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Mixed Integer Linear Programs
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■ A mixed integer linear program (MILP,MIP) is of the form

min cTx
Ax = b
x ≥ 0
xi ∈ Z ∀i ∈ I

■ If all variables need to be integer,
it is called a (pure) integer linear program (ILP, IP)

■ If all variables need to be 0 or 1 (binary, boolean),
it is called a 0− 1 linear program



Complexity: LP vs. IP
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■ Including integer variables increases enourmously the modeling power,
at the expense of more complexity

■ LP’s can be solved in polynomial time with interior-point methods (ellipsoid method, Karmarkar’s
algorithm)

■ Integer Programming is an NP-hard problem. So:

◆ There is no known polynomial-time algorithm

◆ There are little chances that one will ever be found

◆ Even small problems may be hard to solve

■ What follows is one of the many approaches
(and one of the most successful) for attacking IP’s



LP Relaxation of a MIP
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■ Given a MIP

(IP )

min cTx
Ax = b
x ≥ 0
xi ∈ Z ∀i ∈ I

its linear relaxation is the LP obtained by dropping integrality constraints:

(LP )
min cTx
Ax = b
x ≥ 0

■ Can we solve IP by solving LP? By rounding?



Branch & Bound
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■ The optimal solution of

max x+ y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13

x, y ≥ 0
x, y ∈ Z

is (x, y) = (1, 2), with objective 3
See here for a graphical proof.

■ The optimal solution of its LP relaxation
is (x, y) = (4, 4.5), with objective 9.5

■ No direct way of getting from (4, 4.5) to (1, 2) by rounding!

■ Something more elaborate is needed: branch & bound

https://www.desmos.com/calculator/lasuqpyaz5


Branch & Bound
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y

xy ≥ 0

max x + y

(0, 1)

(1,2)

x ≥ 0

(4,4.5)

−8x + 10y ≤ 13

−2x + 2y ≥ 1



Branch & Bound

7 / 61

■ Assume variables are bounded, i.e., have lower and upper bounds

■ Let P0 be the initial problem, LP(P0) be the LP relaxation of P0

■ If in optimal solution of LP(P0) all integer variables take integer values then it is also an optimal
solution to P0

■ Else

◆ Let xj be integer variable
whose value βj at optimal solution of LP(P0) is such that βj 6∈ Z.

Define

P1 := P0 ∧ xj ≤ ⌊βj⌋

P2 := P0 ∧ xj ≥ ⌈βj⌉

◆ feasibleSols(P0) = feasibleSols(P1) ∪ feasibleSols(P2)

◆ Idea: solve P1, solve P2 and then take the best



Branch & Bound
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■ Let xj be integer variable
whose value βj at optimal solution of LP(P0) is such that βj 6∈ Z.

Each of the problems

P1 := P0 ∧ xj ≤ ⌊βj⌋ P2 := P0 ∧ xj ≥ ⌈βj⌉

can be solved recursively

■ We can build a binary tree of subproblems
whose leaves correspond to pending problems still to be solved

■ This procedure terminates as integer vars have finite bounds and,
at each split, the domain of xj becomes strictly smaller

■ If LP(Pi) has optimal solution where integer variables take integer values then solution is stored

■ If LP(Pi) is infeasible then Pi can be discarded (pruned, fathomed)
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z



Example
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z
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Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

End

====================================================================

CPLEX> optimize

Primal simplex - Optimal: Objective = - 8.5000000000e+00

Solution time = 0.00 sec. Iterations = 0 (0)

Deterministic time = 0.00 ticks (0.37 ticks/sec)

CPLEX> display solution variables x

Variable Name Solution Value

x 4.000000

CPLEX> display solution variables y

Variable Name Solution Value

y 4.500000
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11 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5
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Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

y >= 5

End

====================================================================

CPLEX> optimize

Bound infeasibility column ’x’.

