Network Simplex Method

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell

May 5, 2022

Network Programs

A network program is of the form

 $\min c^T x \\ Ax = b \\ \ell \le x \le u,$

where $c \in \mathbb{R}^m$, $b \in \mathbb{R}^n$ and $A \in \{-1, 0, 1\}^{n \times m}$ has the following property:

each column has exactly one 1 and one -1 (and so the remaining coefficients are 0)

Note that n is the number of constraints and m is the number of variables

Network Programs

A network program is of the form

 $\min c^T x \\ Ax = b \\ \ell \le x \le u,$

where $c \in \mathbb{R}^m$, $b \in \mathbb{R}^n$ and $A \in \{-1, 0, 1\}^{n \times m}$ has the following property:

each column has exactly one 1 and one -1 (and so the remaining coefficients are 0)

Example: $\min x_1 + x_2 + 3x_3 + 10x_4$

Minimum Cost Flow Problems

- Network programs can be seen as minimum cost flow problems in a graph
 - We associate a digraph G = (V, E) to the matrix of a network program:
 - Vertices V correspond to rows (constraints)
 - Edges *E* correspond to columns (variables)
 - A column with a 1 at row i and a -1 at row k gives an edge (i,k)

Minimum Cost Flow Problems

- Network programs can be seen as minimum cost flow problems in a graph
 - We associate a digraph G = (V, E) to the matrix of a network program:
 - Vertices V correspond to rows (constraints)
 - Edges E correspond to columns (variables)
 - A column with a 1 at row i and a -1 at row k gives an edge (i, k)
- Then we can reinterpret the other elements of the network program:
 - Each variable x_j is the flow sent along the *j*-th edge
 - The cost of sending 1 unit of flow is c_j
 - Flow cannot exceed capacity u_j
 - There must be a minimum flow ℓ_j (usually, 0)
 - Total production of flow at vertex i is determined by b_i
 - So solving the network program consists in finding the feasible flow along the graph that minimizes the cost

Minimum Cost Flow Problems

Network Simplex Method

- Network programs satisfy Hoffman & Gale's conditions. So simplex method is guaranteed to give integer solutions (if l, u, b in Z)
- Moreover we can specialize the simplex method for network programs
- This lecture is devoted to this specialization: the network simplex method
- In the first place we need to revisit a bit of graph theory

Vertex-Edge Incidence Matrix

The vertex-edge incidence matrix of digraph G = (V, E) is a matrix A s.t.:

- Rows are labelled by vertices
- Columns are labelled by edges
- For each $v \in V$ and $e \in E$, coefficient $a_{v,e}$ of A is
 - 1 if $e = (v, \cdot)$
 - -1 if $e = (\cdot, v)$
 - 0 otherwise

Given a network program whose matrix is A, the vertex-edge incidence matrix of its associated digraph is precisely A

Vertex-Edge Incidence Matrix

- A path is a finite sequence $P = (v_1, e_1, v_2, \dots, v_K, e_K, v_{K+1})$ such that either $e_k = (v_k, v_{k+1})$ or $e_k = (v_{k+1}, v_k)$ for all $1 \le k \le K$
- Note that paths can invert the orientation of edges
 - I The orientation sequence of a path P is $(O_P(e_1), \ldots, O_P(e_k))$, where

$$O_P(e_k) \begin{cases} +1 & \text{if } e_k = (v_k, v_{k+1}) \\ -1 & \text{if } e_k = (v_{k+1}, v_k) \\ 0 & \text{otherwise} \end{cases}$$

A cycle is a path such that the initial and the final vertices are the same

(3, 4, 1, 1, 2) is a path with orientation sequence (-1, 1)

Prop. Let $P = (v_1, e_1, v_2, ..., v_K, e_K, v_{K+1})$ be a path. Then

$$\sum_{k=1}^{K} O_P(e_k) \cdot a_{e_k} = \mathbf{e}_{v_1} - \mathbf{e}_{v_{K+1}},$$

where a_e is the column of e in the vertex-edge incidence matrix A, and e_v is the v-th unit vector, i.e., all zeroes except for a 1 at index v

