Encodings into SAT

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell

May 29, 2020
What is an encoding?

- Language of SAT solvers: CNF propositional formulas

- To solve combinatorial problems with SAT solvers, constraints have to be represented in this language

- An **encoding** of a constraint C into SAT is a CNF F that expresses C, so that there is a bijection

 \[
 \text{solutions to } C \iff \text{models of } F
 \]
Examples: AMO constraints

- An **AMO constraint** is of the form $x_0 + \ldots + x_{n-1} \leq 1$
 where each x_i is 0-1
 (At Most One of the variables can be true)

- **Quadratic encoding.**
 - Variables: the same x_0, \ldots, x_{n-1}
 - Clauses: for $0 \leq i < j < n$, $\overline{x_i} \lor \overline{x_j}$
 - Requires $\binom{n}{2} = O(n^2)$ clauses

- Other encodings try to use fewer clauses, at the cost of introducing new variables
Examples: AMO constraints

- **Logarithmic encoding.** Let $m = \lceil \log_2 n \rceil$. Then:

 - Variables: the x_i and new variables $y_0, y_1, \ldots, y_{m-1}$
 - Clauses: for $0 \leq i < n$, $0 \leq j < m$

 - $\overline{x_i} \lor y_j$ if the j-th digit in binary of i is 1
 - $\overline{x_i} \lor \overline{y_j}$ otherwise

 - Requires $O(\log n)$ new variables, $O(n \log n)$ clauses

- **Heule encoding.**

 - If $n \leq 3$, the encoding is the quadratic encoding.
 - If $n \geq 4$, introduce an auxiliary variable y and encode (recursively)

 $x_0 + x_1 + y \leq 1$ and $x_2 + \cdots + x_{n-1} + \overline{y} \leq 1$.

 - Requires $O(n)$ new variables, $O(n)$ clauses

- Other encodings exist (see next)
Consistency and Arc-Consistency

- Let us consider an encoding of a constraint C such that there is a correspondence between maps of the variables of C to their domains, and partial assignments of the boolean variables of the encoding.

- The encoding is consistent if whenever M is not compatible with any solution to C, unit propagation on the boolean assignment of M leads to a conflict.

- The encoding is arc-consistent if
 - it is consistent, and
 - unit propagation discards arc-inconsistent values (i.e., values without a support)

- These are good properties for encodings: SAT solvers are very good at unit propagation!
Consistency and Arc-Consistency

- In the case of an AMO constraint $x_0 + \ldots + x_{n-1} \leq 1$:

- **Consistency** \equiv if there are two true vars x_i in M or more, then unit propagation should give a conflict

- **Arc-consistency** \equiv Consistency + if there is one true var x_i in M, then unit propagation should set all others x_j to false

- The quadratic, logarithmic and Heule encodings are all arc-consistent
Cardinality Constraints

- A cardinality constraint is of the form $x_1 + \ldots + x_n \bowtie k$
 where each x_i is 0-1 and $\bowtie \in \{\leq, <, \geq, >, =\}$
- AMO are a particular case of card. constraints where $k = 1$ and \bowtie is \leq
- Without loss of generality we may assume \bowtie is $<$, i.e.,
 $$x_1 + \ldots + x_n < k$$

- Naive encoding.
 - Variables: the same x_1, \ldots, x_n
 - Clauses: for all $1 \leq i_1 < i_2 < \ldots < i_k \leq n$,
 $$\overline{x_{i_1}} \lor \overline{x_{i_2}} \lor \ldots \lor \overline{x_{i_k}}$$
 - This is $\binom{n}{k}$ clauses!
Adders

- Again, other encodings try to use fewer clauses, at the cost of introducing new variables

- Adder encoding.

Build an adder circuit by using bit-adders as building blocks:

\[
\begin{align*}
\text{s} \leftrightarrow & \ \text{XOR}(x, y, z) \\
\text{c} \leftrightarrow & \ (x \land y) \lor (x \land z) \lor (y \land z)
\end{align*}
\]

where \(\text{XOR}(x, y, z)\) is short for

\[
(x \land \overline{y} \land \overline{z}) \lor (\overline{x} \land y \land \overline{z}) \lor (\overline{x} \land \overline{y} \land z) \lor (x \land y \land z)
\]
Adders

- Encodings of this kind are not arc-consistent.

- Consider $x + y + z \leq 0$.
 Then unit propagation should propagate $\overline{x}, \overline{y}, \overline{z}$.

- Let us encode the constraint with a full adder

- The encoding is the Tseitin transformation of $\overline{s}, \overline{c}$ and

 \[
 s \leftrightarrow \text{XOR}(x, y, z) \\
 c \leftrightarrow (x \land y) \lor (x \land z) \lor (y \land z)
 \]

 - Note that

 \[
 \overline{s} \rightarrow (\overline{x} \lor y \lor z) \land (x \lor \overline{y} \lor z) \land (x \lor y \lor \overline{z}) \land (\overline{x} \lor \overline{y} \lor \overline{z}) \\
 \overline{c} \rightarrow (\overline{x} \lor \overline{y}) \land (\overline{x} \lor \overline{z}) \land (\overline{y} \lor \overline{z})
 \]

 - Unit propagation cannot propagate anything!
Sorting Networks

- Sorting Network encoding.

