
Mixed Integer Linear Programming

Combinatorial Problem Solving (CPS)

Javier Larrosa Albert Oliveras Enric Rodŕıguez-Carbonell

April 10, 2025

Mixed Integer Linear Programs

2 / 61

■ A mixed integer linear program (MILP,MIP) is of the form

min cTx
Ax = b
x ≥ 0
xi ∈ Z ∀i ∈ I

■ If all variables need to be integer,
it is called a (pure) integer linear program (ILP, IP)

■ If all variables need to be 0 or 1 (binary, boolean),
it is called a 0− 1 linear program

Complexity: LP vs. IP

3 / 61

■ Including integer variables increases enourmously the modeling power,
at the expense of more complexity

■ LP’s can be solved in polynomial time with interior-point methods (ellipsoid method, Karmarkar’s
algorithm)

■ Integer Programming is an NP-hard problem. So:

◆ There is no known polynomial-time algorithm

◆ There are little chances that one will ever be found

◆ Even small problems may be hard to solve

■ What follows is one of the many approaches
(and one of the most successful) for attacking IP’s

LP Relaxation of a MIP

4 / 61

■ Given a MIP

(IP)

min cTx
Ax = b
x ≥ 0
xi ∈ Z ∀i ∈ I

its linear relaxation is the LP obtained by dropping integrality constraints:

(LP)
min cTx
Ax = b
x ≥ 0

■ Can we solve IP by solving LP? By rounding?

Branch & Bound

5 / 61

■ The optimal solution of

max x+ y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13

x, y ≥ 0
x, y ∈ Z

is (x, y) = (1, 2), with objective 3
See here for a graphical proof.

■ The optimal solution of its LP relaxation
is (x, y) = (4, 4.5), with objective 9.5

■ No direct way of getting from (4, 4.5) to (1, 2) by rounding!

■ Something more elaborate is needed: branch & bound

https://www.desmos.com/calculator/lasuqpyaz5

Branch & Bound

6 / 61

y

xy ≥ 0

max x + y

(0, 1)

(1,2)

x ≥ 0

(4,4.5)

−8x + 10y ≤ 13

−2x + 2y ≥ 1

Branch & Bound

7 / 61

■ Assume variables are bounded, i.e., have lower and upper bounds

■ Let P0 be the initial problem, LP(P0) be the LP relaxation of P0

■ If in optimal solution of LP(P0) all integer variables take integer values then it is also an optimal
solution to P0

■ Else

◆ Let xj be integer variable
whose value βj at optimal solution of LP(P0) is such that βj 6∈ Z.

Define

P1 := P0 ∧ xj ≤ ⌊βj⌋

P2 := P0 ∧ xj ≥ ⌈βj⌉

◆ feasibleSols(P0) = feasibleSols(P1) ∪ feasibleSols(P2)

◆ Idea: solve P1, solve P2 and then take the best

Branch & Bound

8 / 61

■ Let xj be integer variable
whose value βj at optimal solution of LP(P0) is such that βj 6∈ Z.

Each of the problems

P1 := P0 ∧ xj ≤ ⌊βj⌋ P2 := P0 ∧ xj ≥ ⌈βj⌉

can be solved recursively

■ We can build a binary tree of subproblems
whose leaves correspond to pending problems still to be solved

■ This procedure terminates as integer vars have finite bounds and,
at each split, the domain of xj becomes strictly smaller

■ If LP(Pi) has optimal solution where integer variables take integer values then solution is stored

■ If LP(Pi) is infeasible then Pi can be discarded (pruned, fathomed)

Example

9 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

Example

9 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

Example

10 / 61

Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

End

==

CPLEX> optimize

Primal simplex - Optimal: Objective = - 8.5000000000e+00

Solution time = 0.00 sec. Iterations = 0 (0)

Deterministic time = 0.00 ticks (0.37 ticks/sec)

CPLEX> display solution variables x

Variable Name Solution Value

x 4.000000

CPLEX> display solution variables y

Variable Name Solution Value

y 4.500000

Example

11 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

Example

11 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

Example

12 / 61

Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

y >= 5

End

==

CPLEX> optimize

Bound infeasibility column ’x’.

