The Dual Simplex Method

Combinatorial Problem Solving (CPS)

Javier Larrosa Albert Oliveras Enric Rodríguez-Carbonell

April 12, 2019
Basic Idea

- **Abuse of terminology:**

 Henceforth sometimes by “optimal” we will mean “satisfying the optimality conditions”

 If not explicit, the context will disambiguate

- The algorithm as explained so far is known as **primal simplex**:

 starting with feasible basis,

 find optimal basis (= satisfying optimality conds.) while keeping feasibility

- There is an alternative algorithm known as **dual simplex**:

 starting with optimal basis (= satisfying optimality conds.),

 find feasible basis while keeping optimality
Basic Idea

\[
\begin{aligned}
\min & \quad -x - y \\
2x + y & \geq 3 \\
2x + y & \leq 6 \\
x + 2y & \leq 6 \\
x & \geq 0 \\
y & \geq 0
\end{aligned}
\]

\[
\begin{aligned}
\min & \quad -x - y \\
2x + y - s_1 & = 3 \\
2x + y + s_2 & = 6 \\
x + 2y + s_3 & = 6 \\
x, y, s_1, s_2, s_3 & \geq 0
\end{aligned}
\]

\[
\begin{aligned}
\min & \quad -x - y \\
x = 6 - 2y - s_3 \\
s_1 = 9 - 3y - 2s_3 \\
s_2 = -6 + 3y + 2s_3
\end{aligned}
\]

Basis \((x, s_1, s_2)\) is optimal
\((= \text{satisfies optimality conditions})\)
but is not feasible!
Basic Idea

\[
\begin{align*}
-2x - y &\leq 6 \\
2x + y &\geq 3 \\
x \geq 0 \\
y \geq 0 \\
(6, 0)
\end{align*}
\]
Basic Idea

Let us make a violating basic variable non-negative ...

- Increase s_2 by making it non-basic: then it will be 0

... while preserving optimality (= optimality conditions are satisfied)

- If y replaces s_2 in the basis,
 then $y = \frac{1}{3}(s_2 + 6 - 2s_3), -x - y = -4 + \frac{1}{3}(s_2 + s_3)$

- If s_3 replaces s_2 in the basis,
 then $s_3 = \frac{1}{2}(s_2 + 6 - 3y), -x - y = -3 + \frac{1}{2}(s_2 - y)$
Basic Idea

- Let us make a violating basic variable non-negative ...
 - Increase s_2 by making it non-basic: then it will be 0

- ... while preserving optimality (= optimality conditions are satisfied)
 - If y replaces s_2 in the basis, then $y = \frac{1}{3}(s_2 + 6 - 2s_3), -x - y = -4 + \frac{1}{3}(s_2 + s_3)$
 - If s_3 replaces s_2 in the basis, then $s_3 = \frac{1}{2}(s_2 + 6 - 3y), -x - y = -3 + \frac{1}{2}(s_2 - y)$
 - To preserve optimality, y must replace s_2
Basic Idea

\[
\begin{aligned}
\min & \quad -6 + y + s_3 \\
x &= 6 - 2y - s_3 \\
s_1 &= 9 - 3y - 2s_3 \\
s_2 &= -6 + 3y + 2s_3
\end{aligned}
\quad \Rightarrow \quad
\begin{aligned}
\min & \quad -4 + \frac{1}{3}s_2 + \frac{1}{3}s_3 \\
x &= 2 - \frac{2}{3}s_2 + \frac{1}{3}s_3 \\
y &= 2 + \frac{1}{3}s_2 - \frac{2}{3}s_3 \\
s_1 &= 3 - s_2
\end{aligned}
\]
Basic Idea

\[
\begin{aligned}
&\min -6 + y + s_3 \\
x &= 6 - 2y - s_3 \\
s_1 &= 9 - 3y - 2s_3 \\
s_2 &= -6 + 3y + 2s_3
\end{aligned}
\quad \implies \quad
\begin{aligned}
&\min -4 + \frac{1}{3}s_2 + \frac{1}{3}s_3 \\
x &= 2 - \frac{2}{3}s_2 + \frac{1}{3}s_3 \\
y &= 2 + \frac{1}{3}s_2 - \frac{2}{3}s_3 \\
s_1 &= 3 - s_2
\end{aligned}
\]

