Introduction to Satisfiability Modulo Theories

Combinatorial Problem Solving (CPS)

Albert Oliveras Enric Rodríguez-Carbonell

May 24, 2019
Some problems are more naturally expressed in other logics than propositional logic, e.g:

- Software verification needs reasoning about equality, arithmetic, data structures, ...

SMT consists in deciding the satisfiability of a (quantifier-free) first-order formula with respect to a background theory.

Example (Equality with Uninterpreted Functions – EUF):

\[g(a) = c \quad \land \quad \left(f(g(a)) \neq f(c) \quad \lor \quad g(a) = d \right) \quad \land \quad c \neq d \]

SMT is widely applied in hardware/software verification.

Theories of interest here:

- EUF, arithmetic, arrays, bit vectors, combinations of these.

With these and other theories, SMT methods can also be used to solve combinatorial problems.
Lazy Approach to SMT

Methodology:

Example: consider EUF and

\[
\begin{align*}
g(a) = c & \quad \land \quad (f(g(a)) \neq f(c) \quad \lor \quad g(a) = d) \\
& \quad \land \quad c \neq d
\end{align*}
\]
Lazy Approach to SMT

Methodology:

Example: consider EUF and

\[
\begin{align*}
g(a) = c & \quad \land \quad (f(g(a)) \neq f(c) \quad \lor \quad g(a) = d) \quad \land \quad c \neq d \\
\end{align*}
\]

• Send \{1, 2 \lor 3, 4\} to SAT solver
 SAT solver returns model [1, 2, 4]
 Theory solver says \text{T}-inconsistent
Lazy Approach to SMT

Methodology:

Example: consider EUF and

\[g(a) = c \quad \land \quad \left(\underbrace{f(g(a)) \neq f(c)}_{1} \quad \lor \quad \underbrace{g(a) = d}_{3} \right) \quad \land \quad c \neq d \]

- Send \(\{1, \overline{2} \lor 3, \overline{4}\} \) to SAT solver
 SAT solver returns model \([1, \overline{2}, \overline{4}]\)
 Theory solver says \(T\)-inconsistent

- Send \(\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4\} \) to SAT solver
 SAT solver returns model \([1, 2, 3, \overline{4}]\)
 Theory solver says \(T\)-inconsistent
Lazy Approach to SMT

Methodology:
Example: consider EUF and

$$g(a) = c \quad \land \quad \left(f(g(a)) \neq f(c) \quad \lor \quad g(a) = d \right) \quad \land \quad c \neq d$$

- Send \(\{1, \overline{2} \lor 3, \overline{4}\}\) to SAT solver
 SAT solver returns model \([1, \overline{2}, \overline{4}]\)
 Theory solver says \(T\)-inconsistent

- Send \(\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4\}\) to SAT solver
 SAT solver returns model \([1, 2, 3, \overline{4}]\)
 Theory solver says \(T\)-inconsistent

- Send \(\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{2} \lor \overline{3} \lor 4\}\) to SAT solver
 SAT solver says UNSATISFIABLE
Lazy Approach to SMT

- Why “lazy”? Theory information used lazily when checking T-consistency of propositional models (cf. eagerly encoding into SAT upfront)

- Characteristics:
 - Modular and flexible
 - Theory information does not guide the search

- (Early) Tools:
 - Barcelogic (UPC)
 - CVC (Uni. NY + Iowa)
 - DPT (Intel)
 - MathSAT (Univ. Trento)
 - Yices (SRI)
 - Z3 (Microsoft)
 - ...
Optimizations

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models
Optimizations

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models
- Check T-consistency of partial assignment while being built
Optimizations

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models
- Check T-consistency of partial assignment while being built

- Given a T-inconsistent assignment M, add $\neg M$ as a clause
Optimizations

Several optimizations for enhancing efficiency:

- **Check** T-consistency only of full propositional models
- **Check** T-consistency of partial assignment while being built

- **Given** a T-inconsistent assignment M, add $\neg M$ as a clause
- **Given** a T-inconsistent assignment M, identify a T-inconsistent subset $M_0 \subseteq M$ and add $\neg M_0$ as a clause
Optimizations

