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■ A network program is of the form

min cTx

Ax = b

ℓ ≤ x ≤ u,

where c ∈ R
m, b ∈ R

n and A ∈ {−1, 0, 1}n×m has the following property:

each column has exactly one 1 and one −1
(and so the remaining coefficients are 0)

■ Note that n is the number of constraints and m is the number of variables
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■ A network program is of the form

min cTx

Ax = b

ℓ ≤ x ≤ u,

where c ∈ R
m, b ∈ R

n and A ∈ {−1, 0, 1}n×m has the following property:

each column has exactly one 1 and one −1
(and so the remaining coefficients are 0)

■ Example: min x1 + x2 + 3x3 + 10x4




1 0 1 1
−1 1 0 0
0 −1 −1 −1













x1
x2
x3
x4









=





5
0

−5





0 ≤ x1 ≤ 4 0 ≤ x3 ≤ 4
0 ≤ x2 ≤ 2 0 ≤ x4 ≤ 10
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■ Network programs can be seen as minimum cost flow problems in a graph

■ We associate a digraph G = (V,E) to the matrix of a network program:

◆ Vertices V correspond to rows (constraints)

◆ Edges E correspond to columns (variables)

◆ A column with a 1 at row i and a −1 at row k gives an edge (i, k)
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■ Network programs can be seen as minimum cost flow problems in a graph

■ We associate a digraph G = (V,E) to the matrix of a network program:

◆ Vertices V correspond to rows (constraints)

◆ Edges E correspond to columns (variables)

◆ A column with a 1 at row i and a −1 at row k gives an edge (i, k)

■ Then we can reinterpret the other elements of the network program:

◆ Each variable xj is the flow sent along the j-th edge

◆ The cost of sending 1 unit of flow is cj

◆ Flow cannot exceed capacity uj

◆ There must be a minimum flow ℓj (usually, 0)

◆ Total production of flow at vertex i is determined by bi

■ So solving the network program consists in
finding the feasible flow along the graph that minimizes the cost
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min x1 + x2 + 3x3 + 10x4




1 0 1 1
−1 1 0 0
0 −1 −1 −1













x1
x2
x3
x4









=





5
0

−5





0 ≤ x1 ≤ 4 0 ≤ x3 ≤ 4
0 ≤ x2 ≤ 2 0 ≤ x4 ≤ 10

1

2

3

{5} ❀ bi

{0}

{−5}

x1

[1,0,4] ❀ [cj ,ℓj ,uj ]
x2

[1,0,2]

x3

[3,0,4]

x4

[10,0,10]
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■ Network programs satisfy Hoffman & Gale’s conditions.
So simplex method is guaranteed to give integer solutions (if ℓ, u, b in Z)

■ Moreover we can specialize the simplex method for network programs

■ This lecture is devoted to this specialization: the network simplex method

■ In the first place we need to revisit a bit of graph theory
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■ The vertex-edge incidence matrix of digraph G = (V,E) is a matrix A s.t.:

◆ Rows are labelled by vertices

◆ Columns are labelled by edges

◆ For each v ∈ V and e ∈ E, coefficient av,e of A is

• 1 if e = (v, ·)
• −1 if e = (·, v)
• 0 otherwise

■ Given a network program whose matrix is A,
the vertex-edge incidence matrix of its associated digraph is precisely A
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7 / 35

1

2

3

1 2

3

4

1
2
3

1 2 3 4




1 0 1 1
−1 1 0 0
0 −1 −1 −1







Paths and Cycles
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■ A path is a finite sequence P = (v1, e1, v2, . . . , vK , eK , vK+1) such that
either ek = (vk, vk+1) or ek = (vk+1, vk) for all 1 ≤ k ≤ K

■ Note that paths can invert the orientation of edges

■ The orientation sequence of a path P is (OP (e1), . . . , OP (ek)), where

OP (ek)







