Network Simplex Method

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell

May 5, 2022

Network Programs

- A network program is of the form

$$
\begin{aligned}
& \min c^{T} x \\
& A x=b \\
& \ell \leq x \leq u
\end{aligned}
$$

where $c \in \mathbb{R}^{m}, b \in \mathbb{R}^{n}$ and $A \in\{-1,0,1\}^{n \times m}$ has the following property:

> each column has exactly one 1 and one -1 (and so the remaining coefficients are 0)

- Note that n is the number of constraints and m is the number of variables

Network Programs

- A network program is of the form

$$
\begin{aligned}
& \min c^{T} x \\
& A x=b \\
& \ell \leq x \leq u
\end{aligned}
$$

where $c \in \mathbb{R}^{m}, b \in \mathbb{R}^{n}$ and $A \in\{-1,0,1\}^{n \times m}$ has the following property:
each column has exactly one 1 and one -1 (and so the remaining coefficients are 0)

■ Example: $\quad \min x_{1}+x_{2}+3 x_{3}+10 x_{4}$

$$
\begin{aligned}
& \left(\begin{array}{rrrr}
1 & 0 & 1 & 1 \\
-1 & 1 & 0 & 0 \\
0 & -1 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{r}
5 \\
0 \\
-5
\end{array}\right) \\
& \begin{array}{ll}
0 \leq x_{1} \leq 4 & 0 \leq x_{3} \leq 4 \\
0 \leq x_{2} \leq 2 & 0 \leq x_{4} \leq 10
\end{array}
\end{aligned}
$$

Minimum Cost Flow Problems

■ Network programs can be seen as minimum cost flow problems in a graph
■ We associate a digraph $G=(V, E)$ to the matrix of a network program:

- Vertices V correspond to rows (constraints)
- Edges E correspond to columns (variables)
- A column with a 1 at row i and a -1 at row k gives an edge (i, k)

Minimum Cost Flow Problems

- Network programs can be seen as minimum cost flow problems in a graph

■ We associate a digraph $G=(V, E)$ to the matrix of a network program:

- Vertices V correspond to rows (constraints)
- Edges E correspond to columns (variables)
- A column with a 1 at row i and a -1 at row k gives an edge (i, k)

■ Then we can reinterpret the other elements of the network program:

- Each variable x_{j} is the flow sent along the j-th edge
- The cost of sending 1 unit of flow is c_{j}
- Flow cannot exceed capacity u_{j}
- There must be a minimum flow ℓ_{j} (usually, 0)
- Total production of flow at vertex i is determined by b_{i}
- So solving the network program consists in finding the feasible flow along the graph that minimizes the cost

Minimum Cost Flow Problems

$$
\begin{aligned}
& \min x_{1}+x_{2}+3 x_{3}+10 x_{4} \\
& \left(\begin{array}{rrrr}
1 & 0 & 1 & 1 \\
-1 & 1 & 0 & 0 \\
0 & -1 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{r}
5 \\
0 \\
0 \\
-5
\end{array}\right) \\
& 0 \leq x_{1} \leq 4 \\
& 0 \leq x_{3} \leq x_{4} \leq 10
\end{aligned}
$$

Network Simplex Method

- Network programs satisfy Hoffman \& Gale's conditions.

So simplex method is guaranteed to give integer solutions (if ℓ, u, b in \mathbb{Z})

- Moreover we can specialize the simplex method for network programs

■ This lecture is devoted to this specialization: the network simplex method
■ In the first place we need to revisit a bit of graph theory

Vertex-Edge Incidence Matrix

- The vertex-edge incidence matrix of digraph $G=(V, E)$ is a matrix A s.t.:
- Rows are labelled by vertices
- Columns are labelled by edges
- For each $v \in V$ and $e \in E$, coefficient $a_{v, e}$ of A is
- 1 if $e=(v, \cdot)$
- - 1 if $e=(\cdot, v)$
- 0 otherwise
- Given a network program whose matrix is A, the vertex-edge incidence matrix of its associated digraph is precisely A

Vertex-Edge Incidence Matrix

1
2
3 $\quad\left(\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & -1 & -1\end{array}\right)$

Paths and Cycles

■ A path is a finite sequence $P=\left(v_{1}, e_{1}, v_{2}, \ldots, v_{K}, e_{K}, v_{K+1}\right)$ such that either $e_{k}=\left(v_{k}, v_{k+1}\right)$ or $e_{k}=\left(v_{k+1}, v_{k}\right)$ for all $1 \leq k \leq K$