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models
- Check T-consistency of partial assignment while being built

- Given a T-inconsistent assignment M, add $\neg M$ as a clause
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_0 \subseteq M$ and add $\neg M_0$ as a clause

- Upon a T-inconsistency, add clause and restart
Optimizations

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models
- Check T-consistency of partial assignment while being built

- Given a T-inconsistent assignment M, add $\neg M$ as a clause
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_0 \subseteq M$ and add $\neg M_0$ as a clause

- Upon a T-inconsistency, add clause and restart
- Upon a T-inconsistency, do conflict analysis and backjump
Important Points

Advantages of the lazy approach:

- Everyone does what it is good at:
 - SAT solver takes care of Boolean information
 - Theory solver takes care of theory information

- Theory solver only receives conjunctions of literals

- Modular approach:
 - SAT solver and T-solver communicate via a simple API
 - SMT for a new theory only requires new T-solver
 - SAT solver can be extended to a lazy SMT system with very few new lines of code (40?)
Theory propagation

- As pointed out, the lazy approach has a drawback:
 - Theory information does not guide the search

- How can we improve that? Theory propagation

 \[M \parallel F \Rightarrow M l \parallel F \text{ if } \begin{cases} M \models_T l \\ l \text{ or } \neg l \text{ occurs in } F \text{ and not in } M \end{cases} \]

- Search guided by \(T \)-Solver by finding \(T \)-consequences, instead of only validating it as in basic lazy approach.

- Naive implementation: Add \(\neg l \). If \(T \)-inconsistent then infer \(l \).
 But for efficient \(T \)-Propagate we need specialized \(T \)-Solvers

- This approach has been named \(\text{DPLL}(T) \)
Example

Consider again EUF and the formula:

\[
g(a) = c \quad \land \quad (f(g(a)) \neq f(c) \quad \lor \quad g(a) = d) \quad \land \quad c \neq d
\]

\[
\begin{align*}
g(a) &= c \quad \text{1} \\
(f(g(a)) &\neq f(c) \quad \lor \quad g(a) = d) \quad \text{2} \\
c &\neq d \quad \text{3}
\end{align*}
\]
Example

Consider again EUF and the formula:

\[
g(a) = c \quad \land \quad (f(g(a)) \neq f(c) \lor g(a) = d) \quad \land \quad c \neq d
\]

\[\emptyset \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad \text{(UnitPropagate)}\]
Consider again EUF and the formula:

\[g(a) = c \quad \land \quad (f(g(a)) \neq f(c) \quad \lor \quad g(a) = d) \quad \land \quad c \neq d \]

\[\emptyset \parallel 1, \ \overline{2} \lor 3, \ \overline{4} \ \Rightarrow \ (\text{UnitPropagate}) \]

\[1 \parallel 1, \ \overline{2} \lor 3, \ \overline{4} \ \Rightarrow \ (\text{T-Propagate}) \]
Example

Consider again EUF and the formula:

\[
\begin{align*}
g(a) &= c \quad (1) \\
\quad \quad &\land \quad (f(g(a)) \neq f(c) \lor g(a) = d) \quad (2) \\
\quad \quad &\land \quad c \neq d \quad (3)
\end{align*}
\]

\[
\begin{align*}
\emptyset \parallel 1, \; \overline{2} \lor 3, \; \overline{4} \quad \Rightarrow \quad &\text{(UnitPropagate)} \\
1 \parallel 1, \; \overline{2} \lor 3, \; \overline{4} \quad \Rightarrow \quad &\text{(T-Propagate)} \\
1 \; 2 \parallel 1, \; \overline{2} \lor 3, \; \overline{4} \quad \Rightarrow \quad &\text{(UnitPropagate)}
\end{align*}
\]
Consider again EUF and the formula:

\[g(a) = c \quad \land \quad \left(f(g(a)) \neq f(c) \lor g(a) = d \right) \quad \land \quad c \neq d \]

\[
\begin{align*}
\emptyset & \parallel 1, \quad \overline{2} \lor 3, \quad \overline{4} & \Rightarrow & \text{(UnitPropagate)} \\
1 & \parallel 1, \quad \overline{2} \lor 3, \quad \overline{4} & \Rightarrow & \text{(T-Propagate)} \\
12 & \parallel 1, \quad \overline{2} \lor 3, \quad \overline{4} & \Rightarrow & \text{(UnitPropagate)} \\
123 & \parallel 1, \quad \overline{2} \lor 3, \quad \overline{4} & \Rightarrow & \text{(T-Propagate)}
\end{align*}
\]
Example