Pass x_1, \ldots, x_n as inputs to a circuit that sorts (say, decreasingly) n bits.

Let y_1, \ldots, y_n be the outputs of this circuit.

Then if the constraint to be encoded is

- $\sum_{i=1}^{n} x_i \geq k$, then add clause y_k
- $\sum_{i=1}^{n} x_i \leq k$, then add clause $\overline{y_{k+1}}$
- $\sum_{i=1}^{n} x_i = k$, then add clauses $y_k, \overline{y_{k+1}}$
Sorting Networks

- How to build such a sorting circuit?
- A possibility is to implement mergesort
- In what follows: so-called odd-even sorting networks
- The basic block of odd-even sorting networks are 2-comparators
2-comparators

- A 2-comparator is a sorting network of size 2:
 - it has 2 input variables \(x_1 \) and \(x_2 \)
 - it has 2 output variables \(y_1 \) and \(y_2 \)
 - \(y_1 \) is true if and only if at least one of the input variables is true (i.e., it is the maximum or disjunction)
 - \(y_2 \) is true if and only if both two input variables are true (i.e., it is the minimum or conjunction)
2-comparators

- **Clauses:**

\[x_1 \leftarrow y_2, \quad x_2 \leftarrow y_2, \quad x_1 \lor x_2 \leftarrow y_1, \]
\[x_1 \rightarrow y_1, \quad x_2 \rightarrow y_1, \quad x_1 \land x_2 \rightarrow y_2 \]

- **Graphical representation:**

\[\begin{array}{c}
 x_1 \quad x_2 \\
 \quad y_1 \quad y_2
\end{array} \]

- **Some simplifications are possible:**

- For \(\geq \) constraints: top three clauses suffice
- For \(\leq \) constraints: bottom three clauses suffice
- For \(= \) constraints: all clauses needed
2-comparators

- **Clauses:**

\[
\begin{align*}
 x_1 & \leftarrow y_2, & x_2 & \leftarrow y_2, & x_1 \lor x_2 & \leftarrow y_1, \\
 \overline{x}_1 & \leftarrow \overline{y}_1, & \overline{x}_2 & \leftarrow \overline{y}_1, & \overline{x}_1 \lor \overline{x}_2 & \leftarrow \overline{y}_2
\end{align*}
\]

- **Graphical representation:**

\[
\begin{array}{c}
 x_1 \quad y_1 \\
 x_2 \quad y_2
\end{array}
\]

- **Some simplifications are possible:**

- For \(\geq \) constraints: **top three clauses suffice**
- For \(\leq \) constraints: **bottom three clauses suffice**
- For \(= \) constraints: **all clauses needed**
Merge Networks

- From now on we assume that n is a power of two (if not, pad with variables set to false)

- A **merge network** takes as input two ordered sets of variables of size n and produces an ordered output of size $2n$.

- Let (x_1, \ldots, x_n) and (x'_1, \ldots, x'_n) be the inputs. We recursively define a merge network as follows:

- If $n = 1$, a merge network is a 2-comparator:

$$\text{Merge}(x_1; x'_1) := 2\text{-Comp}(x_1, x'_1).$$
For $n > 1$: Let us define

\[
\begin{align*}
(z_1, z_3, \ldots, z_{2n-1}) &= \text{Merge}(x_1, x_3, \ldots, x_{n-1}; x'_1, x'_3, \ldots x'_{n-1}), \\
(z_2, z_4, \ldots, z_{2n}) &= \text{Merge}(x_2, x_4, \ldots, x_n; x'_2, x'_4, \ldots, x'_n), \\
(y_2, y_3) &= \text{2-Comp}(z_2, z_3), \\
(y_4, y_5) &= \text{2-Comp}(z_4, z_5), \\
&\vdots \\
(y_{2n-2}, y_{2n-1}) &= \text{2-Comp}(z_{2n-2}, z_{2n-1})
\end{align*}
\]

Then,

\[
\text{Merge}(x_1, x_2, \ldots, x_n; x'_1, x'_2, \ldots, x'_n) := (z_1, y_2, y_3, \ldots, y_{2n-1}, z_{2n})
\]
Merge Networks

\[\text{Merge}_{n=2} \]

\[\text{Merge}_{n=2} \]
Merge Networks

Sketch of the proof of correctness of Merge:

By IH: \{x_1, x_3, \ldots, x_{n-1}, x'_1, x'_3, \ldots, x'_{n-1}\} = \{z_1, z_3, \ldots, z_{2n-1}\}

By IH: \{x_2, x_4, \ldots, x_n, x'_2, x'_4, \ldots, x'_n\} = \{z_2, z_4, \ldots, z_{2n}\}

Hence \{x_1, x_2, \ldots, x_n, x'_1, x'_2, \ldots, x'_n\} = \{z_1, z_2, \ldots, z_{2n}\}