Presolve time = 0.00 sec. (0.00 ticks)

Presolve - Infeasible.

Solution time = 0.00 sec.

Deterministic time = 0.00 ticks (1.67 ticks/sec)



Example

13 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5
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Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

y <= 4

End

====================================================================

CPLEX> optimize

Dual simplex - Optimal: Objective = - 7.5000000000e+00

Solution time = 0.00 sec. Iterations = 0 (0)

Deterministic time = 0.00 ticks (2.68 ticks/sec)

CPLEX> display solution variables x

Variable Name Solution Value

x 3.500000

CPLEX> display solution variables y

Variable Name Solution Value

y 4.000000
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3
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Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x >= 4

y <= 4

End

====================================================================

CPLEX> optimize

Row ’c1’ infeasible, all entries at implied bounds.

Presolve time = 0.00 sec. (0.00 ticks)

Presolve - Infeasible.

Solution time = 0.00 sec.

Deterministic time = 0.00 ticks (1.11 ticks/sec)
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3
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Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x <= 3

y <= 4

End

====================================================================

CPLEX> optimize

Dual simplex - Optimal: Objective = - 6.7000000000e+00

Solution time = 0.00 sec. Iterations = 0 (0)

Deterministic time = 0.00 ticks (2.71 ticks/sec)

CPLEX> display solution variables x

Variable Name Solution Value

x 3.000000

CPLEX> display solution variables y

Variable Name Solution Value

y 3.700000
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4
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Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x <= 3

y = 4

End

====================================================================

CPLEX> optimize

Bound infeasibility column ’x’.

Presolve time = 0.00 sec. (0.00 ticks)

Presolve - Infeasible.

Solution time = 0.00 sec.

Deterministic time = 0.00 ticks (1.12 ticks/sec)
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4
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Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x <= 3

y <= 3

End

====================================================================

CPLEX> optimize

Dual simplex - Optimal: Objective = - 5.5000000000e+00

Solution time = 0.00 sec. Iterations = 0 (0)

Deterministic time = 0.00 ticks (2.71 ticks/sec)

CPLEX> display solution variables x

Variable Name Solution Value

x 2.500000

CPLEX> display solution variables y

Variable Name Solution Value

y 3.000000
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2
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Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x = 3

y <= 3

End

====================================================================

CPLEX> optimize

Bound infeasibility column ’y’.

Presolve time = 0.00 sec. (0.00 ticks)

Presolve - Infeasible.

Solution time = 0.00 sec.

Deterministic time = 0.00 ticks (1.11 ticks/sec)
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2
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Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x <= 2

y <= 3

End

====================================================================

CPLEX> optimize

Dual simplex - Optimal: Objective = - 4.9000000000e+00

Solution time = 0.00 sec. Iterations = 0 (0)

Deterministic time = 0.00 ticks (2.71 ticks/sec)

CPLEX> display solution variables x

Variable Name Solution Value

x 2.000000

CPLEX> display solution variables y

Variable Name Solution Value

y 2.900000
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

y ≤ 2 y ≥ 3
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

y ≤ 2 y ≥ 3
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Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x <= 2

y = 3

End

====================================================================

CPLEX> optimize

Bound infeasibility column ’x’.

Presolve time = 0.00 sec. (0.00 ticks)

Presolve - Infeasible.

Solution time = 0.00 sec.

Deterministic time = 0.00 ticks (1.12 ticks/sec)
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

y ≤ 2 y ≥ 3
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

y ≤ 2 y ≥ 3
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Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x <= 2

y <= 2

End

====================================================================

CPLEX> optimize

Dual simplex - Optimal: Objective = - 3.5000000000e+00

Solution time = 0.00 sec. Iterations = 0 (0)

Deterministic time = 0.00 ticks (2.71 ticks/sec)

CPLEX> display solution variables x

Variable Name Solution Value

x 1.500000

CPLEX> display solution variables y

Variable Name Solution Value

y 2.000000
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

y ≤ 2 y ≥ 3

x ≥ 2 x ≤ 1
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

y ≤ 2 y ≥ 3

x ≥ 2 x ≤ 1
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Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x = 2

y <= 2

End

====================================================================

CPLEX> optimize

Bound infeasibility column ’y’.

