
Network Simplex Method

Combinatorial Problem Solving (CPS)

Enric Rodŕıguez-Carbonell

May 5, 2022

Network Programs

2 / 35

■ A network program is of the form

min cTx

Ax = b

ℓ ≤ x ≤ u,

where c ∈ R
m, b ∈ R

n and A ∈ {−1, 0, 1}n×m has the following property:

each column has exactly one 1 and one −1
(and so the remaining coefficients are 0)

■ Note that n is the number of constraints and m is the number of variables

Network Programs

2 / 35

■ A network program is of the form

min cTx

Ax = b

ℓ ≤ x ≤ u,

where c ∈ R
m, b ∈ R

n and A ∈ {−1, 0, 1}n×m has the following property:

each column has exactly one 1 and one −1
(and so the remaining coefficients are 0)

■ Example: min x1 + x2 + 3x3 + 10x4

1 0 1 1
−1 1 0 0
0 −1 −1 −1

x1
x2
x3
x4

=

5
0

−5

0 ≤ x1 ≤ 4 0 ≤ x3 ≤ 4
0 ≤ x2 ≤ 2 0 ≤ x4 ≤ 10

Minimum Cost Flow Problems

3 / 35

■ Network programs can be seen as minimum cost flow problems in a graph

■ We associate a digraph G = (V,E) to the matrix of a network program:

◆ Vertices V correspond to rows (constraints)

◆ Edges E correspond to columns (variables)

◆ A column with a 1 at row i and a −1 at row k gives an edge (i, k)

Minimum Cost Flow Problems

3 / 35

■ Network programs can be seen as minimum cost flow problems in a graph

■ We associate a digraph G = (V,E) to the matrix of a network program:

◆ Vertices V correspond to rows (constraints)

◆ Edges E correspond to columns (variables)

◆ A column with a 1 at row i and a −1 at row k gives an edge (i, k)

■ Then we can reinterpret the other elements of the network program:

◆ Each variable xj is the flow sent along the j-th edge

◆ The cost of sending 1 unit of flow is cj

◆ Flow cannot exceed capacity uj

◆ There must be a minimum flow ℓj (usually, 0)

◆ Total production of flow at vertex i is determined by bi

■ So solving the network program consists in
finding the feasible flow along the graph that minimizes the cost

Minimum Cost Flow Problems

4 / 35

min x1 + x2 + 3x3 + 10x4

1 0 1 1
−1 1 0 0
0 −1 −1 −1

x1
x2
x3
x4

=

5
0

−5

0 ≤ x1 ≤ 4 0 ≤ x3 ≤ 4
0 ≤ x2 ≤ 2 0 ≤ x4 ≤ 10

1

2

3

{5} ❀ bi

{0}

{−5}

x1

[1,0,4] ❀ [cj ,ℓj ,uj]
x2

[1,0,2]

x3

[3,0,4]

x4

[10,0,10]

Network Simplex Method

5 / 35

■ Network programs satisfy Hoffman & Gale’s conditions.
So simplex method is guaranteed to give integer solutions (if ℓ, u, b in Z)

■ Moreover we can specialize the simplex method for network programs

■ This lecture is devoted to this specialization: the network simplex method

■ In the first place we need to revisit a bit of graph theory

Vertex-Edge Incidence Matrix

6 / 35

■ The vertex-edge incidence matrix of digraph G = (V,E) is a matrix A s.t.:

◆ Rows are labelled by vertices

◆ Columns are labelled by edges

◆ For each v ∈ V and e ∈ E, coefficient av,e of A is

• 1 if e = (v, ·)
• −1 if e = (·, v)
• 0 otherwise

■ Given a network program whose matrix is A,
the vertex-edge incidence matrix of its associated digraph is precisely A

Vertex-Edge Incidence Matrix

7 / 35

1

2

3

1 2

3

4

1
2
3

1 2 3 4

1 0 1 1
−1 1 0 0
0 −1 −1 −1

Paths and Cycles

8 / 35

■ A path is a finite sequence P = (v1, e1, v2, . . . , vK , eK , vK+1) such that
either ek = (vk, vk+1) or ek = (vk+1, vk) for all 1 ≤ k ≤ K

■ Note that paths can invert the orientation of edges

■ The orientation sequence of a path P is (OP (e1), . . . , OP (ek)), where

OP (ek)