Presolve time = 0.00 sec. (0.00 ticks)

Presolve - Infeasible.

Solution time = 0.00 sec.

Deterministic time = 0.00 ticks (1.67 ticks/sec)

Example

13 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

Example

13 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

Example

14 / 61

Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

y <= 4

End

==

CPLEX> optimize

Dual simplex - Optimal: Objective = - 7.5000000000e+00

Solution time = 0.00 sec. Iterations = 0 (0)

Deterministic time = 0.00 ticks (2.68 ticks/sec)

CPLEX> display solution variables x

Variable Name Solution Value

x 3.500000

CPLEX> display solution variables y

Variable Name Solution Value

y 4.000000

Example

15 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

Example

15 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

Example

16 / 61

Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x >= 4

y <= 4

End

==

CPLEX> optimize

Row ’c1’ infeasible, all entries at implied bounds.

Presolve time = 0.00 sec. (0.00 ticks)

Presolve - Infeasible.

Solution time = 0.00 sec.

Deterministic time = 0.00 ticks (1.11 ticks/sec)

Example

17 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

Example

17 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

Example

18 / 61

Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x <= 3

y <= 4

End

==

CPLEX> optimize

Dual simplex - Optimal: Objective = - 6.7000000000e+00

Solution time = 0.00 sec. Iterations = 0 (0)

Deterministic time = 0.00 ticks (2.71 ticks/sec)

CPLEX> display solution variables x

Variable Name Solution Value

x 3.000000

CPLEX> display solution variables y

Variable Name Solution Value

y 3.700000

Example

19 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

Example

19 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

Example

20 / 61

Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x <= 3

y = 4

End

==

CPLEX> optimize

Bound infeasibility column ’x’.

Presolve time = 0.00 sec. (0.00 ticks)

Presolve - Infeasible.

Solution time = 0.00 sec.

Deterministic time = 0.00 ticks (1.12 ticks/sec)

Example

21 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

Example

21 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

Example

22 / 61

Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x <= 3

y <= 3

End

==

CPLEX> optimize

Dual simplex - Optimal: Objective = - 5.5000000000e+00

Solution time = 0.00 sec. Iterations = 0 (0)

Deterministic time = 0.00 ticks (2.71 ticks/sec)

CPLEX> display solution variables x

Variable Name Solution Value

x 2.500000

CPLEX> display solution variables y

Variable Name Solution Value

y 3.000000

Example

23 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

Example

23 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

Example

24 / 61

Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x = 3

y <= 3

End

==

CPLEX> optimize

Bound infeasibility column ’y’.

Presolve time = 0.00 sec. (0.00 ticks)

Presolve - Infeasible.

Solution time = 0.00 sec.

Deterministic time = 0.00 ticks (1.11 ticks/sec)

Example

25 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

Example

25 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

Example

26 / 61

Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x <= 2

y <= 3

End

==

CPLEX> optimize

Dual simplex - Optimal: Objective = - 4.9000000000e+00

Solution time = 0.00 sec. Iterations = 0 (0)

Deterministic time = 0.00 ticks (2.71 ticks/sec)

CPLEX> display solution variables x

Variable Name Solution Value

x 2.000000

CPLEX> display solution variables y

Variable Name Solution Value

y 2.900000

Example

27 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

y ≤ 2 y ≥ 3

Example

27 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

y ≤ 2 y ≥ 3

Example

28 / 61

Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x <= 2

y = 3

End

==

CPLEX> optimize

Bound infeasibility column ’x’.

Presolve time = 0.00 sec. (0.00 ticks)

Presolve - Infeasible.

Solution time = 0.00 sec.