Presolve time = 0.00 sec. (0.00 ticks)

Presolve - Infeasible.

Solution time = 0.00 sec.

Deterministic time = 0.00 ticks (1.11 ticks/sec)
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

y ≤ 2 y ≥ 3

x ≥ 2 x ≤ 1
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

y ≤ 2 y ≥ 3

x ≥ 2 x ≤ 1
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Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x <= 1

y <= 2

End

====================================================================

CPLEX> optimize

Dual simplex - Optimal: Objective = - 3.0000000000e+00

Solution time = 0.00 sec. Iterations = 0 (0)

Deterministic time = 0.00 ticks (2.40 ticks/sec)

CPLEX> display solution variables x

Variable Name Solution Value

x 1.000000

CPLEX> display solution variables y

Variable Name Solution Value

y 2.000000
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

y ≤ 2 y ≥ 3

x ≥ 2 x ≤ 1



Pruning in Branch & Bound
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■ We have already seen that if relaxation is infeasible,
the problem can be pruned

■ Now assume an (integral) solution has been previously found

■ If solution has cost Z then any pending problem Pj whose relaxation has optimal value ≥ Z can be
ignored, since

cost(Pj) ≥ cost(LP(Pj)) ≥ Z

The optimum will not be in any descendant of Pj!

■ This cost-based pruning of the search tree has a huge impact
on the efficiency of Branch & Bound



Branch & Bound: Algorithm
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S := {P0} /* set of pending problems */
Z := +∞ /* best cost found so far */
while S 6= ∅ do

remove P from S
solve LP(P )
if LP(P ) is feasible then /* if unfeasible P can be pruned */

let β be optimal basic solution of LP(P )
if β satisfies integrality constraints then

if cost(β) < Z then store β; update Z
else

if cost(LP(P )) ≥ Z then continue /* P can be pruned */
let xj be integer variable such that βj 6∈ Z

S := S ∪ { P ∧ xj ≤ ⌊βj⌋, P ∧ xj ≥ ⌈βj⌉ }
return Z



Heuristics in Branch & Bound
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■ Possible choices in Branch & Bound

◆ Choice of the pending problem

■ Depth-first search

■ Breadth-first search

■ Best-first search: assuming a relaxation is solved when it is added to the set of pending
problems, select the one with best cost value



Heuristics in Branch & Bound
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■ Possible choices in Branch & Bound

◆ Choice of the pending problem

■ Depth-first search

■ Breadth-first search

■ Best-first search: assuming a relaxation is solved when it is added to the set of pending
problems, select the one with best cost value

◆ Choice of the branching variable: one that is

■ closest to halfway two integer values

■ most important in the model (e.g., 0-1 variable)

■ biggest in a variable ordering

■ the one with the largest/smallest cost coefficient



Heuristics in Branch & Bound
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■ Possible choices in Branch & Bound

◆ Choice of the pending problem

■ Depth-first search

■ Breadth-first search

■ Best-first search: assuming a relaxation is solved when it is added to the set of pending
problems, select the one with best cost value

◆ Choice of the branching variable: one that is

■ closest to halfway two integer values

■ most important in the model (e.g., 0-1 variable)

■ biggest in a variable ordering

■ the one with the largest/smallest cost coefficient

■ No known strategy is best for all problems!



Remarks on Branch & Bound
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■ If integer variables are not bounded, Branch & Bound may not terminate:

min 0
1 ≤ 3x− 3y ≤ 2
x, y ∈ Z

is infeasible but Branch & Bound loops forever looking for solutions!