Prop. Let $P = (v_1, e_1, v_2, ..., v_K, e_K, v_{K+1})$ be a path. Then

$$\sum_{k=1}^{K} O_P(e_k) \cdot a_{e_k} = \mathbf{e}_{v_1} - \mathbf{e}_{v_{K+1}},$$

where a_e is the column of e in the vertex-edge incidence matrix A, and e_v is the v-th unit vector, i.e., all zeroes except for a 1 at index v

Proof. Let k be s.t. $1 \le k \le K$. There are two cases:

1. If
$$e_k = (v_k, v_{k+1})$$
 then $a_{e_k} = \mathbf{e}_{v_k} - \mathbf{e}_{v_{k+1}}$ and $O_P(e_k) = 1$
2. If $e_k = (v_{k+1}, v_k)$ then $a_{e_k} = \mathbf{e}_{v_{k+1}} - \mathbf{e}_{v_k}$ and $O_P(e_k) = -1$

In any case $O_P(e_k) \cdot a_{e_k} = \mathbf{e}_{v_k} - \mathbf{e}_{v_{k+1}}$. So

 $\sum_{k=1}^{K} O_P(e_k) \cdot a_{e_k} = (\mathbf{e}_{v_1} - \mathbf{e}_{v_2}) + (\mathbf{e}_{v_2} - \mathbf{e}_{v_3}) + \ldots + (\mathbf{e}_{v_K} - \mathbf{e}_{v_{K+1}}) = \mathbf{e}_{v_1} - \mathbf{e}_{v_{K+1}}$

Prop. Let $P = (v_1, e_1, v_2, ..., v_K, e_K, v_{K+1})$ be a path. Then

$$\sum_{k=1}^{K} O_P(e_k) \cdot a_{e_k} = \mathbf{e}_{v_1} - \mathbf{e}_{v_{K+1}},$$

where a_e is the column of e in the vertex-edge incidence matrix A, and e_v is the v-th unit vector, i.e., all zeroes except for a 1 at index v

Cor. If $C = (v_1, e_1, v_2, \dots, v_K, e_K, v_{K+1})$ is a cycle, the columns $a_{e_1}, a_{e_2}, \dots, a_{e_K}$ of A are linearly dependent.

Prop. Let $P = (v_1, e_1, v_2, ..., v_K, e_K, v_{K+1})$ be a path. Then

$$\sum_{k=1}^{K} O_P(e_k) \cdot a_{e_k} = \mathbf{e}_{v_1} - \mathbf{e}_{v_{K+1}},$$

where a_e is the column of e in the vertex-edge incidence matrix A, and e_v is the v-th unit vector, i.e., all zeroes except for a 1 at index v

Cor. If $C = (v_1, e_1, v_2, \dots, v_K, e_K, v_{K+1})$ is a cycle, the columns $a_{e_1}, a_{e_2}, \dots, a_{e_K}$ of A are linearly dependent.

Proof. If $v_1 = v_{K+1}$ then

$$\sum_{k=1}^{K} O_P(e_k) \cdot a_{e_k} = \mathbf{e}_{v_1} - \mathbf{e}_{v_{K+1}} = 0$$

Path P = (3, 4, 1, 1, 2) has orientation sequence (-1, 1)

$$\sum_{k=1}^{K} O_P(e_k) \cdot a_{e_k} = (-1) \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + (1) \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} = \mathbf{e}_3 - \mathbf{e}_2$$

Trees

- A graph is
 - ♦ acyclic if it has no cycles
 - igle connected if for any pair of vertices u,v there is a path from u to v
 - a tree if it is acyclic and connected

Thm. For a graph T with at least one vertex the following are equivalent:

- T is a tree
- For any pair of vertices u, v there is a unique path from u to v
- T has one less edge than vertices and is connected
- \bullet T has one less edge than vertices and is acyclic
- A subgraph S of G is spanning if it covers all vertices in G
- **Thm.** Every connected graph has a subgraph that is a spanning tree.

Trees

Thm. For any T subgraph of G that is a tree with at least two vertices, the columns $\{a_e \mid e \in T\}$ of A are linearly independent.

Trees

Thm. For any T subgraph of G that is a tree with at least two vertices, the columns $\{a_e \mid e \in T\}$ of A are linearly independent.

Proof. By contradiction.