Deterministic time = 0.00 ticks (1.12 ticks/sec)

Example

29 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

y ≤ 2 y ≥ 3

Example

29 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

y ≤ 2 y ≥ 3

Example

30 / 61

Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x <= 2

y <= 2

End

==

CPLEX> optimize

Dual simplex - Optimal: Objective = - 3.5000000000e+00

Solution time = 0.00 sec. Iterations = 0 (0)

Deterministic time = 0.00 ticks (2.71 ticks/sec)

CPLEX> display solution variables x

Variable Name Solution Value

x 1.500000

CPLEX> display solution variables y

Variable Name Solution Value

y 2.000000

Example

31 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

y ≤ 2 y ≥ 3

x ≥ 2 x ≤ 1

Example

31 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

y ≤ 2 y ≥ 3

x ≥ 2 x ≤ 1

Example

32 / 61

Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x = 2

y <= 2

End

==

CPLEX> optimize

Bound infeasibility column ’y’.

Presolve time = 0.00 sec. (0.00 ticks)

Presolve - Infeasible.

Solution time = 0.00 sec.

Deterministic time = 0.00 ticks (1.11 ticks/sec)

Example

33 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

y ≤ 2 y ≥ 3

x ≥ 2 x ≤ 1

Example

33 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

y ≤ 2 y ≥ 3

x ≥ 2 x ≤ 1

Example

34 / 61

Min - x - y

Subject To

-2 x + 2 y >= 1

-8 x + 10 y <= 13

Bounds

x <= 1

y <= 2

End

==

CPLEX> optimize

Dual simplex - Optimal: Objective = - 3.0000000000e+00

Solution time = 0.00 sec. Iterations = 0 (0)

Deterministic time = 0.00 ticks (2.40 ticks/sec)

CPLEX> display solution variables x

Variable Name Solution Value

x 1.000000

CPLEX> display solution variables y

Variable Name Solution Value

y 2.000000

Example

35 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

y ≤ 4 y ≥ 5

x ≥ 4 x ≤ 3

y ≤ 3 y ≥ 4

x ≥ 3 x ≤ 2

y ≤ 2 y ≥ 3

x ≥ 2 x ≤ 1

Pruning in Branch & Bound

36 / 61

■ We have already seen that if relaxation is infeasible,
the problem can be pruned

■ Now assume an (integral) solution has been previously found

■ If solution has cost Z then any pending problem Pj whose relaxation has optimal value ≥ Z can be
ignored, since

cost(Pj) ≥ cost(LP(Pj)) ≥ Z

The optimum will not be in any descendant of Pj!

■ This cost-based pruning of the search tree has a huge impact
on the efficiency of Branch & Bound

Branch & Bound: Algorithm

37 / 61

S := {P0} /* set of pending problems */
Z := +∞ /* best cost found so far */
while S 6= ∅ do

remove P from S
solve LP(P)
if LP(P) is feasible then /* if unfeasible P can be pruned */

let β be optimal basic solution of LP(P)
if β satisfies integrality constraints then

if cost(β) < Z then store β; update Z
else

if cost(LP(P)) ≥ Z then continue /* P can be pruned */
let xj be integer variable such that βj 6∈ Z

S := S ∪ { P ∧ xj ≤ ⌊βj⌋, P ∧ xj ≥ ⌈βj⌉ }
return Z

Heuristics in Branch & Bound

38 / 61

■ Possible choices in Branch & Bound

◆ Choice of the pending problem

■ Depth-first search

■ Breadth-first search

■ Best-first search: assuming a relaxation is solved when it is added to the set of pending
problems, select the one with best cost value

Heuristics in Branch & Bound

38 / 61

■ Possible choices in Branch & Bound

◆ Choice of the pending problem

■ Depth-first search

■ Breadth-first search

■ Best-first search: assuming a relaxation is solved when it is added to the set of pending
problems, select the one with best cost value

◆ Choice of the branching variable: one that is

■ closest to halfway two integer values

■ most important in the model (e.g., 0-1 variable)

■ biggest in a variable ordering

■ the one with the largest/smallest cost coefficient

Heuristics in Branch & Bound

38 / 61

■ Possible choices in Branch & Bound

◆ Choice of the pending problem

■ Depth-first search

■ Breadth-first search

■ Best-first search: assuming a relaxation is solved when it is added to the set of pending
problems, select the one with best cost value

◆ Choice of the branching variable: one that is

■ closest to halfway two integer values

■ most important in the model (e.g., 0-1 variable)

■ biggest in a variable ordering

■ the one with the largest/smallest cost coefficient

■ No known strategy is best for all problems!