+1 if ek = (vk, vk+1)
−1 if ek = (vk+1, vk)
0 otherwise

■ A cycle is a path such that the initial and the final vertices are the same



Paths and Cycles
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1

2

3

1 2

3

4

(3, 4, 1, 1, 2) is a path with orientation sequence (−1, 1)
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■ Prop. Let P = (v1, e1, v2, . . . , vK , eK , vK+1) be a path. Then

K
∑

k=1

OP (ek) · aek = ev1 − evK+1
,

where ae is the column of e in the vertex-edge incidence matrix A,
and ev is the v-th unit vector, i.e., all zeroes except for a 1 at index v
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■ Prop. Let P = (v1, e1, v2, . . . , vK , eK , vK+1) be a path. Then

K
∑

k=1

OP (ek) · aek = ev1 − evK+1
,

where ae is the column of e in the vertex-edge incidence matrix A,
and ev is the v-th unit vector, i.e., all zeroes except for a 1 at index v

Proof. Let k be s.t. 1 ≤ k ≤ K. There are two cases:

1. If ek = (vk, vk+1) then aek = evk − evk+1
and OP (ek) = 1

2. If ek = (vk+1, vk) then aek = evk+1
− evk and OP (ek) = −1

In any case OP (ek) · aek = evk − evk+1
. So

K
∑

k=1

OP (ek)·aek = (ev1−ev2)+(ev2−ev3)+. . .+(evK−evK+1
) = ev1−evK+1
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■ Prop. Let P = (v1, e1, v2, . . . , vK , eK , vK+1) be a path. Then

K
∑

k=1

OP (ek) · aek = ev1 − evK+1
,

where ae is the column of e in the vertex-edge incidence matrix A,
and ev is the v-th unit vector, i.e., all zeroes except for a 1 at index v

■ Cor. If C = (v1, e1, v2, . . . , vK , eK , vK+1) is a cycle,
the columns ae1 , ae2 , . . . , aeK of A are linearly dependent.
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■ Prop. Let P = (v1, e1, v2, . . . , vK , eK , vK+1) be a path. Then

K
∑

k=1

OP (ek) · aek = ev1 − evK+1
,

where ae is the column of e in the vertex-edge incidence matrix A,
and ev is the v-th unit vector, i.e., all zeroes except for a 1 at index v

■ Cor. If C = (v1, e1, v2, . . . , vK , eK , vK+1) is a cycle,
the columns ae1 , ae2 , . . . , aeK of A are linearly dependent.

Proof. If v1 = vK+1 then

K
∑

k=1

OP (ek) · aek = ev1 − evK+1
= 0
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1

2

3

1 2

3

4

1
2
3

1 2 3 4




1 0 1 1
−1 1 0 0
0 −1 −1 −1





Path P = (3, 4, 1, 1, 2) has orientation sequence (−1, 1)

K
∑

k=1

OP (ek) · aek = (−1)





1
0

−1



+ (1)





1
−1
0



 =





0
−1
1



 = e3 − e2



Trees
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■ A graph is

◆ acyclic if it has no cycles

◆ connected if for any pair of vertices u, v there is a path from u to v

◆ a tree if it is acyclic and connected

■ Thm. For a graph T with at least one vertex the following are equivalent:

◆ T is a tree

◆ For any pair of vertices u, v there is a unique path from u to v

◆ T has one less edge than vertices and is connected

◆ T has one less edge than vertices and is acyclic

■ A subgraph S of G is spanning if it covers all vertices in G

■ Thm. Every connected graph has a subgraph that is a spanning tree.
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■ Thm. For any T subgraph of G that is a tree with at least two vertices,
the columns {ae | e ∈ T} of A are linearly independent.



Trees

13 / 35

■ Thm. For any T subgraph of G that is a tree with at least two vertices,
the columns {ae | e ∈ T} of A are linearly independent.

Proof. By contradiction.

Let T be a tree with the minimum number of vertices N such that
{ae | e ∈ T} are linearly dependent, i.e., there are λe not all null s.t.

∑

e∈T

λeae = 0

If N = 2 then T has one edge, say e. But λe, ae 6= 0 and λeae = 0!