- Note that paths can invert the orientation of edges

■ The orientation sequence of a path P is $\left(O_{P}\left(e_{1}\right), \ldots, O_{P}\left(e_{k}\right)\right)$, where

$$
O_{P}\left(e_{k}\right)\left\{\begin{aligned}
+1 & \text { if } e_{k}=\left(v_{k}, v_{k+1}\right) \\
-1 & \text { if } e_{k}=\left(v_{k+1}, v_{k}\right) \\
0 & \text { otherwise }
\end{aligned}\right.
$$

- A cycle is a path such that the initial and the final vertices are the same

Paths and Cycles

$(3,4,1,1,2)$ is a path with orientation sequence $(-1,1)$

Paths and Cycles

■ Prop. Let $P=\left(v_{1}, e_{1}, v_{2}, \ldots, v_{K}, e_{K}, v_{K+1}\right)$ be a path. Then

$$
\sum_{k=1}^{K} O_{P}\left(e_{k}\right) \cdot a_{e_{k}}=\mathrm{e}_{v_{1}}-\mathrm{e}_{v_{K+1}}
$$

where a_{e} is the column of e in the vertex-edge incidence matrix A, and e_{v} is the v-th unit vector, i.e., all zeroes except for a 1 at index v

Paths and Cycles

■ Prop. Let $P=\left(v_{1}, e_{1}, v_{2}, \ldots, v_{K}, e_{K}, v_{K+1}\right)$ be a path. Then

$$
\sum_{k=1}^{K} O_{P}\left(e_{k}\right) \cdot a_{e_{k}}=\mathrm{e}_{v_{1}}-\mathrm{e}_{v_{K+1}},
$$

where a_{e} is the column of e in the vertex-edge incidence matrix A, and e_{v} is the v-th unit vector, i.e., all zeroes except for a 1 at index v

Proof. Let k be s.t. $1 \leq k \leq K$. There are two cases:

1. If $e_{k}=\left(v_{k}, v_{k+1}\right)$ then $a_{e_{k}}=\mathrm{e}_{v_{k}}-\mathrm{e}_{v_{k+1}}$ and $O_{P}\left(e_{k}\right)=1$
2. If $e_{k}=\left(v_{k+1}, v_{k}\right)$ then $a_{e_{k}}=\mathrm{e}_{v_{k+1}}-\mathrm{e}_{v_{k}}$ and $O_{P}\left(e_{k}\right)=-1$

In any case $O_{P}\left(e_{k}\right) \cdot a_{e_{k}}=\mathrm{e}_{v_{k}}-\mathrm{e}_{v_{k+1}}$. So
$\sum_{k=1}^{K} O_{P}\left(e_{k}\right) \cdot a_{e_{k}}=\left(\mathrm{e}_{v_{1}}-\mathrm{e}_{v_{2}}\right)+\left(\mathrm{e}_{v_{2}}-\mathrm{e}_{v_{3}}\right)+\ldots+\left(\mathrm{e}_{v_{K}}-\mathrm{e}_{v_{K+1}}\right)=\mathrm{e}_{v_{1}}-\mathrm{e}_{v_{K+1}}$

Paths and Cycles

■ Prop. Let $P=\left(v_{1}, e_{1}, v_{2}, \ldots, v_{K}, e_{K}, v_{K+1}\right)$ be a path. Then

$$
\sum_{k=1}^{K} O_{P}\left(e_{k}\right) \cdot a_{e_{k}}=\mathrm{e}_{v_{1}}-\mathrm{e}_{v_{K+1}},
$$

where a_{e} is the column of e in the vertex-edge incidence matrix A, and e_{v} is the v-th unit vector, i.e., all zeroes except for a 1 at index v

■ Cor. If $C=\left(v_{1}, e_{1}, v_{2}, \ldots, v_{K}, e_{K}, v_{K+1}\right)$ is a cycle, the columns $a_{e_{1}}, a_{e_{2}}, \ldots, a_{e_{K}}$ of A are linearly dependent.

Paths and Cycles

■ Prop. Let $P=\left(v_{1}, e_{1}, v_{2}, \ldots, v_{K}, e_{K}, v_{K+1}\right)$ be a path. Then

$$
\sum_{k=1}^{K} O_{P}\left(e_{k}\right) \cdot a_{e_{k}}=\mathrm{e}_{v_{1}}-\mathrm{e}_{v_{K+1}},
$$

where a_{e} is the column of e in the vertex-edge incidence matrix A, and e_{v} is the v-th unit vector, i.e., all zeroes except for a 1 at index v

■ Cor. If $C=\left(v_{1}, e_{1}, v_{2}, \ldots, v_{K}, e_{K}, v_{K+1}\right)$ is a cycle, the columns $a_{e_{1}}, a_{e_{2}}, \ldots, a_{e_{K}}$ of A are linearly dependent.