Remarks on Branch & Bound

39 / 61

■ If integer variables are not bounded, Branch & Bound may not terminate:

min 0
1 ≤ 3x− 3y ≤ 2
x, y ∈ Z

is infeasible but Branch & Bound loops forever looking for solutions!

Remarks on Branch & Bound

40 / 61

■ After solving the relaxation of P ,
we have to solve the relaxations of P ∧ xj ≤ ⌊βj⌋ and P ∧ xj ≥ ⌈βj⌉

■ These problems are similar. Do we have to start from scratch?
Can be reuse somehow the computation for P?

■ Idea: start from the optimal solution of the parent problem

Remarks on Branch & Bound

41 / 61

■ Let us assume that P is of the form

min cTx
Ax = b
x ≥ 0, xi ∈ Z ∀i ∈ I

■ Let B be an optimal basis of the relaxation

■ Let xj be integer variable which at optimal solution is assigned βj 6∈ Z

■ Note that xj must be basic

■ Let us consider the problem P1 = P ∧ xj ≤ ⌊βj⌋

■ We add a fresh slack variable s and a new equation: P ∧ xj + s = ⌊βj⌋

■ Since s is fresh we have (xB, s) defines a basis for the relaxation of P1

Remarks on Branch & Bound

42 / 61

min −x− y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13
x, y ≥ 0
x, y ∈ Z

⇒

min −x− y
−2x+ 2y − u1 = 1
−8x+ 10y + u2 = 13
x, y ≥ 0
x, y ∈ Z

■ Optimal basis of the linear relaxation is B = (x, y) with tableau











min−17

2
+ 9

2
u1 + u2

x = 4− 5

2
u1 −

1

2
u2

y = 9

2
− 2u1 −

1

2
u2

■ For the subproblem with y ≤ 4 we add equation y + s = 4
B = (x, y, s) is a basis for this subproblem with tableau



















min−17

2
+ 9

2
u1 + u2

x = 4− 5

2
u1 −

1

2
u2

y = 9

2
− 2u1 −

1

2
u2

s = 4− y = −1

2
+ 2u1 +

1

2
u2

Remarks on Branch & Bound

43 / 61

■ (xB, s) defines a basis for the relaxation of P1

■ This basis is not feasible:
the value in the basic solution assigned to s is ⌊βj⌋ − βj < 0.

We would need a Phase I to apply the primal simplex method!

■ But since s is a slack the reduced costs have not changed:
(xB, s) satisfies the optimality conditions!

■ Dual simplex method can be used:
basis (xB, s) is already dual feasible, no need of (dual) Phase I

■ In practice often the dual simplex only needs very few iterations
to obtain the optimal solution to the new problem
(this process is called reoptimization)

Cutting Planes

44 / 61

■ Let us consider a MIP of the form

min cTx
x ∈ S

where S =







x ∈ R
n

∣

∣

∣

∣

∣

∣

Ax = b
x ≥ 0
xi ∈ Z ∀i ∈ I







and its linear relaxation

min cTx
x ∈ P

where P =







x ∈ R
n

∣

∣

∣

∣

Ax = b
x ≥ 0

}

■ Let β be such that β ∈ P but β 6∈ S.

A cut for β is a linear inequality pTx ≤ q such that

◆ pTσ ≤ q for any σ ∈ S (feasible solutions of the MIP respect the cut)

◆ and pTβ > q (β does not respect the cut)

Cutting Planes

45 / 61

max x + y

(1,2)

y

xy ≥ 0

(4,4.5)

x ≥ 0

(0, 1) −2x + 2y ≥ 1

−8x + 10y ≤ 13

x + y ≤ 6

max x+ y
−2x+ 2y ≥ 1
−8x+ 10y ≤ 13

x, y ≥ 0
x, y ∈ Z

x+ y ≤ 6 is a cut for (4, 4.5)

Using Cuts for Solving MIP’s

46 / 61

■ Let pTx ≤ q be a cut (of some spurious feasible solution of the relaxation).