Consider again **EUF** and the formula:

\[g(a) = c \quad \land \quad (f(g(a)) \neq f(c) \quad \lor \quad g(a) = d) \quad \land \quad c \neq d \]

\[
\begin{align*}
\emptyset & \parallel 1, \; \overline{2} \lor 3, \; \overline{4} \quad \Rightarrow \quad \text{(UnitPropagate)} \\
1 & \parallel 1, \; \overline{2} \lor 3, \; \overline{4} \quad \Rightarrow \quad \text{(T-Propagate)} \\
1 \; 2 & \parallel 1, \; \overline{2} \lor 3, \; \overline{4} \quad \Rightarrow \quad \text{(UnitPropagate)} \\
1 \; 2 \; 3 & \parallel 1, \; \overline{2} \lor 3, \; \overline{4} \quad \Rightarrow \quad \text{(T-Propagate)} \\
1 \; 2 \; 3 \; 4 & \parallel 1, \; \overline{2} \lor 3, \; \overline{4} \quad \Rightarrow \quad \text{(Fail)}
\end{align*}
\]
Example

Consider again EUF and the formula:

\[
\begin{align*}
g(a) = c & \quad \land \quad (f(g(a)) \neq f(c) \quad \lor \quad g(a) = d) \quad \land \quad c \neq d \\
\end{align*}
\]

\[
\begin{align*}
\emptyset \parallel 1, \overline{2} \lor 3, \overline{4} & \Rightarrow (\text{UnitPropagate}) \\
1 \parallel 1, \overline{2} \lor 3, \overline{4} & \Rightarrow (\text{T-Propagate}) \\
1 2 \parallel 1, \overline{2} \lor 3, \overline{4} & \Rightarrow (\text{UnitPropagate}) \\
1 2 3 \parallel 1, \overline{2} \lor 3, \overline{4} & \Rightarrow (\text{T-Propagate}) \\
1 2 3 4 \parallel 1, \overline{2} \lor 3, \overline{4} & \Rightarrow (\text{Fail}) \\
\text{fail}
\end{align*}
\]
Example

Consider again EUF and the formula:

\[
g(a) = c \quad \land \quad \left(f(g(a)) \neq f(c) \quad \lor \quad g(a) = d \right) \quad \land \quad c \neq d
\]

\[
\emptyset \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad \text{(UnitPropagate)}
\]

\[
1 \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad \text{(T-Propagate)}
\]

\[
12 \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad \text{(UnitPropagate)}
\]

\[
123 \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad \text{(T-Propagate)}
\]

\[
1234 \parallel 1, \overline{2} \lor 3, \overline{4} \quad \Rightarrow \quad \text{(Fail)}
\]

\[
\text{fail}
\]

No search!
Overall algorithm

High-level view gives the same algorithm as in a CDCL SAT solver:

```java
while (true) {
    while (propagate_gives_conflict()) {
        if (decision_level == 0) return UNSAT;
        else analyze_conflict();
    }
    restart_if_applicable();
    remove_lemmas_if_applicable();
    if (!decide()) returns SAT; // All vars assigned
}
```

Differences are in:

- `propagate_gives_conflict`
- `analyze_conflict`
DPLL(T) - Propagation

propagate_gives_conflict() returns Bool

 // unit propagate
 if (unit_prop_gives_conflict()) then return true

 return false
propagate_gives_conflict() returns Bool

\[
do \{

\hspace{1cm} \text{// unit propagate}
\hspace{1cm} \text{if} \ (\text{unit_prop_gives_conflict()}) \ \text{then return true}

