (x_1 and x_2)
- it has 2 output variables (y_1 and y_2)
- y_1 is true if and only if at least one of the input variables is true (i.e., it is the maximum or disjunction)
- y_2 is true if and only if both two input variables are true (i.e., it is the minimum or conjunction)
2-comparators

- **Clauses:**

\[
\begin{align*}
x_1 & \leftarrow y_2, & x_2 & \leftarrow y_2, & x_1 \lor x_2 & \leftarrow y_1, \\
x_1 & \rightarrow y_1, & x_2 & \rightarrow y_1, & x_1 \land x_2 & \rightarrow y_2
\end{align*}
\]

- **Graphical representation:**

```
  x_1       y_1
     \downarrow
  x_2       y_2
```

- **Some simplifications are possible:**

 - For \geq constraints: **top three clauses suffice**
 - For \leq constraints: **bottom three clauses suffice**
 - For $=$ constraints: **all clauses needed**
2-comparators

- **Clauses:**
 \[
 x_1 \leftarrow y_2, \quad x_2 \leftarrow y_2, \quad x_1 \lor x_2 \leftarrow y_1, \\
 \overline{x}_1 \leftarrow \overline{y}_1, \quad \overline{x}_2 \leftarrow \overline{y}_1, \quad \overline{x}_1 \lor \overline{x}_2 \leftarrow \overline{y}_2
 \]

- **Graphical representation:**
 ![Graphical representation of 2-comparators]

- **Some simplifications are possible:**
 - For \geq constraints: top three clauses suffice
 - For \leq constraints: bottom three clauses suffice
 - For $=$ constraints: all clauses needed
From now on we assume that \(n \) is a power of two (if not, pad with variables set to false)

A **merge network** takes as input two ordered sets of variables of size \(n \) and produces an ordered output of size \(2n \).

Let \((x_1, \ldots, x_n)\) and \((x'_1, \ldots, x'_n)\) be the inputs. We recursively define a merge network as follows:

If \(n = 1 \), a merge network is a 2-comparator:

\[
\text{Merge}(x_1; x'_1) := 2\text{-Comp}(x_1, x'_1).
\]
For $n > 1$: Let us define

\[(z_1, z_3, \ldots, z_{2n-1}) = \text{Merge}(x_1, x_3, \ldots, x_{n-1}; x'_1, x'_3, \ldots x'_{n-1}),\]
\[(z_2, z_4, \ldots, z_{2n}) = \text{Merge}(x_2, x_4, \ldots, x_n; x'_2, x'_4, \ldots, x'_n),\]
\[(y_2, y_3) = 2\text{-Comp}(z_2, z_3),\]
\[(y_4, y_5) = 2\text{-Comp}(z_4, z_5),\]
\[
\ldots
\]
\[(y_{2n-2}, y_{2n-1}) = 2\text{-Comp}(z_{2n-2}, z_{2n-1})\]

Then,

\[\text{Merge}(x_1, x_2, \ldots, x_n; x'_1, x'_2, \ldots, x'_n) := (z_1, y_2, y_3, \ldots, y_{2n-1}, z_{2n})\]
Merge Networks

Merge\(_n=2\)

\(x_1\)
\(x_2\)
\(x_3\)
\(x_4\)
\(x'_1\)
\(x'_2\)
\(x'_3\)
\(x'_4\)

\(y_2\)
\(y_3\)
\(y_4\)
\(y_5\)
\(y_6\)
\(y_7\)
\(y_8\)

\(z_1\)
\(z_2\)
\(z_3\)
\(z_4\)
\(z_5\)
\(z_6\)
\(z_7\)
\(z_8\)
Merge Networks

Sketch of the proof of correctness of **Merge**:

By IH: \(\{x_1, x_3, \ldots, x_{n-1}, x'_1, x'_3, \ldots, x'_{n-1}\} = \{z_1, z_3, \ldots, z_{2n-1}\} \)

By IH: \(\{x_2, x_4, \ldots, x_n, x'_2, x'_4, \ldots, x'_n\} = \{z_2, z_4, \ldots, z_{2n}\} \)

Hence \(\{x_1, x_2, \ldots, x_n, x'_1, x'_2, \ldots, x'_n\} = \{z_1, z_2, \ldots, z_{2n}\} \)

And

\[(y_2, y_3) = 2\text{-Comp}(z_2, z_3) \implies \{y_2, y_3\} = \{z_2, z_3\}\]

\[(y_4, y_5) = 2\text{-Comp}(z_4, z_5) \implies \{y_4, y_5\} = \{z_4, z_5\}\]

\[
\vdots
\]

\[(y_{2n-2}, y_{2n-1}) = 2\text{-Comp}(z_{2n-2}, z_{2n-1}) \implies \{y_{2n-2}, y_{2n-1}\} = \{z_{2n-2}, z_{2n-1}\}\]