+1 if ek = (vk, vk+1)
−1 if ek = (vk+1, vk)
0 otherwise

■ A cycle is a path such that the initial and the final vertices are the same

Paths and Cycles

9 / 35

1

2

3

1 2

3

4

(3, 4, 1, 1, 2) is a path with orientation sequence (−1, 1)

Paths and Cycles

10 / 35

■ Prop. Let P = (v1, e1, v2, . . . , vK , eK , vK+1) be a path. Then

K
∑

k=1

OP (ek) · aek = ev1 − evK+1
,

where ae is the column of e in the vertex-edge incidence matrix A,
and ev is the v-th unit vector, i.e., all zeroes except for a 1 at index v

Paths and Cycles

10 / 35

■ Prop. Let P = (v1, e1, v2, . . . , vK , eK , vK+1) be a path. Then

K
∑

k=1

OP (ek) · aek = ev1 − evK+1
,

where ae is the column of e in the vertex-edge incidence matrix A,
and ev is the v-th unit vector, i.e., all zeroes except for a 1 at index v

Proof. Let k be s.t. 1 ≤ k ≤ K. There are two cases:

1. If ek = (vk, vk+1) then aek = evk − evk+1
and OP (ek) = 1

2. If ek = (vk+1, vk) then aek = evk+1
− evk and OP (ek) = −1

In any case OP (ek) · aek = evk − evk+1
. So

K
∑

k=1

OP (ek)·aek = (ev1−ev2)+(ev2−ev3)+. . .+(evK−evK+1
) = ev1−evK+1

Paths and Cycles

10 / 35

■ Prop. Let P = (v1, e1, v2, . . . , vK , eK , vK+1) be a path. Then

K
∑

k=1

OP (ek) · aek = ev1 − evK+1
,

where ae is the column of e in the vertex-edge incidence matrix A,
and ev is the v-th unit vector, i.e., all zeroes except for a 1 at index v

■ Cor. If C = (v1, e1, v2, . . . , vK , eK , vK+1) is a cycle,
the columns ae1 , ae2 , . . . , aeK of A are linearly dependent.

Paths and Cycles

10 / 35

■ Prop. Let P = (v1, e1, v2, . . . , vK , eK , vK+1) be a path. Then

K
∑

k=1

OP (ek) · aek = ev1 − evK+1
,

where ae is the column of e in the vertex-edge incidence matrix A,
and ev is the v-th unit vector, i.e., all zeroes except for a 1 at index v

■ Cor. If C = (v1, e1, v2, . . . , vK , eK , vK+1) is a cycle,
the columns ae1 , ae2 , . . . , aeK of A are linearly dependent.

Proof. If v1 = vK+1 then

K
∑

k=1

OP (ek) · aek = ev1 − evK+1
= 0

Paths and Cycles

11 / 35

1

2

3

1 2

3

4

1
2
3

1 2 3 4

1 0 1 1
−1 1 0 0
0 −1 −1 −1

Path P = (3, 4, 1, 1, 2) has orientation sequence (−1, 1)

K
∑

k=1

OP (ek) · aek = (−1)

1
0

−1

+ (1)

1
−1
0

 =

0
−1
1

 = e3 − e2

Trees

12 / 35

■ A graph is

◆ acyclic if it has no cycles

◆ connected if for any pair of vertices u, v there is a path from u to v

◆ a tree if it is acyclic and connected

■ Thm. For a graph T with at least one vertex the following are equivalent:

◆ T is a tree

◆ For any pair of vertices u, v there is a unique path from u to v

◆ T has one less edge than vertices and is connected

◆ T has one less edge than vertices and is acyclic

■ A subgraph S of G is spanning if it covers all vertices in G

■ Thm. Every connected graph has a subgraph that is a spanning tree.

Trees

13 / 35

■ Thm. For any T subgraph of G that is a tree with at least two vertices,
the columns {ae | e ∈ T} of A are linearly independent.

Trees

13 / 35

■ Thm. For any T subgraph of G that is a tree with at least two vertices,
the columns {ae | e ∈ T} of A are linearly independent.

Proof. By contradiction.

Let T be a tree with the minimum number of vertices N such that
{ae | e ∈ T} are linearly dependent, i.e., there are λe not all null s.t.

∑

e∈T

λeae = 0

If N = 2 then T has one edge, say e. But λe, ae 6= 0 and λeae = 0!