- Current basis is feasible and optimal!
Basic Idea

\[\begin{align*}
2x + y &\leq 6 \\
2x + y &\geq 3 \\
x &\geq 0 \\
y &\geq 0
\end{align*}\]

\[\begin{align*}
\min -x - y
\end{align*}\]
Outline of the Dual Simplex

1. Initialization: Pick an optimal basis.

2. Dual Pricing: If all basic values are ≥ 0, then return OPTIMAL. Else pick a basic variable with value < 0.

3. Dual Ratio test: Find non-basic variable for swapping while preserving optimality, i.e., non-negativity constraints on reduced costs.

 If it does not exist, then return INFEASIBLE. Else swap chosen non-basic variable with violating basic variable.

4. Update: Update the tableau and go to 2.
Duality

- To understand better how the dual simplex works: theory of duality
- We can get lower bounds on LP optimum value by adding constraints in a convenient way

\[
\begin{align*}
\min & \quad -x - y \\
2x + y & \geq 3 \\
2x + y & \leq 6 \\
x + 2y & \leq 6 \\
x & \geq 0 \\
y & \geq 0
\end{align*}
\Rightarrow
\begin{align*}
\min & \quad -x - y \\
2x + y & \geq 3 \\
-2x - y & \geq -6 \\
-x - 2y & \geq -6 \\
x & \geq 0 \\
y & \geq 0
\end{align*}
\]

\[
\begin{align*}
-x - 2y & \geq -6 \\
y & \geq 0
\end{align*}
\]

\[
-x - y \geq -6
\]
Duality

- In general we can get **lower bounds** on LP optimum value by linearly combining **constraints** with convenient **multipliers**

\[
\begin{align*}
\min \ -x - y \\
2x + y &\geq 3 \\
-2x - y &\geq -6 \\
-x - 2y &\geq -6 \\
x &\geq 0 \\
y &\geq 0
\end{align*}
\]

\[
1 \cdot (2x + y \geq 3)
\]

\[
2 \cdot (-2x - y \geq -6)
\]

\[
1 \cdot (x \geq 0)
\]

\[
\begin{align*}
2x + y &\geq 3 \\
-4x - 2y &\geq -12 \\
x &\geq 0
\end{align*}
\]

\[
-x - y \geq -9
\]

- There may be different choices, each giving a different lower bound
Duality

In general:

\[
\begin{align*}
\min &\quad -x - y \\
\text{s.t.} &\quad 2x + y \geq 3 \\
&\quad -2x - y \geq -6 \\
&\quad -x - 2y \geq -6 \\
&\quad x \geq 0 \\
&\quad y \geq 0
\end{align*}
\]

\[
\begin{align*}
\mu_1 \cdot (2x + y) &\geq 3 \\
\mu_2 \cdot (-2x - y) &\geq -6 \\
\mu_3 \cdot (-x - 2y) &\geq -6 \\
\mu_4 \cdot x &\geq 0 \\
\mu_5 \cdot y &\geq 0
\end{align*}
\]

If \(\mu_1 \geq 0, \mu_2 \geq 0, \mu_3 \geq 0, \mu_4 \geq 0, \mu_5 \geq 0 \),
\[
2 \mu_1 - 2 \mu_2 - \mu_3 + \mu_4 = -1 \quad \text{and} \quad \mu_1 - \mu_2 - 2 \mu_3 + \mu_5 = -1
\]
then \(3 \mu_1 - 6 \mu_2 - 6 \mu_3 \) is a lower bound.
Duality

- We can skip the multipliers of the non-negativity constraints

- We have:

\[
\begin{align*}
\min & \quad -x - y \\
2x + y & \geq 3 \\
-2x - y & \geq -6 \\
-x - 2y & \geq -6 \\
x & \geq 0 \\
y & \geq 0
\end{align*}
\]

\[
\begin{align*}
\mu_1 \cdot (2x + y) & \geq 3 \\
\mu_2 \cdot (-2x - y) & \geq -6 \\
\mu_3 \cdot (-x - 2y) & \geq -6
\end{align*}
\]

\[
(2\mu_1 - 2\mu_2 - \mu_3) x + (\mu_1 - \mu_2 - 2\mu_3) y \geq 3\mu_1 - 6\mu_2 - 6\mu_3
\]

