Satisfiability Modulo Theories

- Some problems are more naturally expressed in other logics than propositional logic, e.g:
 - Software verification needs reasoning about equality, arithmetic, data structures, ...

- SMT consists in deciding the satisfiability of a (quantifier-free) first-order formula with respect to a background theory.

- Example (Equality with Uninterpreted Functions – EUF):
 \[g(a) = c \land \left(f(g(a)) \neq f(c) \lor g(a) = d \right) \land c \neq d \]

- SMT is widely applied in hardware/software verification.
 Theories of interest here: EUF, arithmetic, arrays, bit vectors, combinations of these.

- With these and other theories, SMT methods can also be used to solve combinatorial problems.
Lazy Approach to SMT

Methodology:
Example: consider EUF and

\[
\begin{align*}
g(a) &= c \quad \land \quad (f(g(a)) &\neq f(c) \lor g(a) = d) \quad \land \quad c \neq d \\
&\quad 1 \quad \quad \quad \quad \quad 2 \quad \quad \quad \quad \quad 3 \quad \quad \quad \quad \quad 4
\end{align*}
\]
Lazy Approach to SMT

Methodology:

Example: consider EUF and

\[g(a) = c \quad \land \quad \left(f(g(a)) \neq f(c) \quad \lor \quad g(a) = d \right) \quad \land \quad c \neq d \]

Send \{1, \overline{2} \lor 3, \overline{4}\} to SAT solver

SAT solver returns model \[1, \overline{2}, \overline{4}\]

Theory solver says \text{T-inconsistent}
Lazy Approach to SMT

Methodology:

Example: consider EUF and

\[
\begin{align*}
g(a) &= c \
1 &\land \quad \left(f(g(a)) \neq f(c) \lor g(a) = d \right) \land c \neq d \\
2 &\lor
\end{align*}
\]

- Send \{1, 2 \lor 3, 4\} to SAT solver
 SAT solver returns model [1, 2, 4]
 Theory solver says \textit{T}-inconsistent

- Send \{1, 2 \lor 3, 4, 1 \lor 2 \lor 4\} to SAT solver
 SAT solver returns model [1, 2, 3, 4]
 Theory solver says \textit{T}-inconsistent
Lazy Approach to SMT

Methodology:

Example: consider EUF and

\[
\begin{align*}
g(a) &= c &\lor (f(g(a)) &\neq f(c) &\lor g(a) &= d) &\lor c &\neq d \\
&\quad 1 &\quad 2 &\quad 3 &\quad 4
\end{align*}
\]

- Send \(\{1, \overline{2} \lor 3, \overline{4}\}\) to SAT solver
 SAT solver returns model \([1, \overline{2}, \overline{4}]\)
 Theory solver says \(T\)-inconsistent

- Send \(\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4\}\) to SAT solver
 SAT solver returns model \([1, 2, 3, \overline{4}]\)
 Theory solver says \(T\)-inconsistent

- Send \(\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{2} \lor \overline{3} \lor 4\}\) to SAT solver
 SAT solver says UNSATISFIABLE
Lazy Approach to SMT

■ Why “lazy”?
Theory information used lazily when checking T-consistency of propositional models (cf. eagerly encoding into SAT upfront)

■ Characteristics:

+ Modular and flexible
- Theory information does not guide the search

■ (Early) Tools:

◆ Barcelogic (UPC)
◆ CVC (Uni. NY + Iowa)
◆ DPT (Intel)
◆ MathSAT (Univ. Trento)
◆ Yices (SRI)
◆ Z3 (Microsoft)
◆ ...
Optimizations

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models
Optimizations

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models
- Check T-consistency of partial assignment while being built
Optimizations

Several optimizations for enhancing efficiency:

- **Check** T-consistency only of full propositional models
- Check T-consistency of partial assignment while being built

- Given a T-inconsistent assignment M, add $\neg M$ as a clause
Optimizations

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models
- Check T-consistency of partial assignment while being built