So N > 2. Let v be a leaf of T and let ev be the only edge in T that has
v as an endpoint. Let T ′ be the tree obtained from T by removing ev.
From

λevaev +
∑

e∈T ′

λeae = 0

by projecting onto the row of v we have λev = 0.

Hence the tree T ′ is a subgraph of G with N − 1 ≥ 2 vertices whose
columns are linearly dependent. Contradiction!
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1

2

3

1 2

3

4

1
2
3

1 2 3 4




1 0 1 1
−1 1 0 0
0 −1 −1 −1





Edges {4, 1} induce a subgraph that is a tree, and

rank





1 1
0 −1

−1 0



 = 2
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■ Thm. If G is a connected graph with n > 0 nodes then rank(A) = n− 1
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■ Thm. If G is a connected graph with n > 0 nodes then rank(A) = n− 1

Proof. G has a spanning tree T , which has n− 1 edges.

Its columns are linearly independent, so rank(A) ≥ rank(T ) = n− 1.

But since adding all rows of A we get 0, finally rank(A) = n− 1.
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■ Thm. If G is a connected graph with n > 0 nodes then rank(A) = n− 1

■ Let us assume graphs of network programs are connected, so m ≥ n− 1
(otherwise, work independently on the connected components)

■ So the matrix of a network program has rank n− 1.
But the simplex method requires to have a full-rank matrix!

■ We add an extra variable w with a unit column er, where r is taken
arbitrarily from {1, . . . , n}, and such that it is forced to have value 0:

min cTx

Ax+ er w = b

ℓ ≤ x ≤ u,

0 ≤ w ≤ 0
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■ Thm. If G is a connected graph with n > 0 nodes then rank(A) = n− 1

■ Let us assume graphs of network programs are connected, so m ≥ n− 1
(otherwise, work independently on the connected components)

■ So the matrix of a network program has rank n− 1.
But the simplex method requires to have a full-rank matrix!

■ We add an extra variable w with a unit column er, where r is taken
arbitrarily from {1, . . . , n}, and such that it is forced to have value 0:

min cTx

Ax+ er w = b

ℓ ≤ x ≤ u,

0 ≤ w ≤ 0

w

r

■ We associate to such a reformulated network program a rooted graph
with root vertex r and root edge w (“going nowhere”)



Reformulating Network Programs
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Here we choose as a root vertex r = 2

min x1 + x2 + 3x3 + 10x4





1 0 1 1 0
−1 1 0 0 1
0 −1 −1 −1 0

















x1
x2
x3
x4
w













=





5
0

−5





0 ≤ x1 ≤ 4
0 ≤ x2 ≤ 2
0 ≤ x3 ≤ 4
0 ≤ x4 ≤ 10
0 ≤ w ≤ 0

1

2

3

{5} ❀ bi

{0}

{−5}

x1

[1,0,4] ❀ [cj ,ℓj ,uj ]
x2

[1,0,2]

x3

[3,0,4]

x4

[10,0,10]

w
[0,0,0]
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■ Thm. Let A be the matrix of a rooted graph G with root vertex r.
If T is a spanning tree for G then B = er ∪ {ae | e ∈ T} is basis of (A | er)
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■ Thm. Let A be the matrix of a rooted graph G with root vertex r.
If T is a spanning tree for G then B = er ∪ {ae | e ∈ T} is basis of (A | er)

Proof. Let n be the number of vertices of G. As T is a spanning tree,
T has n− 1 edges. Hence B = er ∪ {ae | e ∈ T} has n columns.

Let us prove that B spans Rn, i.e., that
for any 1 ≤ i ≤ n we can write ei as linear combination of columns of B

Two cases:

◆ If i = r: trivial
◆ If i 6= r, let P = (v1 = i, e1, v2, . . . , vK , eK , vK+1 = r) be a path in T

from vertex i to vertex r. As
∑K

k=1OP (ek) · aek = ei − er

we have

er +
∑K

k=1OP (ek) · aek = ei

Altogether B is a basis for (A | er)
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■ Thm. Let A be the matrix of a rooted graph G with root vertex r.
If T is a spanning tree for G then B = er ∪ {ae | e ∈ T} is basis of (A | er)

Proof. Let n be the number of vertices of G. As T is a spanning tree,
T has n− 1 edges. Hence B = er ∪ {ae | e ∈ T} has n columns.