Remarks on Branch & Bound
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■ After solving the relaxation of P ,
we have to solve the relaxations of P ∧ xj ≤ ⌊βj⌋ and P ∧ xj ≥ ⌈βj⌉

■ These problems are similar. Do we have to start from scratch?
Can be reuse somehow the computation for P?

■ Idea: start from the optimal solution of the parent problem



Remarks on Branch & Bound
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■ Let us assume that P is of the form

min cTx
Ax = b
x ≥ 0, xi ∈ Z ∀i ∈ I

■ Let B be an optimal basis of the relaxation

■ Let xj be integer variable which at optimal solution is assigned βj 6∈ Z

■ Note that xj must be basic

■ Let us consider the problem P1 = P ∧ xj ≤ ⌊βj⌋

■ We add a fresh slack variable s and a new equation: P ∧ xj + s = ⌊βj⌋

■ Since s is fresh we have (xB, s) defines a basis for the relaxation of P1



Remarks on Branch & Bound
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min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

⇒

min −x− y
−2x+ 2y − u1 = 1
−8x+ 10y + u2 = 13
x, y ≥ 0
x, y ∈ Z

■ Optimal basis of the linear relaxation is B = (x, y) with tableau











min−17

2
+ 9

2
u1 + u2

x = 4− 5

2
u1 −

1

2
u2

y = 9

2
− 2u1 −

1

2
u2

■ For the subproblem with y ≤ 4 we add equation y + s = 4
B = (x, y, s) is a basis for this subproblem with tableau



















min−17

2
+ 9

2
u1 + u2

x = 4− 5

2
u1 −

1

2
u2

y = 9

2
− 2u1 −

1

2
u2

s = 4− y = −1

2
+ 2u1 +

1

2
u2
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■ (xB, s) defines a basis for the relaxation of P1

■ This basis is not feasible:
the value in the basic solution assigned to s is ⌊βj⌋ − βj < 0.

We would need a Phase I to apply the primal simplex method!

■ But since s is a slack the reduced costs have not changed:
(xB, s) satisfies the optimality conditions!

■ Dual simplex method can be used:
basis (xB, s) is already dual feasible, no need of (dual) Phase I

■ In practice often the dual simplex only needs very few iterations
to obtain the optimal solution to the new problem
(this process is called reoptimization)



Cutting Planes
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■ Let us consider a MIP of the form

min cTx
x ∈ S

where S =







x ∈ R
n

∣

∣

∣

∣

∣

∣

Ax = b
x ≥ 0
xi ∈ Z ∀i ∈ I







and its linear relaxation

min cTx
x ∈ P

where P =







x ∈ R
n

∣

∣

∣

∣

Ax = b
x ≥ 0

}

■ Let β be such that β ∈ P but β 6∈ S.

A cut for β is a linear inequality pTx ≤ q such that

◆ pTσ ≤ q for any σ ∈ S (feasible solutions of the MIP respect the cut)

◆ and pTβ > q (β does not respect the cut)



Cutting Planes

45 / 61

max x + y

(1,2)

y

xy ≥ 0

(4,4.5)

x ≥ 0

(0, 1) −2x + 2y ≥ 1

−8x + 10y ≤ 13

x + y ≤ 6

max x+ y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13

x, y ≥ 0
x, y ∈ Z

x+ y ≤ 6 is a cut for (4, 4.5)



Using Cuts for Solving MIP’s

46 / 61

■ Let pTx ≤ q be a cut (of some spurious feasible solution of the relaxation).

Then the MIP

min cTx
x ∈ S′ where S′ =







x ∈ R
n

∣

∣

∣

∣

∣

∣

∣

∣

Ax = b
pTx ≤ q
x ≥ 0
xi ∈ Z ∀i ∈ I















has the same set of feasible solutions S
but its LP relaxation is strictly more constrained

■ Instead of splitting into subproblems (Branch & Bound),
one can add the cut and solve the relaxation of the new problem

■ In practice cuts are used together with Branch & Bound:
If after adding some cuts no integer solution is found, then branch

This technique is called Branch & Cut



Gomory Cuts
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■ There are several techniques for deriving cuts

■ Some are problem-specific (e.g., for the travelling salesman problem)

■ Here we will see a generic technique: Gomory cuts

■ Let B be a feasible basis and let β be the associated basic solution.