Let T be a tree with the minimum number of vertices N such that $\{a_e \mid e \in T\}$ are linearly dependent, i.e., there are λ_e not all null s.t.

 $\sum_{e \in T} \lambda_e a_e = 0$

If N = 2 then T has one edge, say e. But λ_e , $a_e \neq 0$ and $\lambda_e a_e = 0$! So N > 2. Let v be a leaf of T and let e_v be the only edge in T that has v as an endpoint. Let T' be the tree obtained from T by removing e_v . From

$$\lambda_{e_v} a_{e_v} + \sum_{e \in T'} \lambda_e a_e = 0$$

by projecting onto the row of v we have $\lambda_{e_v} = 0$. Hence the tree T' is a subgraph of G with $N - 1 \ge 2$ vertices whose columns are linearly dependent. Contradiction!

Edges $\{4, 1\}$ induce a subgraph that is a tree, and

$$\operatorname{rank} \left(\begin{array}{cc} 1 & 1 \\ 0 & -1 \\ -1 & 0 \end{array} \right) = 2$$

Thm. If G is a connected graph with n > 0 nodes then rank(A) = n - 1

Thm. If G is a connected graph with n > 0 nodes then rank(A) = n - 1

Proof. G has a spanning tree T, which has n-1 edges.

Its columns are linearly independent, so $rank(A) \ge rank(T) = n - 1$.

But since adding all rows of A we get 0, finally rank(A) = n - 1.

- **Thm.** If G is a connected graph with n > 0 nodes then rank(A) = n 1
- Let us assume graphs of network programs are connected, so $m \ge n-1$ (otherwise, work independently on the connected components)
- So the matrix of a network program has rank n 1. But the simplex method requires to have a full-rank matrix!
- We add an extra variable w with a unit column e_r , where r is taken arbitrarily from $\{1, \ldots, n\}$, and such that it is forced to have value 0:

$$\min c^T x Ax + \mathbf{e}_r w = b \ell \le x \le u, 0 \le w \le 0$$

- **Thm.** If G is a connected graph with n > 0 nodes then rank(A) = n 1
- Let us assume graphs of network programs are connected, so $m \ge n-1$ (otherwise, work independently on the connected components)
- So the matrix of a network program has rank n 1. But the simplex method requires to have a full-rank matrix!
- We add an extra variable w with a unit column e_r , where r is taken arbitrarily from $\{1, \ldots, n\}$, and such that it is forced to have value 0:

We associate to such a reformulated network program a rooted graph with root vertex r and root edge w ("going nowhere")

Here we choose as a root vertex r = 2

min $x_1 + x_2 + 3x_3 + 10x_4$ $\begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \\ 0 & -1 & -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ w \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ -5 \end{pmatrix} \qquad \begin{array}{c} 0 \le x_1 \le 4 \\ 0 \le x_2 \le 2 \\ 0 \le x_3 \le 4 \\ 0 \le x_4 \le 10 \\ 0 \le w \le 0 \end{array}$ [0,0,0] $\{0\}$ $[1,0,4] \xrightarrow{x_1} [c_j,\ell_j,u_j]$ x_2 [1,0,2] x_3 [3,0,4] x_4 3 [10,0,10] $\{-5\}$ $\{5\} \rightarrow$

Thm. Let A be the matrix of a rooted graph G with root vertex r. If T is a spanning tree for G then $B = e_r \cup \{a_e \mid e \in T\}$ is basis of $(A \mid e_r)$

Thm. Let A be the matrix of a rooted graph G with root vertex r. If T is a spanning tree for G then $B = e_r \cup \{a_e \mid e \in T\}$ is basis of $(A \mid e_r)$

Proof. Let n be the number of vertices of G. As T is a spanning tree, T has n-1 edges. Hence $B = \mathbf{e}_r \cup \{a_e \mid e \in T\}$ has n columns.