Let us prove that B spans Rn, i.e., that
for any 1 ≤ i ≤ n we can write ei as linear combination of columns of B

Two cases:

◆ If i = r: trivial
◆ If i 6= r, let P = (v1 = i, e1, v2, . . . , vK , eK , vK+1 = r) be a path in T

from vertex i to vertex r. As
∑K

k=1OP (ek) · aek = ei − er

we have

er +
∑K

k=1OP (ek) · aek = ei

Altogether B is a basis for (A | er)

■ Cor. rank(A | er) = n
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■ Thm. Let A be the matrix of a rooted graph G with root vertex r.
If B is basis of (A | er) then er ∈ B and {e | ae ∈ B} is spanning tree of G
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■ Thm. Let A be the matrix of a rooted graph G with root vertex r.
If B is basis of (A | er) then er ∈ B and {e | ae ∈ B} is spanning tree of G

Proof. Let n be the number of vertices of G as usual.

Since rank(A) = n− 1 and rank(A | er) = n we have that er ∈ B.
So the graph T induced by {e | ae ∈ B} has n− 1 edges.

Moreover, by linear independence, T cannot contain cycles.
Hence T has at least (n− 1) + 1 = n vertices. But G has n vertices.
Thus T has exactly n vertices, and so is spanning.

Since T has one less edge than vertex and is acyclic, it must be a tree.

All in all, T is a spanning tree.
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1

2

3

1 2

3

4

5

1
2
3

1 2 3 4 5




1 0 1 1 0
−1 1 0 0 1
0 −1 −1 −1 0





1

2

3

1 2

3

4

5

B =





1 1 0
−1 0 1
0 −1 0




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1

2

3

1 2

3

4

5

1
2
3

1 2 3 4 5




1 0 1 1 0
−1 1 0 0 1
0 −1 −1 −1 0





1

2

3

1 2

3

4

5

B =





0 1 0
1 0 1

−1 −1 0







Specializing the Simplex Method
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■ Where do we use the basis inverse in the simplex method?



Specializing the Simplex Method
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1. Initialization: Find an initial feasible basis B
Compute B−1, β = B−1b, z = cT

B
β

2. Pricing: Compute πT = cT
B
B−1 and dj = cj − πTaj .

If for all j ∈ R, dj ≥ 0 then return OPTIMAL
Else let q be such that dq < 0. Compute αq = B−1aq

3. Ratio test: Compute I = {i | 1 ≤ i ≤ m,αi
q > 0}.

If I = ∅ then return UNBOUNDED
Else compute θ = mini∈I(

βi

αi
q
) and p such that θ =

βp

α
p
q

4. Update:

B̄ = B − {kp} ∪ {q} B̄ = B + (aq − akp)e
T
p

β̄p = θ, β̄i = βi − θαi
q if i 6= p z̄ = z + θdq

Go to 2.
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■ Where do we use the basis inverse in the simplex method?

◆ In pricing: we compute the multipliers πT = cT
B
B−1

◆ In ratio test: we compute the q-th column of the tableau αq = B−1aq

◆ In initialization: we compute the initial basic solution β = B−1b

■ Equivalently:

◆ In pricing: we solve the equation yTB = cT
B
(and then set π = y)

◆ In ratio test: we solve the equation Bx = aq (and then set αq = x)

◆ In initialization: we solve the equation Bx = b (and then set β = x)

■ These equations can be efficiently solved with the graph representation

■ So the network simplex method doesn’t require to maintain basis inverses



Solving yTB = cT
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■ Let A be the matrix of a rooted graph G with root vertex r.
Let B be a basis for (A | er).