- In the coefficient of \(x \) we can “complete” \(2\mu_1 - 2\mu_2 - \mu_3 \) to reach \(-1\) by adding a suitable multiple of \(x \geq 0 \) (the multiplier will be the slack)

- If \(\mu_1 \geq 0, \mu_2 \geq 0, \mu_3 \geq 0, \)

\[
2\mu_1 - 2\mu_2 - \mu_3 \leq -1 \text{ and } \mu_1 - \mu_2 - 2\mu_3 \leq -1
\]

then \(3\mu_1 - 6\mu_2 - 6\mu_3 \) is a lower bound
Duality

- Best possible lower bound with this “trick” can be found by solving

\[
\begin{align*}
\max & \quad 3\mu_1 - 6\mu_2 - 6\mu_3 \\
2\mu_1 - 2\mu_2 - \mu_3 & \leq -1 \\
\mu_1 - \mu_2 - 2\mu_3 & \leq -1 \\
\mu_1, \mu_2, \mu_3 & \geq 0
\end{align*}
\]

- How far will it be from the optimum?
Duality

- Best possible lower bound with this “trick” can be found by solving

\[
\begin{aligned}
\text{max} & \quad 3\mu_1 - 6\mu_2 - 6\mu_3 \\
2\mu_1 - 2\mu_2 - \mu_3 & \leq -1 \\
\mu_1 - \mu_2 - 2\mu_3 & \leq -1 \\
\mu_1, \mu_2, \mu_3 & \geq 0
\end{aligned}
\]

- How far will it be from the optimum?

- A best solution is given by \((\mu_1, \mu_2, \mu_3) = (0, \frac{1}{3}, \frac{1}{3})\)

\[
\begin{aligned}
0 \cdot (2x + y & \geq 3) \\
\frac{1}{3} \cdot (-2x - y & \geq -6) \\
\frac{1}{3} \cdot (-x - 2y & \geq -6)
\end{aligned}
\]

Matches the optimum!

\[
-x - y \geq -4
\]
Dual Problem

- Given an LP (called **primal**)

\[
\begin{align*}
\text{min} \quad & c^T x \\
Ax & \geq b \\
x & \geq 0
\end{align*}
\]

its **dual** is the LP

\[
\begin{align*}
\text{max} \quad & b^T y \\
A^T y & \leq c \\
y & \geq 0
\end{align*}
\]

- Primal variables associated with columns of \(A \)
- Dual variables (**multipliers**) associated with rows of \(A \)
- Objective and right-hand side vectors swap their roles
Prop. The dual of the dual is the primal.

Proof:

\[
\begin{align*}
\max b^T y & \quad - \min (-b)^T y \\
A^T y \leq c & \quad - A^T y \geq - c \\
y \geq 0 & \quad y \geq 0
\end{align*}
\]

\[
\begin{align*}
- \max - c^T x & \quad \min c^T x \\
(-A^T)^T x \leq - b & \quad A x \geq b \\
x \geq 0 & \quad x \geq 0
\end{align*}
\]

We say the primal and the dual form a primal-dual pair.
Dual Problem

Prop. \[\begin{align*}
\min & \quad c^T x \\
Ax &= b \\
x &\geq 0
\end{align*} \quad \text{and} \quad \begin{align*}
\max & \quad b^T y \\
A^T y &\leq c
\end{align*} \]

form a primal-dual pair

Proof:

\[\begin{align*}
\min & \quad c^T x \\
Ax &= b \\
x &\geq 0 \\
\quad \Rightarrow \quad & \quad \min c^T x \\
Ax &\geq b \\
-Ax &\geq -b \\
x &\geq 0
\end{align*} \]

\[\begin{align*}
\max & \quad b^T y_1 - b^T y_2 \\
A^T y_1 - A^T y_2 &\leq c \\
y_1, y_2 &\geq 0 \\
\quad \Rightarrow \quad & \quad \max b^T y \\
y_1 - y_2 &:= y \\
A^T y &\leq c
\end{align*} \]
Duality Theorems