Let us prove that B spans \mathbb{R}^n , i.e., that for any $1 \leq i \leq n$ we can write \mathbf{e}_i as linear combination of columns of BTwo cases:

• If
$$i = r$$
: trivial

• If $i \neq r$, let $P = (v_1 = i, e_1, v_2, \dots, v_K, e_K, v_{K+1} = r)$ be a path in T from vertex i to vertex r. As

$$\sum_{k=1}^{K} O_P(e_k) \cdot a_{e_k} = \mathbf{e}_i - \mathbf{e}_r$$

we have

$$\mathbf{e}_r + \sum_{k=1}^K O_P(e_k) \cdot a_{e_k} = \mathbf{e}_i$$

Altogether B is a basis for $(A | \mathbf{e}_r)$

Thm. Let A be the matrix of a rooted graph G with root vertex r. If T is a spanning tree for G then $B = e_r \cup \{a_e \mid e \in T\}$ is basis of $(A \mid e_r)$

Proof. Let n be the number of vertices of G. As T is a spanning tree, T has n-1 edges. Hence $B = \mathbf{e}_r \cup \{a_e \mid e \in T\}$ has n columns.

Let us prove that B spans \mathbb{R}^n , i.e., that for any $1 \leq i \leq n$ we can write e_i as linear combination of columns of BTwo cases:

• If
$$i = r$$
: trivial

• If $i \neq r$, let $P = (v_1 = i, e_1, v_2, \dots, v_K, e_K, v_{K+1} = r)$ be a path in T from vertex i to vertex r. As

$$\sum_{k=1}^{K} O_P(e_k) \cdot a_{e_k} = \mathbf{e}_i - \mathbf{e}_r$$

we have

$$\mathbf{e}_r + \sum_{k=1}^K O_P(e_k) \cdot a_{e_k} = \mathbf{e}_i$$

Altogether B is a basis for $(A | \mathbf{e}_r)$

Cor. $\operatorname{rank}(A \mid \mathbf{e}_r) = n$

Thm. Let A be the matrix of a rooted graph G with root vertex r. If B is basis of $(A | e_r)$ then $e_r \in B$ and $\{e | a_e \in B\}$ is spanning tree of G

Thm. Let A be the matrix of a rooted graph G with root vertex r. If B is basis of $(A | e_r)$ then $e_r \in B$ and $\{e | a_e \in B\}$ is spanning tree of G

Proof. Let n be the number of vertices of G as usual.

Since $\operatorname{rank}(A) = n - 1$ and $\operatorname{rank}(A | \mathbf{e}_r) = n$ we have that $\mathbf{e}_r \in B$. So the graph T induced by $\{e | a_e \in B\}$ has n - 1 edges.

Moreover, by linear independence, T cannot contain cycles. Hence T has at least (n - 1) + 1 = n vertices. But G has n vertices. Thus T has exactly n vertices, and so is spanning.

Since T has one less edge than vertex and is acyclic, it must be a tree. All in all, T is a spanning tree.

$$B = \left(\begin{array}{rrrr} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{array}\right)$$

19 / 35

$$B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}$$

19 / 35

Specializing the Simplex Method

Where do we use the basis inverse in the simplex method?

Specializing the Simplex Method

- 1. Initialization: Find an initial feasible basis B Compute $B^{-1}, \beta = B^{-1}b, z = c_{\mathcal{B}}^T\beta$
- 2. Pricing: Compute $\pi^T = c_B^T B^{-1}$ and $d_j = c_j \pi^T a_j$. If for all $j \in \mathcal{R}, d_j \ge 0$ then return OPTIMAL Else let q be such that $d_q < 0$. Compute $\alpha_q = B^{-1}a_q$
- 3. Ratio test: Compute $\mathcal{I} = \{i \mid 1 \leq i \leq m, \alpha_q^i > 0\}$. If $\mathcal{I} = \emptyset$ then return UNBOUNDED Else compute $\theta = \min_{i \in \mathcal{I}} (\frac{\beta_i}{\alpha_q^i})$ and p such that $\theta = \frac{\beta_p}{\alpha_q^p}$
- 4. Update:

$$\begin{split} \bar{\mathcal{B}} &= \mathcal{B} - \{k_p\} \cup \{q\} & \bar{B} = B + (a_q - a_{k_p})e_p^T \\ \bar{\beta}_p &= \theta, \quad \bar{\beta}_i = \beta_i - \theta \alpha_q^i \quad \text{if} \quad i \neq p & \bar{z} = z + \theta d_q \\ \text{Go to 2.} \end{split}$$