Proof. If $v_{1}=v_{K+1}$ then

$$
\sum_{k=1}^{K} O_{P}\left(e_{k}\right) \cdot a_{e_{k}}=\mathrm{e}_{v_{1}}-\mathrm{e}_{v_{K+1}}=0
$$

Paths and Cycles

Path $P=(3,4,1,1,2)$ has orientation sequence $(-1,1)$

$$
\sum_{k=1}^{K} O_{P}\left(e_{k}\right) \cdot a_{e_{k}}=(-1)\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)+(1)\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right)=\mathrm{e}_{3}-\mathrm{e}_{2}
$$

Trees

- A graph is
- acyclic if it has no cycles
- connected if for any pair of vertices u, v there is a path from u to v
- a tree if it is acyclic and connected

■ Thm. For a graph T with at least one vertex the following are equivalent:

- T is a tree
- For any pair of vertices u, v there is a unique path from u to v
- T has one less edge than vertices and is connected
- T has one less edge than vertices and is acyclic
- A subgraph S of G is spanning if it covers all vertices in G

■ Thm. Every connected graph has a subgraph that is a spanning tree.

Trees

■ Thm. For any T subgraph of G that is a tree with at least two vertices, the columns $\left\{a_{e} \mid e \in T\right\}$ of A are linearly independent.

Trees

■ Thm. For any T subgraph of G that is a tree with at least two vertices, the columns $\left\{a_{e} \mid e \in T\right\}$ of A are linearly independent.

Proof. By contradiction.
Let T be a tree with the minimum number of vertices N such that $\left\{a_{e} \mid e \in T\right\}$ are linearly dependent, i.e., there are λ_{e} not all null s.t.

$$
\sum_{e \in T} \lambda_{e} a_{e}=0
$$

If $N=2$ then T has one edge, say e. But $\lambda_{e}, a_{e} \neq 0$ and $\lambda_{e} a_{e}=0$! So $N>2$. Let v be a leaf of T and let e_{v} be the only edge in T that has v as an endpoint. Let T^{\prime} be the tree obtained from T by removing e_{v}. From

$$
\lambda_{e_{v}} a_{e_{v}}+\sum_{e \in T^{\prime}} \lambda_{e} a_{e}=0
$$

by projecting onto the row of v we have $\lambda_{e_{v}}=0$.
Hence the tree T^{\prime} is a subgraph of G with $N-1 \geq 2$ vertices whose columns are linearly dependent. Contradiction!

Paths and Cycles

Edges $\{4,1\}$ induce a subgraph that is a tree, and

$$
\operatorname{rank}\left(\begin{array}{rr}
1 & 1 \\
0 & -1 \\
-1 & 0
\end{array}\right)=2
$$

Reformulating Network Programs

Thm. If G is a connected graph with $n>0$ nodes then $\operatorname{rank}(A)=n-1$

Reformulating Network Programs

Thm. If G is a connected graph with $n>0$ nodes then $\operatorname{rank}(A)=n-1$
Proof. G has a spanning tree T, which has $n-1$ edges.
Its columns are linearly independent, so $\operatorname{rank}(A) \geq \operatorname{rank}(T)=n-1$.
But since adding all rows of A we get 0 , finally $\operatorname{rank}(A)=n-1$.

Reformulating Network Programs

■ Thm. If G is a connected graph with $n>0$ nodes then $\operatorname{rank}(A)=n-1$
■ Let us assume graphs of network programs are connected, so $m \geq n-1$ (otherwise, work independently on the connected components)

- So the matrix of a network program has rank $n-1$.

But the simplex method requires to have a full-rank matrix!
■ We add an extra variable w with a unit column e_{r}, where r is taken arbitrarily from $\{1, \ldots, n\}$, and such that it is forced to have value 0 :

$$
\begin{aligned}
& \min c^{T} x \\
& A x+\mathrm{e}_{r} w=b \\
& \ell \leq x \leq u \\
& 0 \leq w \leq 0
\end{aligned}
$$

Reformulating Network Programs

■ Thm. If G is a connected graph with $n>0$ nodes then $\operatorname{rank}(A)=n-1$
■ Let us assume graphs of network programs are connected, so $m \geq n-1$ (otherwise, work independently on the connected components)
■ So the matrix of a network program has rank $n-1$.
But the simplex method requires to have a full-rank matrix!
■ We add an extra variable w with a unit column e_{r}, where r is taken arbitrarily from $\{1, \ldots, n\}$, and such that it is forced to have value 0 :

$$
\begin{aligned}
& \min c^{T} x \\
& A x+\mathrm{e}_{r} w=b \\
& \ell \leq x \leq u \\
& 0 \leq w \leq 0
\end{aligned}
$$

■ We associate to such a reformulated network program a rooted graph with root vertex r and root edge w ("going nowhere")