■ We know that er ∈ B and T = {e | ae ∈ B} is a spanning tree for G.

■ In the system of equations yTB = cT :

◆ each column (= edge) of B corresponds to one equation
◆ each row (= vertex) of B corresponds to one variable

■ Each equation either involves 1 variable (column er) or 2 (otherwise)
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1

2

3

1

4

5

1 4 5

B =





1 1 0
−1 0 1
0 −1 0





1
2
3
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1

2

3

y1 − y2 = 1

y1 − y3 = 10

y2 = 0

1 4 5

B =





1 1 0
−1 0 1
0 −1 0





1
2
3

Let us solve yTB = cT , where yT = (y1 y2 y3) and cT = (1 10 0)

(

y1 y2 y3
)





1 1 0
−1 0 1
0 −1 0



 =
(

y1 − y2 y1 − y3 y2
)







y1 − y2 = 1 ❀ 1
y1 − y3 = 10 ❀ 4

y2 = 0 ❀ 5

Note that by doing
a preorder traversal from root node 2
we can solve the equations
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1

2

3

y1 − y2 = 1

y1 − y3 = 10

y2 = 0

1 4 5

B =





1 1 0
−1 0 1
0 −1 0





1
2
3

Let us solve yTB = cT , where yT = (y1 y2 y3) and cT = (1 10 0)

(

y1 y2 y3
)





1 1 0
−1 0 1
0 −1 0



 =
(

y1 − y2 y1 − y3 y2
)







y1 − y2 = 1 ❀ 1
y1 − y3 = 10 ❀ 4

y2 = 0 ❀ 5

y2 = 0
y1 − y2 = 1 =⇒ y1 = y2 + 1 = 1
y1 − y3 = 10 =⇒ y3 = y1 − 10 = −9
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■ Let us take the root vertex r as the root of T . Let w be the root edge.

■ To solve yTB = cT call solve (⊥,T ), where

solve (Vertex p, Tree S) { // p is the parent of the root of S
Vertex v = root(S);
if (v == r) y[r] = c[w];
else if ((p, v) ∈ E) y[v] = y[p] − c[(p, v )];
else y[v] = y[p] + c[(v , p )];
solve (v , S. left ());
solve (v , S. right ()); }

It is a preorder traversal of T .

At each recursive call (except 1st one)
we handle a new equation
(= column = edge) with 2 vars yp and yv
in which one is already assigned (yp) and
the other is not (yv).

ROOTr

p

v

. . .

S

T
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■ Let us take the root vertex r as the root of T . Let w be the root edge.

■ To solve yTB = cT call solve (⊥,T ), where

solve (Vertex p, Tree S) { // p is the parent of the root of S
Vertex v = root(S);
if (v == r) y[r] = c[w];
else if ((p, v) ∈ E) y[v] = y[p] − c[(p, v )];
else y[v] = y[p] + c[(v , p )];
solve (v , S. left ());
solve (v , S. right ()); }

If v = r then the equation is yTer = cw, i.e., yr = cw.
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■ Let us take the root vertex r as the root of T . Let w be the root edge.

■ To solve yTB = cT call solve (⊥,T ), where

solve (Vertex p, Tree S) { // p is the parent of the root of S
Vertex v = root(S);
if (v == r) y[r] = c[w];
else if ((p, v) ∈ E) y[v] = y[p] − c[(p, v )];
else y[v] = y[p] + c[(v , p )];
solve (v , S. left ());
solve (v , S. right ()); }

If e = (p, v) ∈ E then the equation is

yT (ep − ev) = yp − yv = ce,

i.e., yv = yp − ce.

ROOTr

p

v

. . .

S

T
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■ Let us take the root vertex r as the root of T . Let w be the root edge.