So \(\{x_1, x_2, \ldots, x_n, x'_1, x'_2, \ldots, x'_n\} = \{z_1, y_2, y_3, \ldots, y_{2n-2}, y_{2n-1}, z_{2n}\} \)
Let us prove outputs are sorted decreasingly. For $1 \leq i < n - 1$ let us see:

- $z_{2i} \geq z_{2(i+1)+1}$:

 Let us see $z_{2(i+1)+1} = 1$ implies $z_{2i} = 1$

 If $z_{2(i+1)+1} = z_{2i+3} = z_{2(i+2)-1} = 1$ there are $\geq i + 2$ 1’s in odd x, x'

 Let p be the number of 1’s in odd x

 Let q the number of 1’s in odd x'

 Then $p + q \geq i + 2$

 As x, x' is ordered decreasingly,

 there are $\geq p - 1$ 1’s in even x, $\geq q - 1$ 1’s in even x'

 So there are $\geq (p - 1) + (q - 1) = p + q - 2 \geq i$ 1’s in even x, x'

 Hence $z_{2i} = 1$
Let us prove outputs are sorted decreasingly. For $1 \leq i < n - 1$ let us see:

- $z_{2i} \geq z_{2(i+1)+1}$: proved
Merge Networks

Let us prove outputs are sorted decreasingly. For $1 \leq i < n - 1$ let us see:

- $z_{2i} \geq z_{2(i+1)+1}$: proved
- $z_{2i} \geq z_{2(i+1)}$: by IH
Let us prove outputs are sorted decreasingly. For $1 \leq i < n - 1$ let us see:

- $z_{2i} \geq z_{2(i+1)+1}$: proved
- $z_{2i} \geq z_{2(i+1)}$: by IH
- $z_{2i+1} \geq z_{2(i+1)+1}$: by IH
Let us prove outputs are sorted decreasingly. For $1 \leq i < n - 1$ let us see:

- $z_{2i} \geq z_{2(i+1)+1}$: proved
- $z_{2i} \geq z_{2(i+1)}$: by IH
- $z_{2i+1} \geq z_{2(i+1)+1}$: by IH
- $z_{2i+1} \geq z_{2(i+1)}$: similar to above

So $\min(z_{2i}, z_{2i+1}) \geq \max(z_{2(i+1)}, z_{2(i+1)+1})$

But $y_{2i+1} = \min(z_{2i}, z_{2i+1})$ and $y_{2(i+1)} = \max(z_{2(i+1)}, z_{2(i+1)+1})$

So $y_{2i+1} \geq y_{2(i+1)}$

And $y_{2i} \geq y_{2i+1}$ for being outputs of 2-Comp

Altogether $z_1, y_2, y_3, \ldots, y_{2n-2}, y_{2n-1}, z_{2n}$ is sorted decreasingly
A sorting network of size n takes an input of size n and sorts it (decreasingly).

We can build a sorting network by successively applying merge networks (as in mergesort).

Let x_1, \ldots, x_n be the inputs. We recursively define a sorting network as follows:

If $n = 2$, a sorting network is a 2-comparator:

$$\text{Sorting}(x_1, x_2) := \text{2-Comp}(x_1, x_2)$$
For $n > 2$: Let us define

\[
\begin{align*}
(z_1, z_2, \ldots, z_{n/2}) &= \text{Sorting}(x_1, x_2, \ldots, x_{n/2}), \\
(z_{n/2+1}, z_{n/2+2}, \ldots, z_n) &= \text{Sorting}(x_{n/2+1}, x_{n/2+2}, \ldots, x_n), \\
(y_1, y_2, \ldots, y_n) &= \text{Merge}(z_1, z_2, \ldots, z_{n/2}; z_{n/2+1} \ldots, z_n)
\end{align*}
\]

Then,

\[
\text{Sorting}(x_1, x_2, \ldots, x_n) := (y_1, y_2, \ldots, y_n)
\]
Sorting Networks

\[SN_{n=4} \]

\[Merge_{n=4} \]
This encoding of cardinality constraints is arc-consistent.

It uses $O(n \log^2 n)$ new variables and $O(n \log^2 n)$ clauses.

Several improvements are possible:

- Only the first k outputs suffice: cardinality networks use $O(n \log^2 k)$ vars and clauses.
- No need to assume that n is a power of two: merges can be defined for inputs of different sizes.
Bibliography