So N > 2. Let v be a leaf of T and let ev be the only edge in T that has
v as an endpoint. Let T ′ be the tree obtained from T by removing ev.
From

λevaev +
∑

e∈T ′

λeae = 0

by projecting onto the row of v we have λev = 0.

Hence the tree T ′ is a subgraph of G with N − 1 ≥ 2 vertices whose
columns are linearly dependent. Contradiction!

Paths and Cycles

14 / 35

1

2

3

1 2

3

4

1
2
3

1 2 3 4

1 0 1 1
−1 1 0 0
0 −1 −1 −1

Edges {4, 1} induce a subgraph that is a tree, and

rank

1 1
0 −1

−1 0

 = 2

Reformulating Network Programs

15 / 35

■ Thm. If G is a connected graph with n > 0 nodes then rank(A) = n− 1

Reformulating Network Programs

15 / 35

■ Thm. If G is a connected graph with n > 0 nodes then rank(A) = n− 1

Proof. G has a spanning tree T , which has n− 1 edges.

Its columns are linearly independent, so rank(A) ≥ rank(T) = n− 1.

But since adding all rows of A we get 0, finally rank(A) = n− 1.

Reformulating Network Programs

15 / 35

■ Thm. If G is a connected graph with n > 0 nodes then rank(A) = n− 1

■ Let us assume graphs of network programs are connected, so m ≥ n− 1
(otherwise, work independently on the connected components)

■ So the matrix of a network program has rank n− 1.
But the simplex method requires to have a full-rank matrix!

■ We add an extra variable w with a unit column er, where r is taken
arbitrarily from {1, . . . , n}, and such that it is forced to have value 0:

min cTx

Ax+ er w = b

ℓ ≤ x ≤ u,

0 ≤ w ≤ 0

Reformulating Network Programs

15 / 35

■ Thm. If G is a connected graph with n > 0 nodes then rank(A) = n− 1

■ Let us assume graphs of network programs are connected, so m ≥ n− 1
(otherwise, work independently on the connected components)

■ So the matrix of a network program has rank n− 1.
But the simplex method requires to have a full-rank matrix!

■ We add an extra variable w with a unit column er, where r is taken
arbitrarily from {1, . . . , n}, and such that it is forced to have value 0:

min cTx

Ax+ er w = b

ℓ ≤ x ≤ u,

0 ≤ w ≤ 0

w

r

■ We associate to such a reformulated network program a rooted graph
with root vertex r and root edge w (“going nowhere”)

Reformulating Network Programs

16 / 35

Here we choose as a root vertex r = 2

min x1 + x2 + 3x3 + 10x4

1 0 1 1 0
−1 1 0 0 1
0 −1 −1 −1 0

x1
x2
x3
x4
w

=

5
0

−5

0 ≤ x1 ≤ 4
0 ≤ x2 ≤ 2
0 ≤ x3 ≤ 4
0 ≤ x4 ≤ 10
0 ≤ w ≤ 0

1

2

3

{5} ❀ bi

{0}

{−5}

x1

[1,0,4] ❀ [cj ,ℓj ,uj]
x2

[1,0,2]

x3

[3,0,4]

x4

[10,0,10]

w
[0,0,0]

Characterization of Bases

17 / 35

■ Thm. Let A be the matrix of a rooted graph G with root vertex r.
If T is a spanning tree for G then B = er ∪ {ae | e ∈ T} is basis of (A | er)

Characterization of Bases

17 / 35

■ Thm. Let A be the matrix of a rooted graph G with root vertex r.
If T is a spanning tree for G then B = er ∪ {ae | e ∈ T} is basis of (A | er)

Proof. Let n be the number of vertices of G. As T is a spanning tree,
T has n− 1 edges. Hence B = er ∪ {ae | e ∈ T} has n columns.

Let us prove that B spans Rn, i.e., that
for any 1 ≤ i ≤ n we can write ei as linear combination of columns of B

Two cases:

◆ If i = r: trivial
◆ If i 6= r, let P = (v1 = i, e1, v2, . . . , vK , eK , vK+1 = r) be a path in T

from vertex i to vertex r. As
∑K

k=1OP (ek) · aek = ei − er

we have

er +
∑K

k=1OP (ek) · aek = ei

Altogether B is a basis for (A | er)

Characterization of Bases

17 / 35

■ Thm. Let A be the matrix of a rooted graph G with root vertex r.
If T is a spanning tree for G then B = er ∪ {ae | e ∈ T} is basis of (A | er)

Proof. Let n be the number of vertices of G. As T is a spanning tree,
T has n− 1 edges. Hence B = er ∪ {ae | e ∈ T} has n columns.