■ To solve yTB = cT call solve (⊥,T ), where

solve (Vertex p, Tree S) { // p is the parent of the root of S
Vertex v = root(S);
if (v == r) y[r] = c[w];
else if ((p, v) ∈ E) y[v] = y[p] − c[(p, v )];
else y[v] = y[p] + c[(v , p )];
solve (v , S. left ());
solve (v , S. right ()); }

If e = (v, p) ∈ E then the equation is

yT (ev − ep) = yv − yp = ce,

i.e., yv = yp + ce.

ROOTr

p

v

. . .

S

T
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26 / 35

■ Let A be the matrix of rooted graph G with root vertex r.
Let B be a basis for (A | er).

■ We know that er ∈ B and T = {e | ae ∈ B} is a spanning tree for G.

■ In the ratio test, c will be one of the columns of A.

■ If c is of the form ei − ej ,
let P be the path in T going from vertex i to vertex j.
Then recall that

∑

e∈P

OP (e) · ae = ei − ej

■ Hence the orientation sequence gives us already the solution.
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1

2

3

1

4

5

1 4 5

B =





1 1 0
−1 0 1
0 −1 0





1
2
3
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1

2

3

1

4

5

1 4 5

B =





1 1 0
−1 0 1
0 −1 0





1
2
3

Let us solve Bx = c, where xT = (x1 x4 x5), and

cT = (c1 c2 c3) = (0 1 − 1) = eT2 − eT3

Path from 2 to 3: P3 = (2, 1, 1, 4, 3) with orientation sequence (−1, 1). So:

■ x1 = −1

■ x4 = 1

■ x5 = 0



Solving Bx = c. General case
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■ Let A be the matrix of a rooted graph G with root vertex r.
Let B be a basis for (A | er).

■ We know that er ∈ B and T = {e | ae ∈ B} is a spanning tree for G.

■ For any 1 ≤ i ≤ n there is a path Pi from i to r, i.e.,
Pi = (v1 = i, e1, ..., eK , vK+1 = r) in T . But recall that

ei = er +
∑K

k=1OPi
(ek) · aek

■ Let us assume B is of the form (ak1 , ak2 , . . . , akn−1
, er). Then

ei = er +
∑n−1

j=1 OPi
(kj) · akj

as edges kj not in Pi will have a 0 coefficient by definition of OPi
. So

c =
∑n

i=1 ciei =
(
∑n

i=1 ci
)

er +
∑n−1

j=1

(
∑n

i=1 ci OPi
(kj)

)

· akj

Let xn =
∑n

i=1 ci, xj =
∑n

i=1 ci OPi
(kj) for 1 ≤ j < n. Then Bx = c!

■ Solving Bx = c amounts to traverse T keeping track of edge orientation
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1

2

3

1

4

5

1 4 5

B =





1 1 0
−1 0 1
0 −1 0





1
2
3
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1

2

3

1

4

5

1 4 5

B =





1 1 0
−1 0 1
0 −1 0





1
2
3

Let us solve Bx = c, where xT = (x1 x4 x5)
T , and

cT = (c1 c2 c3)
T = (0 1 − 1)T = eT2 − eT3

There is no need to consider the path P1 from 1 to 2, as c1 = 0.
Moreover P2 = (2), and hence OP2

(·) = 0.
Path from 3 to 2: P3 = (3, 4, 1, 1, 2) with orientation sequence (−1, 1).

■ x1 = c3 ·OP3
(1) = (−1) · 1 = −1

■ x4 = c3 ·OP3
(4) = (−1) · (−1) = 1

■ x5 = c1 + c2 + c3 = 0 + 1 + (−1) = 0
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Let us apply one iteration of the simplex method to

min x1 + x2 + 3x3 + 10x4





1 0 1 1 0
−1 1 0 0 1
0 −1 −1 −1 0

















x1
x2
x3
x4
x5













=





5
0

−5





0 ≤ x1 ≤ 4
0 ≤ x2 ≤ 2
0 ≤ x3 ≤ 4
0 ≤ x4 ≤ 10
0 ≤ x5 ≤ 0

1

2

3

{5} ❀ bi

{0}

{−5}

x1

[1,0,4] ❀ [cj ,ℓj ,uj ]
x2

[1,0,2]

x3

[3,0,4]

x4

[10,0,10]

x5

[0,0,0]
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Let us consider the basis B corresponding to variables (x1, x4, x5)