Specializing the Simplex Method

- Where do we use the basis inverse in the simplex method?
 - In pricing: we compute the multipliers $\pi^T = c_{\mathcal{B}}^T B^{-1}$
 - In ratio test: we compute the q-th column of the tableau $\alpha_q = B^{-1}a_q$
 - In initialization: we compute the initial basic solution $\beta = B^{-1}b$

Equivalently:

- In pricing: we solve the equation $y^T B = c_B^T$ (and then set $\pi = y$)
- In ratio test: we solve the equation $Bx = a_q$ (and then set $\alpha_q = x$)
- In initialization: we solve the equation Bx = b (and then set $\beta = x$)
- These equations can be efficiently solved with the graph representation
- So the network simplex method doesn't require to maintain basis inverses

Solving $y^T B = c^T$

- Let A be the matrix of a rooted graph G with root vertex r. Let B be a basis for $(A | e_r)$.
- We know that $\mathbf{e}_r \in B$ and $T = \{e \mid a_e \in B\}$ is a spanning tree for G.
- In the system of equations $y^T B = c^T$:
 - each column (= edge) of B corresponds to one equation
 - each row (= vertex) of B corresponds to one variable
- Each equation either involves 1 variable (column e_r) or 2 (otherwise)

 $1 \quad 4 \quad 5$ $B = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

Let us solve $y^T B = c^T$, where $y^T = (y_1 \quad y_2 \quad y_3)$ and $c^T = (1 \quad 10 \quad 0)$

$$\begin{pmatrix} y_1 & y_2 & y_3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} y_1 - y_2 & y_1 - y_3 & y_2 \end{pmatrix}$$

 $\begin{cases} y_1 - y_2 = 1 & \rightsquigarrow 1 \\ y_1 - y_3 = 10 & \rightsquigarrow 4 \\ y_2 = 0 & \rightsquigarrow 5 \end{cases}$

Note that by doing a preorder traversal from root node 2 we can solve the equations

Let us solve $y^T B = c^T$, where $y^T = (y_1 \quad y_2 \quad y_3)$ and $c^T = (1 \quad 10 \quad 0)$

$$\begin{pmatrix} y_1 & y_2 & y_3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} y_1 - y_2 & y_1 - y_3 & y_2 \end{pmatrix}$$

$$\begin{cases} y_1 - y_2 &= 1 \quad \rightsquigarrow 1 & y_2 &= 0 \\ y_1 - y_3 &= 10 \quad \rightsquigarrow 4 & y_1 - y_2 &= 1 \implies y_1 = y_2 + 1 = 1 \\ y_2 &= 0 \quad \rightsquigarrow 5 & y_1 - y_3 = 10 \implies y_3 = y_1 - 10 = -9 \end{cases}$$

■ Let us take the root vertex r as the root of T. Let w be the root edge. ■ To solve $y^T B = c^T$ call solve (\bot, T) , where

> solve(Vertex p, Tree S) { // p is the parent of the root of S Vertex v = root(S); if (v == r) y[r] = c[w]; else if $((p, v) \in E) y[v] = y[p] - c[(p, v)]$; else y[v] = y[p] + c[(v, p)]; solve(v, S. left ()); solve(v, S. right ()); }

It is a preorder traversal of T.

At each recursive call (except 1st one) we handle a new equation (= column = edge) with 2 vars y_p and y_v in which one is already assigned (y_p) and the other is not (y_v) .

■ Let us take the root vertex r as the root of T. Let w be the root edge. ■ To solve $y^T B = c^T$ call *solve*(\bot,T), where

> solve(Vertex p, Tree S) { // p is the parent of the root of S Vertex v = root(S); if (v == r) y[r] = c[w]; else if $((p, v) \in E) y[v] = y[p] - c[(p, v)]$; else y[v] = y[p] + c[(v, p)]; solve(v, S. left ()); solve(v, S. right ()); }

If v = r then the equation is $y^T \mathbf{e}_r = c_w$, i.e., $y_r = c_w$.

■ Let us take the root vertex r as the root of T. Let w be the root edge. ■ To solve $y^T B = c^T$ call *solve*(\bot,T), where

> solve(Vertex p, Tree S) { // p is the parent of the root of S Vertex v = root(S); if (v == r) y[r] = c[w]; else if $((p, v) \in E) y[v] = y[p] - c[(p, v)]$; else y[v] = y[p] + c[(v, p)]; solve(v, S. left ()); solve(v, S. right ()); }

If $e = (p, v) \in E$ then the equation is

$$y^T(\mathbf{e}_p - \mathbf{e}_v) = y_p - y_v = c_e,$$

i.e., $y_v = y_p - c_e$.