Then the MIP

min cTx
x ∈ S′ where S′ =







x ∈ R
n

∣

∣

∣

∣

∣

∣

∣

∣

Ax = b
pTx ≤ q
x ≥ 0
xi ∈ Z ∀i ∈ I















has the same set of feasible solutions S
but its LP relaxation is strictly more constrained

■ Instead of splitting into subproblems (Branch & Bound),
one can add the cut and solve the relaxation of the new problem

■ In practice cuts are used together with Branch & Bound:
If after adding some cuts no integer solution is found, then branch

This technique is called Branch & Cut

Gomory Cuts

47 / 61

■ There are several techniques for deriving cuts

■ Some are problem-specific (e.g., for the travelling salesman problem)

■ Here we will see a generic technique: Gomory cuts

■ Let B be a feasible basis and let β be the associated basic solution.

Note that for all j ∈ R we have βj = 0

■ Let xi be a basic variable such that i ∈ I and βi 6∈ Z

■ E.g., this happens in the optimal basis of the relaxation
when the basic solution does not meet the integrality constraints

■ Let the row of the tableau corresponding to xi be of the form

xi = βi +
∑

j∈R αijxj

Gomory Cuts

48 / 61

■ Let x ∈ S. Then xi ∈ Z and

xi = βi +
∑

j∈R αijxj

xi − βi =
∑

j∈R αijxj

■ Let δ = βi − ⌊βi⌋. Then 0 < δ < 1

■ Hence

xi − ⌊βi⌋ = xi − βi + βi − ⌊βi⌋

= xi − βi + δ

= δ + xi − βi

= δ +
∑

j∈R αijxj

Gomory Cuts

49 / 61

δ = βi − ⌊βi⌋ xi − ⌊βi⌋ = δ +
∑

j∈R αijxj

■ Let us define

R+ = {j ∈ R | αij ≥ 0} R− = {j ∈ R | αij < 0}

■ Assume
∑

j∈R αijxj ≥ 0.

Gomory Cuts

49 / 61

δ = βi − ⌊βi⌋ xi − ⌊βi⌋ = δ +
∑

j∈R αijxj

■ Let us define

R+ = {j ∈ R | αij ≥ 0} R− = {j ∈ R | αij < 0}

■ Assume
∑

j∈R αijxj ≥ 0.

Then δ +
∑

j∈R αijxj > 0 and xi − ⌊βi⌋ ∈ Z imply

δ +
∑

j∈R

αijxj ≥ 1

∑

j∈R+

αijxj ≥
∑

j∈R

αijxj ≥ 1− δ

∑

j∈R+

αij

1− δ
xj ≥ 1

Gomory Cuts

49 / 61

δ = βi − ⌊βi⌋ xi − ⌊βi⌋ = δ +
∑

j∈R αijxj

■ Let us define

R+ = {j ∈ R | αij ≥ 0} R− = {j ∈ R | αij < 0}

■ Assume
∑

j∈R αijxj ≥ 0.

Then δ +
∑

j∈R αijxj > 0 and xi − ⌊βi⌋ ∈ Z imply

δ +
∑

j∈R

αijxj ≥ 1

∑

j∈R+

αijxj ≥
∑

j∈R

αijxj ≥ 1− δ

∑

j∈R+

αij

1− δ
xj ≥ 1

Moreover
∑

j∈R−

(

−αij

δ

)

xj ≥ 0

Gomory Cuts

50 / 61

δ = βi − ⌊βi⌋ xi − ⌊βi⌋ = δ +
∑

j∈R αijxj

■ Let us define

R+ = {j ∈ R | αij ≥ 0} R− = {j ∈ R | αij < 0}

■ Assume
∑

j∈R αijxj < 0.