Reformulating Network Programs

Here we choose as a root vertex $r=2$

$$
\begin{aligned}
& \min x_{1}+x_{2}+3 x_{3}+10 x_{4} \\
& \left(\begin{array}{rrrrr}
1 & 0 & 1 & 1 & 0 \\
-1 & 1 & 0 & 0 & 1 \\
0 & -1 & -1 & -1 & 0
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
w
\end{array}\right)=\left(\begin{array}{r}
0 \\
5 \\
0 \\
-5
\end{array}\right) \quad \begin{array}{l}
0 \leq x_{1} \leq 4 \\
0 \leq x_{2} \leq 2 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}
\end{aligned}
$$

Characterization of Bases

- Thm. Let A be the matrix of a rooted graph G with root vertex r. If T is a spanning tree for G then $B=\mathrm{e}_{r} \cup\left\{a_{e} \mid e \in T\right\}$ is basis of $\left(A \mid \mathrm{e}_{r}\right)$

Characterization of Bases

■ Thm. Let A be the matrix of a rooted graph G with root vertex r. If T is a spanning tree for G then $B=\mathrm{e}_{r} \cup\left\{a_{e} \mid e \in T\right\}$ is basis of $\left(A \mid \mathrm{e}_{r}\right)$

Proof. Let n be the number of vertices of G. As T is a spanning tree, T has $n-1$ edges. Hence $B=\mathbf{e}_{r} \cup\left\{a_{e} \mid e \in T\right\}$ has n columns.
Let us prove that B spans \mathbb{R}^{n}, i.e., that for any $1 \leq i \leq n$ we can write e_{i} as linear combination of columns of B Two cases:

- If $i=r$: trivial
- If $i \neq r$, let $P=\left(v_{1}=i, e_{1}, v_{2}, \ldots, v_{K}, e_{K}, v_{K+1}=r\right)$ be a path in T from vertex i to vertex r. As

$$
\sum_{k=1}^{K} O_{P}\left(e_{k}\right) \cdot a_{e_{k}}=\mathrm{e}_{i}-\mathrm{e}_{r}
$$

we have

$$
\mathrm{e}_{r}+\sum_{k=1}^{K} O_{P}\left(e_{k}\right) \cdot a_{e_{k}}=\mathrm{e}_{i}
$$

Altogether B is a basis for $\left(A \mid \mathrm{e}_{r}\right)$

Characterization of Bases

■ Thm. Let A be the matrix of a rooted graph G with root vertex r. If T is a spanning tree for G then $B=\mathrm{e}_{r} \cup\left\{a_{e} \mid e \in T\right\}$ is basis of $\left(A \mid \mathrm{e}_{r}\right)$

Proof. Let n be the number of vertices of G. As T is a spanning tree, T has $n-1$ edges. Hence $B=\mathrm{e}_{r} \cup\left\{a_{e} \mid e \in T\right\}$ has n columns.
Let us prove that B spans \mathbb{R}^{n}, i.e., that for any $1 \leq i \leq n$ we can write e_{i} as linear combination of columns of B Two cases:

- If $i=r$: trivial
- If $i \neq r$, let $P=\left(v_{1}=i, e_{1}, v_{2}, \ldots, v_{K}, e_{K}, v_{K+1}=r\right)$ be a path in T from vertex i to vertex r. As

$$
\sum_{k=1}^{K} O_{P}\left(e_{k}\right) \cdot a_{e_{k}}=\mathrm{e}_{i}-\mathrm{e}_{r}
$$

we have

$$
\mathrm{e}_{r}+\sum_{k=1}^{K} O_{P}\left(e_{k}\right) \cdot a_{e_{k}}=\mathrm{e}_{i}
$$

Altogether B is a basis for $\left(A \mid \mathrm{e}_{r}\right)$
Cor. $\operatorname{rank}\left(A \mid \mathrm{e}_{r}\right)=n$

Characterization of Bases

Thm. Let A be the matrix of a rooted graph G with root vertex r. If B is basis of $\left(A \mid \mathrm{e}_{r}\right)$ then $\mathrm{e}_{r} \in B$ and $\left\{e \mid a_{e} \in B\right\}$ is spanning tree of G

Characterization of Bases

■ Thm. Let A be the matrix of a rooted graph G with root vertex r. If B is basis of $\left(A \mid \mathrm{e}_{r}\right)$ then $\mathrm{e}_{r} \in B$ and $\left\{e \mid a_{e} \in B\right\}$ is spanning tree of G

Proof. Let n be the number of vertices of G as usual.
Since $\operatorname{rank}(A)=n-1$ and $\operatorname{rank}\left(A \mid \mathrm{e}_{r}\right)=n$ we have that $\mathrm{e}_{r} \in B$. So the graph T induced by $\left\{e \mid a_{e} \in B\right\}$ has $n-1$ edges.