Let us prove that B spans Rn, i.e., that
for any 1 ≤ i ≤ n we can write ei as linear combination of columns of B

Two cases:

◆ If i = r: trivial
◆ If i 6= r, let P = (v1 = i, e1, v2, . . . , vK , eK , vK+1 = r) be a path in T

from vertex i to vertex r. As
∑K

k=1OP (ek) · aek = ei − er

we have

er +
∑K

k=1OP (ek) · aek = ei

Altogether B is a basis for (A | er)

■ Cor. rank(A | er) = n

Characterization of Bases

18 / 35

■ Thm. Let A be the matrix of a rooted graph G with root vertex r.
If B is basis of (A | er) then er ∈ B and {e | ae ∈ B} is spanning tree of G

Characterization of Bases

18 / 35

■ Thm. Let A be the matrix of a rooted graph G with root vertex r.
If B is basis of (A | er) then er ∈ B and {e | ae ∈ B} is spanning tree of G

Proof. Let n be the number of vertices of G as usual.

Since rank(A) = n− 1 and rank(A | er) = n we have that er ∈ B.
So the graph T induced by {e | ae ∈ B} has n− 1 edges.

Moreover, by linear independence, T cannot contain cycles.
Hence T has at least (n− 1) + 1 = n vertices. But G has n vertices.
Thus T has exactly n vertices, and so is spanning.

Since T has one less edge than vertex and is acyclic, it must be a tree.

All in all, T is a spanning tree.

Characterization of Bases

19 / 35

1

2

3

1 2

3

4

5

1
2
3

1 2 3 4 5

1 0 1 1 0
−1 1 0 0 1
0 −1 −1 −1 0

1

2

3

1 2

3

4

5

B =

1 1 0
−1 0 1
0 −1 0

Characterization of Bases

19 / 35

1

2

3

1 2

3

4

5

1
2
3

1 2 3 4 5

1 0 1 1 0
−1 1 0 0 1
0 −1 −1 −1 0

1

2

3

1 2

3

4

5

B =

0 1 0
1 0 1

−1 −1 0

Specializing the Simplex Method

20 / 35

■ Where do we use the basis inverse in the simplex method?

Specializing the Simplex Method

21 / 35

1. Initialization: Find an initial feasible basis B
Compute B−1, β = B−1b, z = cT

B
β

2. Pricing: Compute πT = cT
B
B−1 and dj = cj − πTaj .

If for all j ∈ R, dj ≥ 0 then return OPTIMAL
Else let q be such that dq < 0. Compute αq = B−1aq

3. Ratio test: Compute I = {i | 1 ≤ i ≤ m,αi
q > 0}.

If I = ∅ then return UNBOUNDED
Else compute θ = mini∈I(

βi

αi
q
) and p such that θ =

βp

α
p
q

4. Update:

B̄ = B − {kp} ∪ {q} B̄ = B + (aq − akp)e
T
p

β̄p = θ, β̄i = βi − θαi
q if i 6= p z̄ = z + θdq

Go to 2.

Specializing the Simplex Method

22 / 35

■ Where do we use the basis inverse in the simplex method?

◆ In pricing: we compute the multipliers πT = cT
B
B−1

◆ In ratio test: we compute the q-th column of the tableau αq = B−1aq

◆ In initialization: we compute the initial basic solution β = B−1b

■ Equivalently:

◆ In pricing: we solve the equation yTB = cT
B
(and then set π = y)

◆ In ratio test: we solve the equation Bx = aq (and then set αq = x)

◆ In initialization: we solve the equation Bx = b (and then set β = x)

■ These equations can be efficiently solved with the graph representation

■ So the network simplex method doesn’t require to maintain basis inverses

Solving yTB = cT

23 / 35

■ Let A be the matrix of a rooted graph G with root vertex r.
Let B be a basis for (A | er).

■ We know that er ∈ B and T = {e | ae ∈ B} is a spanning tree for G.