And

\((y_2, y_3) = 2\text{-Comp}(z_2, z_3)\) implies \{y_2, y_3\} = \{z_2, z_3\}

\((y_4, y_5) = 2\text{-Comp}(z_4, z_5)\) implies \{y_4, y_5\} = \{z_4, z_5\}

\ldots

\((y_{2n-2}, y_{2n-1}) = 2\text{-Comp}(z_{2n-2}, z_{2n-1})\) implies \{y_{2n-2}, y_{2n-1}\} = \{z_{2n-2}, z_{2n-1}\}

So \{x_1, x_2, \ldots, x_n, x'_1, x'_2, \ldots, x'_n\} = \{z_1, y_2, y_3, \ldots, y_{2n-2}, y_{2n-1}, z_{2n}\}
Let us prove outputs are sorted decreasingly. For $1 \leq i < n - 1$ let us see:

- $z_{2i} \geq z_{2(i+1)+1}$:
 - Let us see $z_{2(i+1)+1} = 1$ implies $z_{2i} = 1$
 - If $z_{2(i+1)+1} = z_{2i+3} = z_{2(i+2)-1} = 1$ there are $i + 2$ 1’s in odd x, x'
 - Let p be the number of 1’s in odd x
 - Let q the number of 1’s in odd x'
 - Then $p + q = i + 2$
 - As x, x' is ordered decreasingly,
 - there are $p - 1$ 1’s in even x, $q - 1$ 1’s in even x'
 - So altogether there are $(p - 1) + (q - 1) = p + q - 2 = i$ 1’s in even x, x'
 - Hence $z_{2i} = 1$
Let us prove outputs are sorted decreasingly. For $1 \leq i < n - 1$ let us see:

- $z_{2i} \geq z_{2(i+1)+1}$: proved
Merge Networks

Let us prove outputs are sorted decreasingly. For $1 \leq i < n - 1$ let us see:

- $z_{2i} \geq z_{2(i+1)+1}$: proved
- $z_{2i} \geq z_{2(i+1)}$: by IH
Let us prove outputs are sorted decreasingly. For $1 \leq i < n - 1$ let us see:

- $z_{2i} \geq z_{2(i+1)+1}$: proved
- $z_{2i} \geq z_{2(i+1)}$: by IH
- $z_{2i+1} \geq z_{2(i+1)+1}$: by IH
Merge Networks

Let us prove outputs are sorted decreasingly. For $1 \leq i < n - 1$ let us see:

- $z_{2i} \geq z_{2(i+1)+1}$: proved
- $z_{2i} \geq z_{2(i+1)}$: by IH
- $z_{2i+1} \geq z_{2(i+1)+1}$: by IH
- $z_{2i+1} \geq z_{2(i+1)}$: similar to above

So $\min(z_{2i}, z_{2i+1}) \geq \max(z_{2(i+1)}, z_{2(i+1)+1})$

But $y_{2i+1} = \min(z_{2i}, z_{2i+1})$ and $y_{2(i+1)} = \max(z_{2(i+1)}, z_{2(i+1)+1})$

So $y_{2i+1} \geq y_{2(i+1)}$

And $y_{2i} \geq y_{2i+1}$ for being outputs of 2-Comp

Altogether $z_1, y_2, y_3, \ldots, y_{2n-2}, y_{2n-1}, z_{2n}$ is sorted decreasingly
A sorting network of size n takes an input of size n and sorts it (decreasingly).

We can build a sorting network by successively applying merge networks (as in mergesort).

Let x_1, \ldots, x_n be the inputs. We recursively define a sorting network as follows:

If $n = 2$, a sorting network is a 2-comparator:

$$\text{Sorting}(x_1, x_2) := \text{2-Comp}(x_1, x_2)$$
For $n > 2$: Let us define

\[
(z_1, z_2, \ldots, z_{n/2}) = \text{Sorting}(x_1, x_2, \ldots, x_{n/2}),
\]
\[
(z_{n/2+1}, z_{n/2+2}, \ldots, z_n) = \text{Sorting}(x_{n/2+1}, x_{n/2+2}, \ldots, x_n),
\]
\[
(y_1, y_2, \ldots, y_n) = \text{Merge}(z_1, z_2, \ldots, z_{n/2}; z_{n/2+1}, \ldots, z_n)
\]

Then,

\[
\text{Sorting}(x_1, x_2, \ldots, x_n) := (y_1, y_2, \ldots, y_n)
\]
Sorting Networks

\[SN_{n=4} \rightarrow Merge_{n=4} \]

\[x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8 \]

\[z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8 \]

\[y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8 \]
Sorting Networks

- This encoding of cardinality constraints is arc-consistent
- It uses $O(n \log^2 n)$ new variables and $O(n \log^2 n)$ clauses
- Several improvements are possible:
 - Only the first k outputs suffice: cardinality networks use $O(n \log^2 k)$ vars and clauses
 - No need to assume that n is a power of two: merges can be defined for inputs of different sizes
Bibliography