Moreover, by linear independence, T cannot contain cycles. Hence T has at least ($n-1$) $+1=n$ vertices. But G has n vertices. Thus T has exactly n vertices, and so is spanning.

Since T has one less edge than vertex and is acyclic, it must be a tree.
All in all, T is a spanning tree.

Characterization of Bases

1
2
3 $\quad\left(\begin{array}{rrrrr}1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 1 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \\ 0 & -1 & -1 & -1 & 0\end{array}\right)$

$$
B=\left(\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

Characterization of Bases

1
2
3 $\quad\left(\begin{array}{rrrrr}1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 1 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \\ 0 & -1 & -1 & -1 & 0\end{array}\right)$

$$
B=\left(\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 1 \\
-1 & -1 & 0
\end{array}\right)
$$

Specializing the Simplex Method

- Where do we use the basis inverse in the simplex method?

Specializing the Simplex Method

1. Initialization: Find an initial feasible basis B

Compute $B^{-1}, \beta=B^{-1} b, z=c_{\mathcal{B}}^{T} \beta$
2. Pricing: Compute $\pi^{T}=c_{\mathcal{B}}^{T} B^{-1}$ and $d_{j}=c_{j}-\pi^{T} a_{j}$. If for all $j \in \mathcal{R}, d_{j} \geq 0$ then return OPTIMAL
Else let q be such that $d_{q}<0$. Compute $\alpha_{q}=B^{-1} a_{q}$
3. Ratio test: Compute $\mathcal{I}=\left\{i \mid 1 \leq i \leq m, \alpha_{q}^{i}>0\right\}$. If $\mathcal{I}=\emptyset$ then return UNBOUNDED
Else compute $\theta=\min _{i \in \mathcal{I}}\left(\frac{\beta_{i}}{\alpha_{q}^{i}}\right)$ and p such that $\theta=\frac{\beta_{p}}{\alpha_{q}^{p}}$
4. Update:

$$
\begin{array}{ll}
\overline{\mathcal{B}}=\mathcal{B}-\left\{k_{p}\right\} \cup\{q\} & \bar{B}=B+\left(a_{q}-a_{k_{p}}\right) e_{p}^{T} \\
\bar{\beta}_{p}=\theta, \quad \bar{\beta}_{i}=\beta_{i}-\theta \alpha_{q}^{i} \text { if } i \neq p & \bar{z}=z+\theta d_{q}
\end{array}
$$

Go to 2.

Specializing the Simplex Method

- Where do we use the basis inverse in the simplex method?
- In pricing: we compute the multipliers $\pi^{T}=c_{\mathcal{B}}^{T} B^{-1}$
- In ratio test: we compute the q-th column of the tableau $\alpha_{q}=B^{-1} a_{q}$
- In initialization: we compute the initial basic solution $\beta=B^{-1} b$
- Equivalently:
- In pricing: we solve the equation $y^{T} B=c_{\mathcal{B}}^{T}$ (and then set $\pi=y$)
- In ratio test: we solve the equation $B x=a_{q}$ (and then set $\alpha_{q}=x$)
- In initialization: we solve the equation $B x=b$ (and then set $\beta=x$)
- These equations can be efficiently solved with the graph representation

■ So the network simplex method doesn't require to maintain basis inverses

Solving $y^{T} B=c^{T}$

- Let A be the matrix of a rooted graph G with root vertex r. Let B be a basis for $\left(A \mid \mathrm{e}_{r}\right)$.
■ We know that $\mathrm{e}_{r} \in B$ and $T=\left\{e \mid a_{e} \in B\right\}$ is a spanning tree for G.
- In the system of equations $y^{T} B=c^{T}$:
- each column ($=$ edge) of B corresponds to one equation
- each row (= vertex) of B corresponds to one variable
- Each equation either involves 1 variable (column e_{r}) or 2 (otherwise)

Solving $y^{T} B=c^{T}$

$$
B=\left(\begin{array}{rrr}
1 & 4 & 5 \\
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
$$

Solving $y^{T} B=c^{T}$

$$
B=\left(\begin{array}{rrr}
1 & 4 & 5 \\
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \begin{aligned}
& \\
& 1 \\
& 2 \\
& 3
\end{aligned}
$$

Let us solve $y^{T} B=c^{T}$, where $y^{T}=\left(\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}\right)$ and $c^{T}=\left(\begin{array}{lll}1 & 10 & 0\end{array}\right)$

$$
\left(\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)=\left(\begin{array}{lll}
y_{1}-y_{2} & y_{1}-y_{3} & y_{2}
\end{array}\right)
$$

$$
\left\{\begin{aligned}
y_{1}-y_{2} & =1 \\
y_{1}-y_{3} & =10 \leadsto 4 \\
y_{2} & =0
\end{aligned} 5\right.
$$