■ In the system of equations yTB = cT :

◆ each column (= edge) of B corresponds to one equation
◆ each row (= vertex) of B corresponds to one variable

■ Each equation either involves 1 variable (column er) or 2 (otherwise)

Solving yTB = cT

24 / 35

1

2

3

1

4

5

1 4 5

B =

1 1 0
−1 0 1
0 −1 0

1
2
3

Solving yTB = cT

24 / 35

1

2

3

y1 − y2 = 1

y1 − y3 = 10

y2 = 0

1 4 5

B =

1 1 0
−1 0 1
0 −1 0

1
2
3

Let us solve yTB = cT , where yT = (y1 y2 y3) and cT = (1 10 0)

(

y1 y2 y3
)

1 1 0
−1 0 1
0 −1 0

 =
(

y1 − y2 y1 − y3 y2
)

y1 − y2 = 1 ❀ 1
y1 − y3 = 10 ❀ 4

y2 = 0 ❀ 5

Note that by doing
a preorder traversal from root node 2
we can solve the equations

Solving yTB = cT

24 / 35

1

2

3

y1 − y2 = 1

y1 − y3 = 10

y2 = 0

1 4 5

B =

1 1 0
−1 0 1
0 −1 0

1
2
3

Let us solve yTB = cT , where yT = (y1 y2 y3) and cT = (1 10 0)

(

y1 y2 y3
)

1 1 0
−1 0 1
0 −1 0

 =
(

y1 − y2 y1 − y3 y2
)

y1 − y2 = 1 ❀ 1
y1 − y3 = 10 ❀ 4

y2 = 0 ❀ 5

y2 = 0
y1 − y2 = 1 =⇒ y1 = y2 + 1 = 1
y1 − y3 = 10 =⇒ y3 = y1 − 10 = −9

Solving yTB = cT

25 / 35

■ Let us take the root vertex r as the root of T . Let w be the root edge.

■ To solve yTB = cT call solve (⊥,T), where

solve (Vertex p, Tree S) { // p is the parent of the root of S
Vertex v = root(S);
if (v == r) y[r] = c[w];
else if ((p, v) ∈ E) y[v] = y[p] − c[(p, v)];
else y[v] = y[p] + c[(v , p)];
solve (v , S. left ());
solve (v , S. right ()); }

It is a preorder traversal of T .

At each recursive call (except 1st one)
we handle a new equation
(= column = edge) with 2 vars yp and yv
in which one is already assigned (yp) and
the other is not (yv).

ROOTr

p

v

. . .

S

T

Solving yTB = cT

25 / 35

■ Let us take the root vertex r as the root of T . Let w be the root edge.

■ To solve yTB = cT call solve (⊥,T), where

solve (Vertex p, Tree S) { // p is the parent of the root of S
Vertex v = root(S);
if (v == r) y[r] = c[w];
else if ((p, v) ∈ E) y[v] = y[p] − c[(p, v)];
else y[v] = y[p] + c[(v , p)];
solve (v , S. left ());
solve (v , S. right ()); }

If v = r then the equation is yTer = cw, i.e., yr = cw.

Solving yTB = cT

25 / 35

■ Let us take the root vertex r as the root of T . Let w be the root edge.

■ To solve yTB = cT call solve (⊥,T), where

solve (Vertex p, Tree S) { // p is the parent of the root of S
Vertex v = root(S);
if (v == r) y[r] = c[w];
else if ((p, v) ∈ E) y[v] = y[p] − c[(p, v)];
else y[v] = y[p] + c[(v , p)];
solve (v , S. left ());
solve (v , S. right ()); }

If e = (p, v) ∈ E then the equation is

yT (ep − ev) = yp − yv = ce,

i.e., yv = yp − ce.

ROOTr

p

v

. . .

S

T

Solving yTB = cT

25 / 35

■ Let us take the root vertex r as the root of T . Let w be the root edge.

■ To solve yTB = cT call solve (⊥,T), where

solve (Vertex p, Tree S) { // p is the parent of the root of S
Vertex v = root(S);
if (v == r) y[r] = c[w];
else if ((p, v) ∈ E) y[v] = y[p] − c[(p, v)];
else y[v] = y[p] + c[(v , p)];
solve (v , S. left ());
solve (v , S. right ()); }

If e = (v, p) ∈ E then the equation is

yT (ev − ep) = yv − yp = ce,

i.e., yv = yp + ce.

ROOTr

p

v

. . .

S

T

Solving Bx = c. Case ei − ej

26 / 35

■ Let A be the matrix of rooted graph G with root vertex r.
Let B be a basis for (A | er).