- Given a T-inconsistent assignment M, add $\neg M$ as a clause
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_0 \subseteq M$ and add $\neg M_0$ as a clause
Optimizations

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models
- Check T-consistency of partial assignment while being built

- **Given a T-inconsistent assignment M, add $\neg M$ as a clause**
- **Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_0 \subseteq M$ and add $\neg M_0$ as a clause**

- Upon a T-inconsistency, add clause and restart
Optimizations

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models
- Check T-consistency of partial assignment while being built

- Given a T-inconsistent assignment M, add $\neg M$ as a clause
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_0 \subseteq M$ and add $\neg M_0$ as a clause

- Upon a T-inconsistency, add clause and restart
- Upon a T-inconsistency, do conflict analysis and backjump
Important Points

Advantages of the lazy approach:

- Everyone does what it is good at:
 - SAT solver takes care of Boolean information
 - Theory solver takes care of theory information

- Theory solver only receives conjunctions of literals

- Modular approach:
 - SAT solver and T-solver communicate via a simple API
 - SMT for a new theory only requires new T-solver
 - SAT solver can be extended to a lazy SMT system with very few new lines of code (40?)
Theory propagation

- As pointed out, the lazy approach has a drawback:
 - Theory information does not guide the search

How can we improve that? **Theory propagation**

T-Propagate

\[
M \parallel F \Rightarrow M \ l \parallel F \quad \text{if} \quad \begin{cases}
M \models_T l \\
l \text{ or } \neg l \text{ occurs in } F \text{ and not in } M
\end{cases}
\]

- Search guided by **T-Solver** by finding **T**-consequences, instead of only validating it as in basic lazy approach.

- **Naive implementation**: Add \(\neg l \). If **T**-inconsistent then infer \(l \).
 - But for efficient **T-Propagate** we need specialized **T-Solvers**

- This approach has been named **DPLL(T)**
Example

Consider again EUF and the formula:

\[
g(a) = c \quad \land \quad (f(g(a)) \neq f(c) \lor g(a) = d) \quad \land \quad c \neq d
\]
Example

Consider again EUF and the formula:

\[
g(a) = c \quad \wedge \quad \left(\frac{f(g(a)) \neq f(c)}{2} \lor \frac{g(a) = d}{3} \right) \quad \wedge \quad \frac{c \neq d}{4}
\]

\[
\emptyset \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad \text{(UnitPropagate)}
\]
Example

Consider again EUF and the formula:

\[
g(a) = c \quad \land \quad (f(g(a)) \neq f(c) \quad \lor \quad g(a) = d) \quad \land \quad c \neq d
\]

\[
\emptyset \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad \text{(UnitPropagate)}
\]

\[
1 \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad \text{(T-Propagate)}
\]
Example

Consider again EUF and the formula:

\[
\begin{align*}
g(a) &= c & (\text{1}) \\
\land (f(g(a)) &\neq f(c) \lor g(a) = d) & (\text{2}) \\
\land c &\neq d & (\text{3}) \\
\end{align*}
\]

\[
\begin{align*}
\emptyset \ || \ 1, \ 2 \lor 3, \ 4 & \implies \text{(UnitPropagate)} \\
1 \ || \ 1, \ 2 \lor 3, \ 4 & \implies \text{(T-Propagate)} \\
1 \ 2 \ || \ 1, \ 2 \lor 3, \ 4 & \implies \text{(UnitPropagate)}
\end{align*}
\]
Consider again EUF and the formula:

\[
g(a) = c \quad \land \quad \left((f(g(a)) \neq f(c) \quad \lor \quad g(a) = d \right) \quad \land \quad c \neq d
\]