Gomory Cuts

50 / 61

δ = βi − ⌊βi⌋ xi − ⌊βi⌋ = δ +
∑

j∈R αijxj

■ Let us define

R+ = {j ∈ R | αij ≥ 0} R− = {j ∈ R | αij < 0}

■ Assume
∑

j∈R αijxj < 0.

Then δ +
∑

j∈R αijxj < 1 and xi − ⌊βi⌋ ∈ Z imply

δ +
∑

j∈R

αijxj ≤ 0

∑

j∈R−

αijxj ≤
∑

j∈R

αijxj ≤ −δ

∑

j∈R−

(−αij

δ

)

xj ≥ 1

Gomory Cuts

50 / 61

δ = βi − ⌊βi⌋ xi − ⌊βi⌋ = δ +
∑

j∈R αijxj

■ Let us define

R+ = {j ∈ R | αij ≥ 0} R− = {j ∈ R | αij < 0}

■ Assume
∑

j∈R αijxj < 0.

Then δ +
∑

j∈R αijxj < 1 and xi − ⌊βi⌋ ∈ Z imply

δ +
∑

j∈R

αijxj ≤ 0

∑

j∈R−

αijxj ≤
∑

j∈R

αijxj ≤ −δ

∑

j∈R−

(−αij

δ

)

xj ≥ 1

Moreover
∑

j∈R+

αij

1−δ
xj ≥ 0

Gomory Cuts

51 / 61

■ In any case
∑

j∈R−

(−αij

δ

)

xj +
∑

j∈R+

αij

1− δ
xj ≥ 1

for any x ∈ S.

However, when x = β this inequality is not satisfied (set xj = 0 for j ∈ R)

■ In the example:











min−17

2
+ 9

2
s1 + s2

x = 4− 5

2
s1 −

1

2
s2

y = 9

2
− 2s1 −

1

2
s2

y violates the integrality condition,

we have δ = 1

2
,
∑

j∈R αijxj = −2s1 −
1

2
s2

The cut is 4s1 + s2 ≥ 1, which projected on x, y is y ≤ 4.

Ensuring All Vertices Are Integer

52 / 61

■ Consider an IP of the form

min cTx
Ax = b
x ≥ 0
x ∈ Z

■ Let us assume A, b have coefficients in Z

■ Are there any sufficient conditions to ensure that the simplex algorithm will directly provide an
integer solution, without branch & bound/cut?

Ensuring All Vertices Are Integer

53 / 61

■ Let us assume A, b have coefficients in Z

■ We will see sufficient conditions to ensure that
all vertices of the relaxation are integer

■ For instance, when the matrix A is totally unimodular:
the determinant of every square submatrix is 0 or ±1

Ensuring All Vertices Are Integer

53 / 61

■ Let us assume A, b have coefficients in Z

■ We will see sufficient conditions to ensure that
all vertices of the relaxation are integer

■ For instance, when the matrix A is totally unimodular:
the determinant of every square submatrix is 0 or ±1

In that case all bases have inverses with integer coefficients

Recall Cramer’s rule: if B is an invertible matrix, then

B−1 =
1

det(B)
adj(B)

where adj(B) is the adjugate matrix of B

Recall also that
adj(B) = ((−1)i+j det(Mji))1≤i,j≤n,

where Mij is matrix B after removing the i-th row and the j-th column

Ensuring All Vertices Are Integer

54 / 61

■ Sufficient condition for total unimodularity of a matrix A:
(Hoffman & Gale’s Theorem)

1. Each element of A is 0 or ±1

2. No more than two non-zeros appear in each columm

3. Rows can be partitioned in two subsets R1 and R2 s.t.

(a) If a column contains two non-zeros of the same sign,
the row of one of them belongs to one subset,
and the row of the other, to the other subset

(b) If a column contains two non-zeros of different signs,
the rows of both of them belong to the same subset