■ We know that er ∈ B and T = {e | ae ∈ B} is a spanning tree for G.

■ In the ratio test, c will be one of the columns of A.

■ If c is of the form ei − ej ,
let P be the path in T going from vertex i to vertex j.
Then recall that

∑

e∈P

OP (e) · ae = ei − ej

■ Hence the orientation sequence gives us already the solution.

Solving Bx = c. Case ei − ej

27 / 35

1

2

3

1

4

5

1 4 5

B =

1 1 0
−1 0 1
0 −1 0

1
2
3

Solving Bx = c. Case ei − ej

27 / 35

1

2

3

1

4

5

1 4 5

B =

1 1 0
−1 0 1
0 −1 0

1
2
3

Let us solve Bx = c, where xT = (x1 x4 x5), and

cT = (c1 c2 c3) = (0 1 − 1) = eT2 − eT3

Path from 2 to 3: P3 = (2, 1, 1, 4, 3) with orientation sequence (−1, 1). So:

■ x1 = −1

■ x4 = 1

■ x5 = 0

Solving Bx = c. General case

28 / 35

■ Let A be the matrix of a rooted graph G with root vertex r.
Let B be a basis for (A | er).

■ We know that er ∈ B and T = {e | ae ∈ B} is a spanning tree for G.

■ For any 1 ≤ i ≤ n there is a path Pi from i to r, i.e.,
Pi = (v1 = i, e1, ..., eK , vK+1 = r) in T . But recall that

ei = er +
∑K

k=1OPi
(ek) · aek

■ Let us assume B is of the form (ak1 , ak2 , . . . , akn−1
, er). Then

ei = er +
∑n−1

j=1 OPi
(kj) · akj

as edges kj not in Pi will have a 0 coefficient by definition of OPi
. So

c =
∑n

i=1 ciei =
(
∑n

i=1 ci
)

er +
∑n−1

j=1

(
∑n

i=1 ci OPi
(kj)

)

· akj

Let xn =
∑n

i=1 ci, xj =
∑n

i=1 ci OPi
(kj) for 1 ≤ j < n. Then Bx = c!

■ Solving Bx = c amounts to traverse T keeping track of edge orientation

Solving Bx = c. General case

29 / 35

1

2

3

1

4

5

1 4 5

B =

1 1 0
−1 0 1
0 −1 0

1
2
3

Solving Bx = c. General case

29 / 35

1

2

3

1

4

5

1 4 5

B =

1 1 0
−1 0 1
0 −1 0

1
2
3

Let us solve Bx = c, where xT = (x1 x4 x5)
T , and

cT = (c1 c2 c3)
T = (0 1 − 1)T = eT2 − eT3

There is no need to consider the path P1 from 1 to 2, as c1 = 0.
Moreover P2 = (2), and hence OP2

(·) = 0.
Path from 3 to 2: P3 = (3, 4, 1, 1, 2) with orientation sequence (−1, 1).

■ x1 = c3 ·OP3
(1) = (−1) · 1 = −1

■ x4 = c3 ·OP3
(4) = (−1) · (−1) = 1

■ x5 = c1 + c2 + c3 = 0 + 1 + (−1) = 0

Example

30 / 35

Let us apply one iteration of the simplex method to

min x1 + x2 + 3x3 + 10x4

1 0 1 1 0
−1 1 0 0 1
0 −1 −1 −1 0

x1
x2
x3
x4
x5

=

5
0

−5

0 ≤ x1 ≤ 4
0 ≤ x2 ≤ 2
0 ≤ x3 ≤ 4
0 ≤ x4 ≤ 10
0 ≤ x5 ≤ 0

1

2

3

{5} ❀ bi

{0}

{−5}

x1

[1,0,4] ❀ [cj ,ℓj ,uj]
x2

[1,0,2]

x3

[3,0,4]

x4

[10,0,10]

x5

[0,0,0]

Example

31 / 35

Let us consider the basis B corresponding to variables (x1, x4, x5)

1

2

3

{5} ❀ bi

{0}

{−5}

x1

[1,0,4] ❀ [cj ,ℓj ,uj]
x2

[1,0,2]

x3

[3,0,4]

x4

[10,0,10]

x5

[0,0,0]

1

2

3

x1

x4

x5

Moreover, let us assume that:

■ non-basic variable x2 is set to its lower bound 0
■ non-basic variable x3 is set to its upper bound 4