Note that by doing
a preorder traversal from root node 2 we can solve the equations

Solving $y^{T} B=c^{T}$

$$
B=\left(\begin{array}{rrr}
1 & 4 & 5 \\
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
$$

Let us solve $y^{T} B=c^{T}$, where $y^{T}=\left(\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}\right)$ and $c^{T}=\left(\begin{array}{lll}1 & 10 & 0\end{array}\right)$

$$
\begin{aligned}
& \left(\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)=\left(\begin{array}{lll}
y_{1}-y_{2} & y_{1}-y_{3} & y_{2}
\end{array}\right)
\end{aligned}
$$

Solving $y^{T} B=c^{T}$

■ Let us take the root vertex r as the root of T. Let w be the root edge.
■ To solve $y^{T} B=c^{T}$ call solve (\perp, T), where

$$
\begin{aligned}
& \text { solve (Vertex } p \text {, Tree } S)\{/ / p \text { is the parent of the root of } S \\
& \text { Vertex } v=\operatorname{root}(S) ; \\
& \text { if }(v==r) y[r]=c[w] ; \\
& \text { else if }((p, v) \in E) y[v]=y[p]-c[(p, v)] ; \\
& \text { else } \\
& \text { solve }(v, \text { S. left }()) ; \\
& \text { solve }(v[v]=y[p]+c[(v, p)] ;
\end{aligned}
$$

It is a preorder traversal of T.
At each recursive call (except 1st one) we handle a new equation ($=$ column $=$ edge) with 2 vars y_{p} and y_{v} in which one is already assigned $\left(y_{p}\right)$ and the other is not $\left(y_{v}\right)$.

Solving $y^{T} B=c^{T}$

■ Let us take the root vertex r as the root of T. Let w be the root edge.
■ To solve $y^{T} B=c^{T}$ call solve (\perp, T), where

$$
\begin{aligned}
& \text { solve }(\text { Vertex } p \text {, Tree } S)\{/ / p \text { is the parent of the root of } S \\
& \text { Vertex } v=\operatorname{root}(S) ; \\
& \text { if }(v==r) y[r]=c[w] ; \\
& \text { else if }((p, v) \in E) y[v]=y[p]-c[(p, v)] ; \\
& \text { else } \quad y[v]=y[p]+c[(v, p)] ; \\
& \text { solve }(v, S \text {. left }()) ; \\
& \text { solve }(v, \text { S. right }()) ;\}
\end{aligned}
$$

If $v=r$ then the equation is $y^{T} \mathrm{e}_{r}=c_{w}$, i.e., $y_{r}=c_{w}$.

Solving $y^{T} B=c^{T}$

■ Let us take the root vertex r as the root of T. Let w be the root edge.
■ To solve $y^{T} B=c^{T}$ call solve (\perp, T), where

$$
\begin{aligned}
& \text { solve }(\text { Vertex } p \text {, Tree } S)\{/ / p \text { is the parent of the root of } S \\
& \text { Vertex } v=\operatorname{root}(S) ; \\
& \text { if }(v==r) y[r]=c[w] ;
\end{aligned}
$$

else if $((p, v) \in E) y[v]=y[p]-c[(p, v)]$; else $\quad y[v]=y[p]+c[(v, p)]$; solve (v, S. left ()); solve (v, S. right ()); \}

If $e=(p, v) \in E$ then the equation is

$$
y^{T}\left(\mathrm{e}_{p}-\mathbf{e}_{v}\right)=y_{p}-y_{v}=c_{e},
$$

i.e., $y_{v}=y_{p}-c_{e}$.

Solving $y^{T} B=c^{T}$

■ Let us take the root vertex r as the root of T. Let w be the root edge.
■ To solve $y^{T} B=c^{T}$ call solve (\perp, T), where

> solve $($ Vertex p, Tree $S)\{/ / p$ is the parent of the root of S
> Vertex $v=\operatorname{root}(S) ;$
> if $(v==r) y[r]=c[w] ;$
else if $((p, v) \in E) y[v]=y[p]-c[(p, v)]$;
else $\quad y[v]=y[p]+c[(v, p)]$;
solve (v, S. left ());
solve (v, S. right ()); \}

If $e=(v, p) \in E$ then the equation is

$$
y^{T}\left(\mathbf{e}_{v}-\mathbf{e}_{p}\right)=y_{v}-y_{p}=c_{e},
$$

i.e., $y_{v}=y_{p}+c_{e}$.