Ensuring All Vertices Are Integer

55 / 61

■ Let us consider an assignment problem

■ n = # of workers = # of tasks

■ Each worker must be assigned to exactly one task

■ Each task is to be performed by exactly one worker

■ cij = cost when worker i performs task j

Ensuring All Vertices Are Integer

55 / 61

■ Let us consider an assignment problem

■ n = # of workers = # of tasks

■ Each worker must be assigned to exactly one task

■ Each task is to be performed by exactly one worker

■ cij = cost when worker i performs task j

xij =

{

1 if worker i performs task j
0 otherwise

min
∑n

i=1

∑n
j=1

cijxij

∑n
j=1

xij = 1 ∀i ∈ {1, . . . , n}
∑n

i=1
xij = 1 ∀j ∈ {1, . . . , n}

xij ∈ {0, 1} ∀i, j ∈ {1, . . . , n}

■ This problem satisfies Hoffman & Gale’s conditions

Ensuring All Vertices Are Integer

56 / 61

■ Several kinds of IP’s satisfy Hoffman & Gale’s conditions:

◆ Assignment

◆ Transportation

◆ Maximum flow

◆ Shortest path

◆ ...

■ Usually ad-hoc graph algorithms are more efficient for these problems than the simplex method as
presented here

Ensuring All Vertices Are Integer

56 / 61

■ Several kinds of IP’s satisfy Hoffman & Gale’s conditions:

◆ Assignment

◆ Transportation

◆ Maximum flow

◆ Shortest path

◆ ...

■ Usually ad-hoc graph algorithms are more efficient for these problems than the simplex method as
presented here

■ But:

◆ The simplex method can be specialized: network simplex method

◆ Simplex techniques can be applied
if the problem is not a purely network one but has extra constraints

Modeling with 0-1 Variables

57 / 61

■ Sometimes we want to have an indicator variable of a contraint:
a 0/1 variable equal to 1 iff the constraint is true (= reification in CP)

■ E.g., let us to encode δ = 1↔ aTx ≤ b, where δ is a 0/1 var

Modeling with 0-1 Variables

57 / 61

■ Sometimes we want to have an indicator variable of a contraint:
a 0/1 variable equal to 1 iff the constraint is true (= reification in CP)

■ E.g., let us to encode δ = 1↔ aTx ≤ b, where δ is a 0/1 var

■ Assume aTx ∈ Z for all feasible solution x

Let U be an upper bound of aTx− b for all feasible solutions

Let L be a lower bound of aTx− b for all feasible solutions

Modeling with 0-1 Variables

57 / 61

■ Sometimes we want to have an indicator variable of a contraint:
a 0/1 variable equal to 1 iff the constraint is true (= reification in CP)

■ E.g., let us to encode δ = 1↔ aTx ≤ b, where δ is a 0/1 var

■ Assume aTx ∈ Z for all feasible solution x

Let U be an upper bound of aTx− b for all feasible solutions

Let L be a lower bound of aTx− b for all feasible solutions

1. δ = 1→ aTx ≤ b

can be encoded with aTx− b ≤ U(1− δ)

Modeling with 0-1 Variables

57 / 61

■ Sometimes we want to have an indicator variable of a contraint:
a 0/1 variable equal to 1 iff the constraint is true (= reification in CP)

■ E.g., let us to encode δ = 1↔ aTx ≤ b, where δ is a 0/1 var

■ Assume aTx ∈ Z for all feasible solution x

Let U be an upper bound of aTx− b for all feasible solutions

Let L be a lower bound of aTx− b for all feasible solutions

1. δ = 1→ aTx ≤ b

can be encoded with aTx− b ≤ U(1− δ)

2. δ = 1← aTx ≤ b

δ = 0→ aTx > b

δ = 0→ aTx ≥ b+ 1

can be encoded with aTx− b ≥ (L− 1)δ + 1

Modeling with 0-1 Variables

58 / 61

■ Sometimes it is convenient to think constraints from a logical perspective, and then translate them
into linear inequalities

■ If x1, . . . , xn, y1, . . . , ym are 0/1 (= Boolean) variables then

x1 ∨ . . . ∨ xn ∨ ¬y1 ∨ . . . ∨ ¬ym

is equivalent to
x1 + . . .+ xn + (1− y1) + . . .+ (1− ym) ≥ 1 .