Example

32 / 35

1

2

3

{5} ❀ bi

{0}

{−5}

x1

[1,0,4] ❀ [cj ,ℓj ,uj]
x2

[1,0,2]

x3

[3,0,4]

x4

[10,0,10]

x5

[0,0,0]

1

2

3

x1

x4

x5

■ x2: lower bound 0
■ x3: upper bound 4

Let us compute the initial basic solution: xB = B−1b−B−1RxR

So xB = B−1(5e1 − 5e3)−B−1a2 0−B−1a3 4 = 5B−1(e1 − e3)− 4B−1a3
= B−1(e1 − e3)

The path from 1 to 3 is P = (1, x4, 3) with orientation sequence (1)
So the only non-zero value for a basic variable is for x4, with value 1

Hence the basis is feasible and its solution is (x1, x2, x3, x4, x5) = (0, 0, 4, 1, 0)

Example

33 / 35

1

2

3

{5} ❀ bi

{0}

{−5}

x1

[1,0,4] ❀ [cj ,ℓj ,uj]
x2

[1,0,2]

x3

[3,0,4]

x4

[10,0,10]

x5

[0,0,0]

1

2

3

x1

x4

x5

■ x2: lower bound 0
■ x3: upper bound 4

Let us do the pricing, i.e.,
compute dj = cj − cT

B
B−1aj = cj − πTaj for each non-basic variable xj

The solution to πTB = cT
B
is (π1, π2, π3) = (1, 0,−9), and so:

■ for x2: d2 = c2 − πT (e2 − e3) = c2 − π2 + π3 = −8
■ for x3: d3 = c3 − πT (e1 − e3) = c3 − π1 + π3 = −7

Only variable x2 is candidate for entering the basis

Example

34 / 35

1

2

3

{5} ❀ bi

{0}

{−5}

x1

[1,0,4] ❀ [cj ,ℓj ,uj]
x2

[1,0,2]

x3

[3,0,4]

x4

[10,0,10]

x5

[0,0,0]

1

2

3

x1

x4

x5

■ x2: lower bound 0
■ x3: upper bound 4
■ (x1, x2, x3, x4, x5) = (0, 0, 4, 1, 0)

Let us do the ratio test.
We need to compute α2 = B−1a2, and we get αT

2 = (−1, 1, 0). Then

θ = min(uq − ℓq,min{βi−λi

αi
q

| αi
q > 0},min{βi−µi

αi
q

| αi
q < 0})

= min(2, 1−0
1 , 0−4

−1) = 1

The outgoing basic variable is x4.

Example

35 / 35

1

2

3

{5} ❀ bi

{0}

{−5}

x1

[1,0,4] ❀ [cj ,ℓj ,uj]
x2

[1,0,2]

x3

[3,0,4]

x4

[10,0,10]

x5

[0,0,0]

1

2

3

x1

x4

x5

■ Non-basic variable x2 enters the basis
■ Basic variable x4 leaves the basis with value 0
■ New basis B̄ corresponds to (x1, x2, x5)
■ New basic solution: β̄p = xq + θ, β̄i = βi − θαi

q if i 6= p

◆ x̄2 = 0 + 1 = 1
◆ x̄1 = 0− 1(−1) = 1
◆ x̄5 = 0− 1(0) = 0

■ The basic solution for the new basis is (x̄1, x̄2, x̄3, x̄4, x̄5) = (1, 1, 4, 0, 0)
And the process continues...

	Network Programs
	Minimum Cost Flow Problems
	Minimum Cost Flow Problems
	Network Simplex Method
	Vertex-Edge Incidence Matrix
	Vertex-Edge Incidence Matrix
	Paths and Cycles
	Paths and Cycles
	Paths and Cycles
	Paths and Cycles
	Trees
	Trees
	Paths and Cycles
	Reformulating Network Programs
	Reformulating Network Programs
	Characterization of Bases
	Characterization of Bases
	Characterization of Bases
	Specializing the Simplex Method
	Specializing the Simplex Method
	Specializing the Simplex Method
	Solving yT B = cT
	Solving yT B = cT
	Solving yT B = cT
	Solving B x = c. Case orangeei - ej
	Solving B x = c. Case orangeei - ej
	Solving B x = c. General case
	Solving B x = c. General case
	Example
	Example
	Example
	Example
	Example
	Example