Solving $B x=c$. Case $\mathrm{e}_{i}-\mathrm{e}_{j}$

- Let A be the matrix of rooted graph G with root vertex r. Let B be a basis for $\left(A \mid \mathrm{e}_{r}\right)$.
■ We know that $\mathrm{e}_{r} \in B$ and $T=\left\{e \mid a_{e} \in B\right\}$ is a spanning tree for G.
- In the ratio test, c will be one of the columns of A.
- If c is of the form $\mathrm{e}_{i}-\mathrm{e}_{j}$,
let P be the path in T going from vertex i to vertex j.
Then recall that

$$
\sum_{e \in P} O_{P}(e) \cdot a_{e}=\mathrm{e}_{i}-\mathrm{e}_{j}
$$

- Hence the orientation sequence gives us already the solution.

Solving $B x=c$. Case $\mathrm{e}_{i}-\mathrm{e}_{j}$

$$
B=\left(\begin{array}{rrr}
1 & 4 & 5 \\
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
$$

Solving $B x=c$. Case $\mathrm{e}_{i}-\mathrm{e}_{j}$

$$
B=\left(\begin{array}{rrr}
1 & 4 & 5 \\
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
$$

Let us solve $B x=c$, where $x^{T}=\left(x_{1} x_{4} x_{5}\right)$, and
$c^{T}=\left(c_{1} c_{2} c_{3}\right)=\left(\begin{array}{lll}0 & 1 & -1\end{array}\right)=\mathrm{e}_{2}^{T}-\mathrm{e}_{3}^{T}$
Path from 2 to 3 : $P_{3}=(2,1,1,4,3)$ with orientation sequence $(-1,1)$. So:

$$
\begin{aligned}
x_{1} & =-1 \\
x_{4} & =1 \\
x_{5} & =0
\end{aligned}
$$

Solving $B x=c$. General case

- Let A be the matrix of a rooted graph G with root vertex r. Let B be a basis for $\left(A \mid \mathrm{e}_{r}\right)$.
- We know that $\mathrm{e}_{r} \in B$ and $T=\left\{e \mid a_{e} \in B\right\}$ is a spanning tree for G.

■ For any $1 \leq i \leq n$ there is a path P_{i} from i to r, i.e., $P_{i}=\left(v_{1}=i, e_{1}, \ldots, e_{K}, v_{K+1}=r\right)$ in T. But recall that

$$
\mathrm{e}_{i}=\mathrm{e}_{r}+\sum_{k=1}^{K} O_{P_{i}}\left(e_{k}\right) \cdot a_{e_{k}}
$$

■ Let us assume B is of the form $\left(a_{k_{1}}, a_{k_{2}}, \ldots, a_{k_{n-1}}, \mathbf{e}_{r}\right)$. Then

$$
\mathrm{e}_{i}=\mathrm{e}_{r}+\sum_{j=1}^{n-1} O_{P_{i}}\left(k_{j}\right) \cdot a_{k_{j}}
$$

as edges k_{j} not in P_{i} will have a 0 coefficient by definition of $O_{P_{i}}$. So

$$
\begin{aligned}
c & =\sum_{i=1}^{n} c_{i} \mathbf{e}_{i}=\left(\sum_{i=1}^{n} c_{i}\right) \mathrm{e}_{r}+\sum_{j=1}^{n-1}\left(\sum_{i=1}^{n} c_{i} O_{P_{i}}\left(k_{j}\right)\right) \cdot a_{k_{j}} \\
\text { Let } x_{n} & =\sum_{i=1}^{n} c_{i}, x_{j}=\sum_{i=1}^{n} c_{i} O_{P_{i}}\left(k_{j}\right) \text { for } 1 \leq j<n . \text { Then } B x=c!
\end{aligned}
$$

- Solving $B x=c$ amounts to traverse T keeping track of edge orientation

Solving $B x=c$. General case

$$
B=\left(\begin{array}{rrr}
1 & 4 & 5 \\
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
$$

Solving $B x=c$. General case

$$
B=\left(\begin{array}{rrr}
1 & 4 & 5 \\
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
$$

Let us solve $B x=c$, where $x^{T}=\left(x_{1} x_{4} x_{5}\right)^{T}$, and
$c^{T}=\left(c_{1} c_{2} c_{3}\right)^{T}=(01-1)^{T}=\mathrm{e}_{2}^{T}-\mathrm{e}_{3}^{T}$
There is no need to consider the path P_{1} from 1 to 2 , as $c_{1}=0$.
Moreover $P_{2}=(2)$, and hence $O_{P_{2}}(\cdot)=0$.
Path from 3 to 2 : $P_{3}=(3,4,1,1,2)$ with orientation sequence $(-1,1)$.