■ Let us take the root vertex r as the root of T. Let w be the root edge. ■ To solve $y^T B = c^T$ call *solve*(\perp, T), where

> solve(Vertex p, Tree S) { // p is the parent of the root of S Vertex v = root(S); if (v == r) y[r] = c[w]; else if $((p, v) \in E) y[v] = y[p] - c[(p, v)]$; else y[v] = y[p] + c[(v, p)]; solve(v, S. left ()); solve(v, S. right ()); }

If $e = (v, p) \in E$ then the equation is

$$y^T(\mathbf{e}_v - \mathbf{e}_p) = y_v - y_p = c_e,$$

i.e., $y_v = y_p + c_e$.

Solving Bx = c. Case $e_i - e_j$

- Let A be the matrix of rooted graph G with root vertex r. Let B be a basis for $(A | e_r)$.
- We know that $\mathbf{e}_r \in B$ and $T = \{e \mid a_e \in B\}$ is a spanning tree for G.
- In the ratio test, c will be one of the columns of A.
- If c is of the form e_i − e_j, let P be the path in T going from vertex i to vertex j. Then recall that

$$\sum_{e \in P} O_P(e) \cdot a_e = \mathbf{e}_i - \mathbf{e}_j$$

Hence the orientation sequence gives us already the solution.

Solving Bx = c. Case $e_i - e_j$

Solving Bx = c. Case $e_i - e_j$

Let us solve Bx = c, where $x^T = (x_1 \ x_4 \ x_5)$, and $c^T = (c_1 \ c_2 \ c_3) = (0 \ 1 \ -1) = \mathbf{e}_2^T - \mathbf{e}_3^T$

Path from 2 to 3: $P_3 = (2, 1, 1, 4, 3)$ with orientation sequence (-1, 1). So:

$$x_1 = -1$$

- $x_4 = 1$
 - $x_5 = 0$

Solving Bx = c. General case

- Let A be the matrix of a rooted graph G with root vertex r. Let B be a basis for $(A | e_r)$.
- We know that $e_r \in B$ and $T = \{e \mid a_e \in B\}$ is a spanning tree for G.
- For any $1 \le i \le n$ there is a path P_i from i to r, i.e., $P_i = (v_1 = i, e_1, ..., e_K, v_{K+1} = r)$ in T. But recall that

$$\mathbf{e}_i = \mathbf{e}_r + \sum_{k=1}^K O_{P_i}(e_k) \cdot a_{e_k}$$

Let us assume B is of the form $(a_{k_1}, a_{k_2}, \ldots, a_{k_{n-1}}, e_r)$. Then

$$\mathbf{e}_i = \mathbf{e}_r + \sum_{j=1}^{n-1} O_{P_i}(k_j) \cdot a_{k_j}$$

as edges k_j not in P_i will have a 0 coefficient by definition of O_{P_i} . So

$$c = \sum_{i=1}^{n} c_i \mathbf{e}_i = \left(\sum_{i=1}^{n} c_i\right) \, \mathbf{e}_r + \sum_{j=1}^{n-1} \left(\sum_{i=1}^{n} c_i \, O_{P_i}(k_j)\right) \cdot a_{k_j}$$

Let $x_n = \sum_{i=1}^n c_i$, $x_j = \sum_{i=1}^n c_i O_{P_i}(k_j)$ for $1 \le j < n$. Then Bx = c!Solving Bx = c amounts to traverse T keeping track of edge orientation

Solving Bx = c. General case

Solving Bx = c. General case

Let us solve Bx = c, where $x^T = (x_1 \ x_4 \ x_5)^T$, and $c^T = (c_1 \ c_2 \ c_3)^T = (0 \ 1 \ -1)^T = \mathbf{e}_2^T - \mathbf{e}_3^T$ There is no need to consider the path P_1 from 1 to 2, as $c_1 = 0$. Moreover $P_2 = (2)$, and hence $O_{P_2}(\cdot) = 0$. Path from 3 to 2: $P_3 = (3, 4, 1, 1, 2)$ with orientation sequence (-1, 1).