Note that for all j ∈ R we have βj = 0

■ Let xi be a basic variable such that i ∈ I and βi 6∈ Z

■ E.g., this happens in the optimal basis of the relaxation
when the basic solution does not meet the integrality constraints

■ Let the row of the tableau corresponding to xi be of the form

xi = βi +
∑

j∈R αijxj



Gomory Cuts
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■ Let x ∈ S. Then xi ∈ Z and

xi = βi +
∑

j∈R αijxj

xi − βi =
∑

j∈R αijxj

■ Let δ = βi − ⌊βi⌋. Then 0 < δ < 1

■ Hence

xi − ⌊βi⌋ = xi − βi + βi − ⌊βi⌋

= xi − βi + δ

= δ + xi − βi

= δ +
∑

j∈R αijxj



Gomory Cuts
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δ = βi − ⌊βi⌋ xi − ⌊βi⌋ = δ +
∑

j∈R αijxj

■ Let us define

R+ = {j ∈ R | αij ≥ 0} R− = {j ∈ R | αij < 0}

■ Assume
∑

j∈R αijxj ≥ 0.
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δ = βi − ⌊βi⌋ xi − ⌊βi⌋ = δ +
∑

j∈R αijxj

■ Let us define

R+ = {j ∈ R | αij ≥ 0} R− = {j ∈ R | αij < 0}

■ Assume
∑

j∈R αijxj ≥ 0.

Then δ +
∑

j∈R αijxj > 0 and xi − ⌊βi⌋ ∈ Z imply

δ +
∑

j∈R

αijxj ≥ 1

∑

j∈R+

αijxj ≥
∑

j∈R

αijxj ≥ 1− δ

∑

j∈R+

αij

1− δ
xj ≥ 1
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δ = βi − ⌊βi⌋ xi − ⌊βi⌋ = δ +
∑

j∈R αijxj

■ Let us define

R+ = {j ∈ R | αij ≥ 0} R− = {j ∈ R | αij < 0}

■ Assume
∑

j∈R αijxj ≥ 0.

Then δ +
∑

j∈R αijxj > 0 and xi − ⌊βi⌋ ∈ Z imply

δ +
∑

j∈R

αijxj ≥ 1

∑

j∈R+

αijxj ≥
∑

j∈R

αijxj ≥ 1− δ

∑

j∈R+

αij

1− δ
xj ≥ 1

Moreover
∑

j∈R−

(

−αij

δ

)

xj ≥ 0
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■ Let us define

R+ = {j ∈ R | αij ≥ 0} R− = {j ∈ R | αij < 0}

■ Assume
∑

j∈R αijxj < 0.

Then δ +
∑

j∈R αijxj < 1 and xi − ⌊βi⌋ ∈ Z imply
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j∈R

αijxj ≤ −δ

∑

j∈R−

(−αij

δ

)
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j∈R+

αij
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■ In any case
∑

j∈R−

(−αij

δ

)

xj +
∑

j∈R+

αij

1− δ
xj ≥ 1

for any x ∈ S.