1

2

3

{5} ❀ bi

{0}

{−5}

x1

[1,0,4] ❀ [cj ,ℓj ,uj ]
x2

[1,0,2]

x3

[3,0,4]

x4

[10,0,10]

x5

[0,0,0]

1

2

3

x1

x4

x5

Moreover, let us assume that:

■ non-basic variable x2 is set to its lower bound 0
■ non-basic variable x3 is set to its upper bound 4
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1

2

3

{5} ❀ bi

{0}

{−5}

x1

[1,0,4] ❀ [cj ,ℓj ,uj ]
x2

[1,0,2]

x3

[3,0,4]

x4

[10,0,10]

x5

[0,0,0]

1

2

3

x1

x4

x5

■ x2: lower bound 0
■ x3: upper bound 4

Let us compute the initial basic solution: xB = B−1b−B−1RxR

So xB = B−1(5e1 − 5e3)−B−1a2 0−B−1a3 4 = 5B−1(e1 − e3)− 4B−1a3
= B−1(e1 − e3)

The path from 1 to 3 is P = (1, x4, 3) with orientation sequence (1)
So the only non-zero value for a basic variable is for x4, with value 1

Hence the basis is feasible and its solution is (x1, x2, x3, x4, x5) = (0, 0, 4, 1, 0)
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1

2

3

{5} ❀ bi

{0}

{−5}

x1

[1,0,4] ❀ [cj ,ℓj ,uj ]
x2

[1,0,2]

x3

[3,0,4]

x4

[10,0,10]

x5

[0,0,0]

1

2

3

x1

x4

x5

■ x2: lower bound 0
■ x3: upper bound 4

Let us do the pricing, i.e.,
compute dj = cj − cT

B
B−1aj = cj − πTaj for each non-basic variable xj

The solution to πTB = cT
B
is (π1, π2, π3) = (1, 0,−9), and so:

■ for x2: d2 = c2 − πT (e2 − e3) = c2 − π2 + π3 = −8
■ for x3: d3 = c3 − πT (e1 − e3) = c3 − π1 + π3 = −7

Only variable x2 is candidate for entering the basis
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1

2

3

{5} ❀ bi

{0}

{−5}

x1

[1,0,4] ❀ [cj ,ℓj ,uj ]
x2

[1,0,2]

x3

[3,0,4]

x4

[10,0,10]

x5

[0,0,0]

1

2

3

x1

x4

x5

■ x2: lower bound 0
■ x3: upper bound 4
■ (x1, x2, x3, x4, x5) = (0, 0, 4, 1, 0)

Let us do the ratio test.
We need to compute α2 = B−1a2, and we get αT

2 = (−1, 1, 0). Then

θ = min(uq − ℓq,min{βi−λi

αi
q

| αi
q > 0},min{βi−µi

αi
q

| αi
q < 0})

= min(2, 1−0
1 , 0−4

−1 ) = 1

The outgoing basic variable is x4.
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1

2

3

{5} ❀ bi

{0}

{−5}

x1

[1,0,4] ❀ [cj ,ℓj ,uj ]
x2

[1,0,2]

x3

[3,0,4]

x4

[10,0,10]

x5

[0,0,0]

1

2

3

x1

x4

x5

■ Non-basic variable x2 enters the basis
■ Basic variable x4 leaves the basis with value 0
■ New basis B̄ corresponds to (x1, x2, x5)
■ New basic solution: β̄p = xq + θ, β̄i = βi − θαi

q if i 6= p

◆ x̄2 = 0 + 1 = 1
◆ x̄1 = 0− 1(−1) = 1
◆ x̄5 = 0− 1(0) = 0

■ The basic solution for the new basis is (x̄1, x̄2, x̄3, x̄4, x̄5) = (1, 1, 4, 0, 0)
And the process continues...
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