$$x_1 = c_3 \cdot O_{P_3}(1) = (-1) \cdot 1 = -1$$

$$x_4 = c_3 \cdot O_{P_3}(4) = (-1) \cdot (-1) = 1$$

$$x_5 = c_1 + c_2 + c_3 = 0 + 1 + (-1) = 0$$

29 / 35

Example

Let us apply one iteration of the simplex method to

$$\min x_1 + x_2 + 3x_3 + 10x_4 \begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \\ 0 & -1 & -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ -5 \end{pmatrix} \quad \begin{array}{c} 0 \le x_1 \le 4 \\ 0 \le x_2 \le 2 \\ 0 \le x_3 \le 4 \\ 0 \le x_4 \le 10 \\ 0 \le x_5 \le 0 \end{array}$$

Example

Let us consider the basis *B* corresponding to variables (x_1, x_4, x_5)

Moreover, let us assume that:

- non-basic variable x_2 is set to its lower bound 0
- non-basic variable x_3 is set to its upper bound 4

- x_2 : lower bound 0
- x_3 : upper bound 4

Let us compute the initial basic solution: $x_{\mathcal{B}} = B^{-1}b - B^{-1}R x_{\mathcal{R}}$

So
$$x_{\mathcal{B}} = B^{-1}(5\mathbf{e}_1 - 5\mathbf{e}_3) - B^{-1}a_2 0 - B^{-1}a_3 4 = 5B^{-1}(\mathbf{e}_1 - \mathbf{e}_3) - 4B^{-1}a_3$$

= $B^{-1}(\mathbf{e}_1 - \mathbf{e}_3)$

The path from 1 to 3 is $P = (1, x_4, 3)$ with orientation sequence (1) So the only non-zero value for a basic variable is for x_4 , with value 1 Hence the basis is feasible and its solution is $(x_1, x_2, x_3, x_4, x_5) = (0, 0, 4, 1, 0)$

x₂: lower bound 0
x₃: upper bound 4

Let us do the pricing, i.e., compute $d_j = c_j - c_B^T B^{-1} a_j = c_j - \pi^T a_j$ for each non-basic variable x_j The solution to $\pi^T B = c_B^T$ is $(\pi_1, \pi_2, \pi_3) = (1, 0, -9)$, and so:

for x_2 : $d_2 = c_2 - \pi^T (\mathbf{e}_2 - \mathbf{e}_3) = c_2 - \pi_2 + \pi_3 = -8$ for x_3 : $d_3 = c_3 - \pi^T (\mathbf{e}_1 - \mathbf{e}_3) = c_3 - \pi_1 + \pi_3 = -7$

Only variable x_2 is candidate for entering the basis

- **a** x_2 : lower bound 0
- I x_3 : upper bound 4
- $(x_1, x_2, x_3, x_4, x_5) = (0, 0, 4, 1, 0)$

Let us do the ratio test.

We need to compute $\alpha_2 = B^{-1}a_2$, and we get $\alpha_2^T = (-1, 1, 0)$. Then

$$\theta = \min(u_q - \ell_q, \min\{\frac{\beta_i - \lambda_i}{\alpha_q^i} \mid \alpha_q^i > 0\}, \min\{\frac{\beta_i - \mu_i}{\alpha_q^i} \mid \alpha_q^i < 0\})$$
$$= \min(2, \frac{1 - 0}{1}, \frac{0 - 4}{-1}) = 1$$

The outgoing basic variable is x_4 .

Non-basic variable x₂ enters the basis
 Basic variable x₄ leaves the basis with value 0
 New basis B
 corresponds to (x₁, x₂, x₅)

 New basic solution: β
 p = x_q + θ, β
 i = β_i - θαⁱ_q if i ≠ p

$$\bullet \quad \bar{x}_2 = 0 + 1 = 1$$

•
$$\bar{x}_1 = 0 - 1(-1) = 1$$

• $\bar{x}_5 = 0 - 1(0) = 0$

The basic solution for the new basis is $(\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4, \bar{x}_5) = (1, 1, 4, 0, 0)$ And the process continues...