However, when x = β this inequality is not satisfied (set xj = 0 for j ∈ R)

■ In the example:











min−17

2
+ 9

2
s1 + s2

x = 4− 5

2
s1 −

1

2
s2

y = 9

2
− 2s1 −

1

2
s2

y violates the integrality condition,

we have δ = 1

2
,
∑

j∈R αijxj = −2s1 −
1

2
s2

The cut is 4s1 + s2 ≥ 1, which projected on x, y is y ≤ 4.
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■ Consider an IP of the form

min cTx
Ax = b
x ≥ 0
x ∈ Z

■ Let us assume A, b have coefficients in Z

■ Are there any sufficient conditions to ensure that the simplex algorithm will directly provide an
integer solution, without branch & bound/cut?
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■ Let us assume A, b have coefficients in Z

■ We will see sufficient conditions to ensure that
all vertices of the relaxation are integer

■ For instance, when the matrix A is totally unimodular:
the determinant of every square submatrix is 0 or ±1
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■ Let us assume A, b have coefficients in Z

■ We will see sufficient conditions to ensure that
all vertices of the relaxation are integer

■ For instance, when the matrix A is totally unimodular:
the determinant of every square submatrix is 0 or ±1

In that case all bases have inverses with integer coefficients

Recall Cramer’s rule: if B is an invertible matrix, then

B−1 =
1

det(B)
adj(B)

where adj(B) is the adjugate matrix of B

Recall also that
adj(B) = ((−1)i+j det(Mji))1≤i,j≤n,

where Mij is matrix B after removing the i-th row and the j-th column
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■ Sufficient condition for total unimodularity of a matrix A:
(Hoffman & Gale’s Theorem)

1. Each element of A is 0 or ±1

2. No more than two non-zeros appear in each columm

3. Rows can be partitioned in two subsets R1 and R2 s.t.

(a) If a column contains two non-zeros of the same sign,
the row of one of them belongs to one subset,
and the row of the other, to the other subset

(b) If a column contains two non-zeros of different signs,
the rows of both of them belong to the same subset
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■ Let us consider an assignment problem

■ n = # of workers = # of tasks

■ Each worker must be assigned to exactly one task

■ Each task is to be performed by exactly one worker

■ cij = cost when worker i performs task j
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■ Let us consider an assignment problem

■ n = # of workers = # of tasks

■ Each worker must be assigned to exactly one task

■ Each task is to be performed by exactly one worker

■ cij = cost when worker i performs task j

xij =

{

1 if worker i performs task j
0 otherwise

min
∑n

i=1

∑n
j=1

cijxij

∑n
j=1

xij = 1 ∀i ∈ {1, . . . , n}
∑n

i=1
xij = 1 ∀j ∈ {1, . . . , n}

xij ∈ {0, 1} ∀i, j ∈ {1, . . . , n}

■ This problem satisfies Hoffman & Gale’s conditions
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■ Several kinds of IP’s satisfy Hoffman & Gale’s conditions:

◆ Assignment

◆ Transportation

◆ Maximum flow

◆ Shortest path

◆ ...

■ Usually ad-hoc graph algorithms are more efficient for these problems than the simplex method as
presented here
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■ Several kinds of IP’s satisfy Hoffman & Gale’s conditions:

◆ Assignment

◆ Transportation

◆ Maximum flow

◆ Shortest path

◆ ...

■ Usually ad-hoc graph algorithms are more efficient for these problems than the simplex method as
presented here

■ But:

◆ The simplex method can be specialized: network simplex method

◆ Simplex techniques can be applied
if the problem is not a purely network one but has extra constraints



Modeling with 0-1 Variables

57 / 61

■ Sometimes we want to have an indicator variable of a contraint:
a 0/1 variable equal to 1 iff the constraint is true (= reification in CP)

■ E.g., let us to encode δ = 1↔ aTx ≤ b, where δ is a 0/1 var



Modeling with 0-1 Variables

57 / 61

■ Sometimes we want to have an indicator variable of a contraint:
a 0/1 variable equal to 1 iff the constraint is true (= reification in CP)

■ E.g., let us to encode δ = 1↔ aTx ≤ b, where δ is a 0/1 var

■ Assume aTx ∈ Z for all feasible solution x

Let U be an upper bound of aTx− b for all feasible solutions
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Let U be an upper bound of aTx− b for all feasible solutions
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■ Sometimes we want to have an indicator variable of a contraint:
a 0/1 variable equal to 1 iff the constraint is true (= reification in CP)