Example (Logical Constraints)

59 / 61

Let Xi represent “Ingredient i is in the blend”, i ∈ {A,B,C}.
Express the sentence

“If ingredient A is in the blend,
then ingredient B or C (or both) must also be in the blend”

with linear constraints.

Example (Logical Constraints)

59 / 61

Let Xi represent “Ingredient i is in the blend”, i ∈ {A,B,C}.
Express the sentence

“If ingredient A is in the blend,
then ingredient B or C (or both) must also be in the blend”

with linear constraints.

■ We need to express XA → (XB ∨XC).

■ Equivalently, ¬XA ∨XB ∨XC .

■ ¬XA ∨XB ∨XC is equivalent to (1− xA) + xB + xC ≥ 1.

■ So xB + xC ≥ xA

Example (Fixed Setup Charge)

60 / 61

Let x be the quantity of a product with unit production cost c1.

If the product is manufactured at all, there is a setup cost c0

Cost of producing x units =

{

0 if x = 0
c0 + c1x if x > 0

Want to minimize costs. Model as a MIP?

(for simplicity, additional constraints are not specified and can be omitted)

Example (Fixed Setup Charge)

60 / 61

Let x be the quantity of a product with unit production cost c1.

If the product is manufactured at all, there is a setup cost c0

Cost of producing x units =

{

0 if x = 0
c0 + c1x if x > 0

Want to minimize costs. Model as a MIP?

(for simplicity, additional constraints are not specified and can be omitted)

Let δ be 0/1 var such that x > 0→ δ = 1 (i.e., δ = 0→ x ≤ 0):
add constraint x− Uδ ≤ 0, where U is the upper bound on x

Then the cost is c0δ + c1x.

No need to express x > 0← δ = 1, i.e. x = 0→ δ = 0

Minimization will make δ = 0 if possible (i.e., if x = 0)

Example (Capacity Expansion)

61 / 61

Let aTx be the consumption of a limited resource in a production process

Want to relax the constraint aTx ≤ b by increasing capacity b.

Capacity can be expanded to bi

b = b0 < b1 < b2 < · · · < bt

with costs, respectively,

0 = c0 < c1 < c2 < · · · < ct

Want to minimize costs. Model as a MIP?
(for simplicity, additional constraints are not specified and can be omitted)

Example (Capacity Expansion)

61 / 61

Let aTx be the consumption of a limited resource in a production process

Want to relax the constraint aTx ≤ b by increasing capacity b.

Capacity can be expanded to bi

b = b0 < b1 < b2 < · · · < bt

with costs, respectively,

0 = c0 < c1 < c2 < · · · < ct

Want to minimize costs. Model as a MIP?
(for simplicity, additional constraints are not specified and can be omitted)

Let 0/1 variables δi mean “capacity expanded to bi”. Then:

■

∑t
i=0

δi = 1

■ aTx ≤
∑t

i=0
biδi

■ Cost function:
∑t

i=0
ciδi

	Mixed Integer Linear Programs
	Complexity: LP vs. IP
	LP Relaxation of a MIP
	Branch & Bound
	Branch & Bound
	Branch & Bound
	Branch & Bound
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Pruning in Branch & Bound
	Branch & Bound: Algorithm
	Heuristics in Branch & Bound
	Remarks on Branch & Bound
	Remarks on Branch & Bound
	Remarks on Branch & Bound
	Remarks on Branch & Bound
	Remarks on Branch & Bound
	Cutting Planes
	Cutting Planes
	Using Cuts for Solving MIP's
	Gomory Cuts
	Gomory Cuts
	Gomory Cuts
	Gomory Cuts
	Gomory Cuts
	Ensuring All Vertices Are Integer
	Ensuring All Vertices Are Integer
	Ensuring All Vertices Are Integer
	Ensuring All Vertices Are Integer
	Ensuring All Vertices Are Integer
	Modeling with 0-1 Variables
	Modeling with 0-1 Variables
	Example (Logical Constraints)
	Example (Fixed Setup Charge)
	Example (Capacity Expansion)