- \(\emptyset \parallel 1, \overline{2} \lor 3, \overline{4} \Rightarrow (\text{UnitPropagate}) \)
- \(1 \parallel 1, \overline{2} \lor 3, \overline{4} \Rightarrow (\text{T-Propagate}) \)
- \(1 2 \parallel 1, \overline{2} \lor 3, \overline{4} \Rightarrow (\text{UnitPropagate}) \)
- \(1 2 3 \parallel 1, \overline{2} \lor 3, \overline{4} \Rightarrow (\text{T-Propagate}) \)
Example

Consider again EUF and the formula:

\[
g(a) = c \quad \land \quad (f(g(a)) \neq f(c) \lor g(a) = d) \quad \land \quad c \neq d
\]

\[
\emptyset \parallel 1, \overline{2} \lor 3, 4 \quad \Rightarrow \quad \text{(UnitPropagate)}
\]

\[
1 \parallel 1, \overline{2} \lor 3, 4 \quad \Rightarrow \quad \text{(T-Propagate)}
\]

\[
1 2 \parallel 1, \overline{2} \lor 3, 4 \quad \Rightarrow \quad \text{(UnitPropagate)}
\]

\[
1 2 3 \parallel 1, \overline{2} \lor 3, 4 \quad \Rightarrow \quad \text{(T-Propagate)}
\]

\[
1 2 3 4 \parallel 1, \overline{2} \lor 3, 4 \quad \Rightarrow \quad \text{(Fail)}
\]
Example

Consider again EUF and the formula:

\[
g(a) = c \quad \land \quad (f(g(a)) \neq f(c) \lor g(a) = d) \quad \land \quad c \neq d
\]

\[
\emptyset \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad \text{(UnitPropagate)}
\]

\[
1 \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad \text{(T-Propagate)}
\]

\[
1 \ 2 \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad \text{(UnitPropagate)}
\]

\[
1 \ 2 \ 3 \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad \text{(T-Propagate)}
\]

\[
1 \ 2 \ 3 \ 4 \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad \text{(Fail)}
\]

\[
\text{fail}
\]
Example

Consider again EUF and the formula:

\[
g(a) = c \quad \land \quad \left(\begin{array}{l}
g(a) = d \\
1 \\
\end{array} \right) \quad \lor \quad \left(\begin{array}{l}
f(g(a)) \neq f(c) \\
f \neq g(a) \\
2 \\
3 \\
\end{array} \right) \quad \land \quad \left(\begin{array}{l}
c \neq d \\
4 \\
\end{array} \right)
\]

\[
\begin{array}{l}
\emptyset \quad || \quad 1, \ 2 \lor 3, \ 4 \quad \Rightarrow \quad (\text{UnitPropagate}) \\
1 \quad || \quad 1, \ 2 \lor 3, \ 4 \quad \Rightarrow \quad (\text{T-Propagate}) \\
1 \ 2 \quad || \quad 1, \ 2 \lor 3, \ 4 \quad \Rightarrow \quad (\text{UnitPropagate}) \\
1 \ 2 \ 3 \quad || \quad 1, \ 2 \lor 3, \ 4 \quad \Rightarrow \quad (\text{T-Propagate}) \\
1 \ 2 \ 3 \ 4 \quad || \quad 1, \ 2 \lor 3, \ 4 \quad \Rightarrow \quad (\text{Fail}) \\
\end{array}
\]

\text{fail}

No search!
Overall algorithm

High-level view gives the same algorithm as in a CDCL SAT solver:

```java
while(true){
    while (propagate_gives_conflict()){
        if (decision_level==0) return UNSAT;
        else analyze_conflict();
    }
    restart_if_applicable();
    remove_lemmas_if_applicable();
    if (!decide()) returns SAT; // All vars assigned
}
```

Differences are in:

- `propagate_gives_conflict`
- `analyze_conflict`
DPLL(T) - Propagation

propagate_gives_conflict() returns Bool

// unit propagate
if (unit_prop_gives_conflict()) then return true

return false
DPLL(T) - Propagation

propagate_gives_conflict() returns Bool

 do {
 // unit propagate
 if (unit_prop_gives_conflict()) then return true

 // check T-consistency of the model
 if (solver.is_model_inconsistent()) then return true