■ E.g., let us to encode δ = 1↔ aTx ≤ b, where δ is a 0/1 var

■ Assume aTx ∈ Z for all feasible solution x

Let U be an upper bound of aTx− b for all feasible solutions

Let L be a lower bound of aTx− b for all feasible solutions

1. δ = 1→ aTx ≤ b

can be encoded with aTx− b ≤ U(1− δ)

2. δ = 1← aTx ≤ b

δ = 0→ aTx > b

δ = 0→ aTx ≥ b+ 1

can be encoded with aTx− b ≥ (L− 1)δ + 1
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■ Sometimes it is convenient to think constraints from a logical perspective, and then translate them
into linear inequalities

■ If x1, . . . , xn, y1, . . . , ym are 0/1 (= Boolean) variables then

x1 ∨ . . . ∨ xn ∨ ¬y1 ∨ . . . ∨ ¬ym

is equivalent to
x1 + . . .+ xn + (1− y1) + . . .+ (1− ym) ≥ 1 .
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Let Xi represent “Ingredient i is in the blend”, i ∈ {A,B,C}.
Express the sentence

“If ingredient A is in the blend,
then ingredient B or C (or both) must also be in the blend”

with linear constraints.
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Let Xi represent “Ingredient i is in the blend”, i ∈ {A,B,C}.
Express the sentence

“If ingredient A is in the blend,
then ingredient B or C (or both) must also be in the blend”

with linear constraints.

■ We need to express XA → (XB ∨XC).

■ Equivalently, ¬XA ∨XB ∨XC .

■ ¬XA ∨XB ∨XC is equivalent to (1− xA) + xB + xC ≥ 1.

■ So xB + xC ≥ xA
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Let x be the quantity of a product with unit production cost c1.

If the product is manufactured at all, there is a setup cost c0

Cost of producing x units =

{

0 if x = 0
c0 + c1x if x > 0

Want to minimize costs. Model as a MIP?

(for simplicity, additional constraints are not specified and can be omitted)



Example (Fixed Setup Charge)

60 / 61

Let x be the quantity of a product with unit production cost c1.

If the product is manufactured at all, there is a setup cost c0

Cost of producing x units =

{

0 if x = 0
c0 + c1x if x > 0

Want to minimize costs. Model as a MIP?

(for simplicity, additional constraints are not specified and can be omitted)

Let δ be 0/1 var such that x > 0→ δ = 1 (i.e., δ = 0→ x ≤ 0):
add constraint x− Uδ ≤ 0, where U is the upper bound on x

Then the cost is c0δ + c1x.

No need to express x > 0← δ = 1, i.e. x = 0→ δ = 0

Minimization will make δ = 0 if possible (i.e., if x = 0)
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Let aTx be the consumption of a limited resource in a production process

Want to relax the constraint aTx ≤ b by increasing capacity b.

Capacity can be expanded to bi

b = b0 < b1 < b2 < · · · < bt

with costs, respectively,

0 = c0 < c1 < c2 < · · · < ct

Want to minimize costs. Model as a MIP?
(for simplicity, additional constraints are not specified and can be omitted)
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Let aTx be the consumption of a limited resource in a production process

Want to relax the constraint aTx ≤ b by increasing capacity b.

Capacity can be expanded to bi

b = b0 < b1 < b2 < · · · < bt

with costs, respectively,

0 = c0 < c1 < c2 < · · · < ct

Want to minimize costs. Model as a MIP?
(for simplicity, additional constraints are not specified and can be omitted)

Let 0/1 variables δi mean “capacity expanded to bi”. Then:

■

∑t
i=0

δi = 1

■ aTx ≤
∑t

i=0
biδi

■ Cost function:
∑t

i=0
ciδi
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