\hspace{1cm} \text{// check T-consistency of the model}
\hspace{1cm} \text{if} \ (\text{solver.is_model_inconsistent()}) \ \text{then return true}

\hspace{1cm} \text{// theory propagate}
\hspace{1cm} \text{solver.theory_propagate()}

\}\ \text{while (doneSomeTheoryPropagation)}

\text{return false}
\]
DPLL(T) - Propagation

- Three operations:
 - Unit propagation (SAT solver)
 - Consistency checks (T-solver)
 - Theory propagation (T-solver)

- Cheap operations are computed first

- If theory is expensive, calls to T-solver are sometimes skipped
 - Only strictly necessary to call T-consistency at the leaves (i.e. when we have a full propositional model)
 - T-propagation is not necessary for correctness
DPLL(\(T\)) - Conflict Analysis

Remember conflict analysis in SAT solvers:

\[C := \text{conflicting clause} \]

\[\text{while } C \text{ contains more than one lit of last DL} \]
\[\quad l := \text{last literal assigned in } C \]
\[\quad C := \text{Resolution}(C, \text{reason}(l)) \]

\[\text{end while} \]

// let \(C = C' \lor l \) where \(l \) is the only lit of last DL
\[\text{backjump(maxDL}(C')) \]
\[\text{add } l \text{ to the model with reason } C \]
\[\text{learn}(C) \]
DPLL(T) - Conflict Analysis

Conflict analysis in DPLL(T):

if boolean conflict then $C :=$ conflicting clause
else $C := \neg (\text{solver.explain.inconsistency}())$

while C contains more than one lit of last DL

\[l := \text{last literal assigned in } C \]
\[C := \text{Resolution}(C,\text{reason}(l)) \]

end while

// let $C = C' \lor l$ where l is the only lit of last DL
backjump(maxDL(C'))
add l to the model with reason C
learn(C)
DPLL(T) - Conflict Analysis

What does `explain_inconsistency` return?

- An explanation of the inconsistency:
 A (small) conjunction of literals $l_1 \land \ldots \land l_n$ such that:
 - It is T-inconsistent

What is now `reason(l)`?

- If l was unit propagated: clause that propagated it
- If l was T-propagated:
 - An explanation of the propagation:
 A (small) clause $\neg l_1 \lor \ldots \lor \neg l_n \lor l$ such that:
 - $l_1 \land \ldots \land l_n \models_T l$
 - l_1, \ldots, l_n were in the model when l was T-propagated
DPLL(\(T\)) - Conflict Analysis

Let \(M \) be \(c=b \) and let \(F \) contain

\[
\begin{align*}
 a &= b \lor g(a) \neq g(b), \\
 h(a) &= h(c) \lor p, \\
 g(a) &= g(b) \lor \neg p
\end{align*}
\]

Take the following sequence:

1. Decide \(h(a) \neq h(c) \)
2. T-Propagate \(a \neq b \) (due to \(h(a) \neq h(c) \) and \(c=b \))
3. UnitPropagate \(g(a) \neq g(b) \)
4. UnitPropagate \(p \)
5. Conflicting clause \(g(a) = g(b) \lor \neg p \)

\[\text{Explain}(a \neq b) \text{ is } \{ h(a) \neq h(c), c = b \} \]

\[
\begin{align*}
 h(a) &= h(c) \lor p, \\
 g(a) &= g(b) \lor \neg p \\
 a &= b \lor g(a) \neq g(b) \\
 h(a) &= h(c) \lor a = b \\
 h(a) &= h(c) \lor c \neq b
\end{align*}
\]
DPLL(T) – T-Solver API

What does DPLL(T) need from T-Solver?

- **T-consistency check** of a set of literals M, with:
 - **Explain of T-inconsistency:**
 find small T-inconsistent subset of M
 - **Incrementality:** if l is added to M, check for $M \cup l$ faster than reprocessing $M \cup l$ from scratch.

- **Theory propagation:** find input T-consequences of M, with:
 - **Explain T-Propagate of l:**
 find (small) subset of M that T-entails l.

- **Backtrack n:** undo last n literals added
Bibliography - Further reading