$$
\begin{aligned}
& x_{1}=c_{3} \cdot O_{P_{3}}(1)=(-1) \cdot 1=-1 \\
& x_{4}=c_{3} \cdot O_{P_{3}}(4)=(-1) \cdot(-1)=1 \\
& x_{5}=c_{1}+c_{2}+c_{3}=0+1+(-1)=0
\end{aligned}
$$

Example

Let us apply one iteration of the simplex method to

$$
\begin{aligned}
& \min x_{1}+x_{2}+3 x_{3}+10 x_{4} \\
& \left(\begin{array}{rrrrr}
1 & 0 & 1 & 1 & 0 \\
-1 & 1 & 0 & 0 & 1 \\
0 & -1 & -1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{r}
5 \\
0 \\
-5
\end{array}\right) \begin{array}{l}
0 \leq x_{1} \leq 4 \\
0 \leq x_{2} \leq 2 \\
0 \leq x_{3} \leq 4 \\
0 \leq x_{4} \leq 10 \\
0 \leq x_{5} \leq 0
\end{array}
\end{aligned}
$$

chen

Example

Let us consider the basis B corresponding to variables (x_{1}, x_{4}, x_{5})

Moreover, let us assume that:
■ non-basic variable x_{2} is set to its lower bound 0

- non-basic variable x_{3} is set to its upper bound 4

Example

■ x_{2} : lower bound 0

- x_{3} : upper bound 4

Let us compute the initial basic solution: $x_{\mathcal{B}}=B^{-1} b-B^{-1} R x_{\mathcal{R}}$
So $x_{\mathcal{B}}=B^{-1}\left(5 \mathrm{e}_{1}-5 \mathrm{e}_{3}\right)-B^{-1} a_{2} 0-B^{-1} a_{3} 4=5 B^{-1}\left(\mathrm{e}_{1}-\mathrm{e}_{3}\right)-4 B^{-1} a_{3}$

$$
=B^{-1}\left(e_{1}-e_{3}\right)
$$

The path from 1 to 3 is $P=\left(1, x_{4}, 3\right)$ with orientation sequence (1) So the only non-zero value for a basic variable is for x_{4}, with value 1
Hence the basis is feasible and its solution is $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(0,0,4,1,0)$

Example

- x_{2} : lower bound 0
- x_{3} : upper bound 4

Let us do the pricing, i.e., compute $d_{j}=c_{j}-c_{\mathcal{B}}^{T} B^{-1} a_{j}=c_{j}-\pi^{T} a_{j}$ for each non-basic variable x_{j} The solution to $\pi^{T} B=c_{\mathcal{B}}^{T}$ is $\left(\pi_{1}, \pi_{2}, \pi_{3}\right)=(1,0,-9)$, and so:
■ for $x_{2}: d_{2}=c_{2}-\pi^{T}\left(\mathrm{e}_{2}-\mathrm{e}_{3}\right)=c_{2}-\pi_{2}+\pi_{3}=-8$
■ for $x_{3}: d_{3}=c_{3}-\pi^{T}\left(\mathrm{e}_{1}-\mathrm{e}_{3}\right)=c_{3}-\pi_{1}+\pi_{3}=-7$
Only variable x_{2} is candidate for entering the basis

Example

■ x_{2} : lower bound 0

- x_{3} : upper bound 4
- $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(0,0,4,1,0)$

Let us do the ratio test.
We need to compute $\alpha_{2}=B^{-1} a_{2}$, and we get $\alpha_{2}^{T}=(-1,1,0)$. Then

$$
\begin{gathered}
\theta=\min \left(u_{q}-\ell_{q}, \min \left\{\left.\frac{\beta_{i}-\lambda_{i}}{\alpha_{q}^{i}} \right\rvert\, \alpha_{q}^{i}>0\right\}, \min \left\{\left.\frac{\beta_{i}-\mu_{i}}{\alpha_{q}^{i}} \right\rvert\, \alpha_{q}^{i}<0\right\}\right) \\
=\min \left(2, \frac{1-0}{1}, \frac{0-4}{-1}\right)=1
\end{gathered}
$$

The outgoing basic variable is x_{4}.

Example

■ Non-basic variable x_{2} enters the basis

- Basic variable x_{4} leaves the basis with value 0
- New basis \bar{B} corresponds to (x_{1}, x_{2}, x_{5})

■ New basic solution: $\bar{\beta}_{p}=x_{q}+\theta, \quad \bar{\beta}_{i}=\beta_{i}-\theta \alpha_{q}^{i}$ if $i \neq p$

- $\bar{x}_{2}=0+1=1$
- $\bar{x}_{1}=0-1(-1)=1$
- $\bar{x}_{5}=0-1(0)=0$
- The basic solution for the new basis is $\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{x}_{4}, \bar{x}_{5}\right)=(1,1,4,0,0)$ And the process continues...