 // theory propagate
 solver.theory_propagate()

 } while (doneSomeTheoryPropagation)

 return false
DPLL(T) - Propagation

- Three operations:
 - Unit propagation (SAT solver)
 - Consistency checks (T-solver)
 - Theory propagation (T-solver)

- Cheap operations are computed first

- If theory is expensive, calls to T-solver are sometimes skipped
 - Only strictly necessary to call T-consistency at the leaves (i.e. when we have a full propositional model)
 - T-propagation is not necessary for correctness
DPLL(T) - Conflict Analysis

Remember conflict analysis in SAT solvers:

\[C := \text{conflicting clause} \]

\textbf{while} C contains more than one lit of last DL

\hspace{1em} \[l := \text{last literal assigned in } C \]
\hspace{1em} \[C := \text{Resolution}(C, \text{reason}(l)) \]

\textbf{end while}

\texttt{// let } C = C' \lor l \text{ where } l \text{ is the only lit of last DL}
\texttt{backjump(maxDL(C'))}
\texttt{add } l \texttt{ to the model with reason } C
\texttt{learn}(C)
DPLL(T) - Conflict Analysis

Conflict analysis in DPLL(T):

```plaintext
if boolean conflict then $C :=$ conflicting clause
else $C := \neg (\text{solver.explain_inconsistency}())$

while $C$ contains more than one lit of last DL
    $l :=$ last literal assigned in $C$
    $C := \text{Resolution}(C, \text{reason}(l))$

end while

// let $C = C' \lor l$ where $l$ is the only lit of last DL
backjump(maxDL($C'$))
add $l$ to the model with reason $C$
learn($C$)
```
DPLL(T) - Conflict Analysis

What does `explain_inconsistency` return?

- An explanation of the inconsistency:
 A (small) conjunction of literals $l_1 \land \ldots \land l_n$ such that:
 - It is T-inconsistent

What is now `reason(l)`?

- If l was unit propagated: clause that propagated it
- If l was T-propagated:
 - An explanation of the propagation:
 A (small) clause $\neg l_1 \lor \ldots \lor \neg l_n \lor l$ such that:
 - $l_1 \land \ldots \land l_n \models_T l$
 - l_1, \ldots, l_n were in the model when l was T-propagated
DPLL(T) - Conflict Analysis

Let M be $c = b$ and let F contain

$$a = b \lor g(a) \neq g(b), \quad h(a) = h(c) \lor p, \quad g(a) = g(b) \lor \neg p$$

Take the following sequence:

1. **Decide** $h(a) \neq h(c)$
2. **T-Propagate** $a \neq b$ (due to $h(a) \neq h(c)$ and $c = b$)
3. **UnitPropagate** $g(a) \neq g(b)$
4. **UnitPropagate** p
5. **Conflicting clause** $g(a) = g(b) \lor \neg p$

$\text{Explain}(a \neq b)$ is $\{h(a) \neq h(c), c = b\}$

\[
\begin{align*}
& h(a) = h(c) \lor p \quad g(a) = g(b) \lor \neg p \\
& a = b \lor g(a) \neq g(b) \\
& h(a) = h(c) \lor c \neq b \lor a \neq b \\
& h(a) = h(c) \lor a = b \\
& h(a) = h(c) \lor c \neq b
\end{align*}
\]
DPLL(T) – T-Solver API

What does DPLL(T) need from T-Solver?

- **T-consistency check** of a set of literals M, with:
 - Explain of T-inconsistency:
 find small T-inconsistent subset of M
 - Incrementality: if l is added to M, check for $M \cup l$ faster than reprocessing $M \cup l$ from scratch.

- **Theory propagation**: find input T-consequences of M, with:
 - Explain T-Propagate of l:
 find (small) subset of M that T-entails l.

- **Backtrack n**: undo last n literals added
Bibliography - Further reading