- **Th. (Weak Duality)** Let (P, D) be a primal-dual pair

\[
\begin{align*}
(P) & \quad \min c^T x \\
& \quad Ax = b \\
& \quad x \geq 0 \\
(D) & \quad \max b^T y \\
& \quad A^T y \leq c
\end{align*}
\]

If x is feasible solution to P and y is feasible solution to D then $b^T y \leq c^T x$

Proof:

\[c - A^T y \geq 0, \text{ i.e., } c^T - y^T A \geq 0, \text{ and } x \geq 0 \text{ imply } c^T x - y^T Ax \geq 0.\]

So $c^T x \geq y^T Ax$, and

\[b^T y = y^T b = y^T Ax \leq c^T x\]
Duality Theorems

- Feasible solutions to D give lower bounds on P
- Feasible solutions to P give upper bounds on D
- Will the two optimum values be always equal?
Duality Theorems

- Feasible solutions to D give lower bounds on P
- Feasible solutions to P give upper bounds on D
- Will the two optimum values be always equal?

Th. (Strong Duality) Let (P, D) be a primal-dual pair

\[
\begin{align*}
(P) \quad & \min c^T x \\
& Ax = b \\
& x \geq 0 \\
(D) \quad & \max b^T y \\
& A^T y \leq c
\end{align*}
\]

If any of P or D has a feasible solution and a finite optimum then the same holds for the other problem and the two optimum values are equal.
Proof (Th. of Strong Duality):

By symmetry it is sufficient to prove only one direction. Wlog. let us assume P is feasible with finite optimum.
Proof (Th. of Strong Duality):

By symmetry it is sufficient to prove only one direction. Wlog. let us assume P is feasible with finite optimum. After executing the Simplex algorithm to P we find B optimal feasible basis. Then:

- $c_B^T B^{-1} a_j \leq c_j$ for all $j \in \mathcal{R}$ (optimality conds hold)
- $c_B^T B^{-1} a_j = c_j$ for all $j \in \mathcal{B}$

So $\pi^T := c_B^T B^{-1}$ is dual feasible: $\pi^T A \leq c^T$, i.e. $A^T \pi \leq c$.
Duality Theorems

■ Proof (Th. of Strong Duality):

By symmetry it is sufficient to prove only one direction. Wlog. let us assume P is feasible with finite optimum.

After executing the Simplex algorithm to P we find B optimal feasible basis. Then:

◆ $c_B^T B^{-1} a_j \leq c_j$ for all $j \in \mathcal{R}$ (optimality conds hold)
◆ $c_B^T B^{-1} a_j = c_j$ for all $j \in \mathcal{B}$

So $\pi^T := c_B^T B^{-1}$ is dual feasible: $\pi^T A \leq c^T$, i.e. $A^T \pi \leq c$.

Moreover, $c_B^T \beta = c_B^T B^{-1} b = \pi^T b = b^T \pi$

By the theorem of weak duality, π is optimum for D
Duality Theorems

- **Proof (Th. of Strong Duality):**
 By symmetry it is sufficient to prove only one direction. Wlog. let us assume \(P \) is feasible with finite optimum.
 After executing the Simplex algorithm to \(P \) we find \(B \) optimal feasible basis. Then:

 ◆ \(c_B^T B^{-1} a_j \leq c_j \) for all \(j \in \mathcal{R} \) (optimality conds hold)

 ◆ \(c_B^T B^{-1} a_j = c_j \) for all \(j \in \mathcal{B} \)

 So \(\pi^T := c_B^T B^{-1} \) is dual feasible: \(\pi^T A \leq c \), i.e. \(A^T \pi \leq c \).

 Moreover, \(c_B^T \beta = c_B^T B^{-1} b = \pi^T b = b^T \pi \)

 By the theorem of weak duality, \(\pi \) is optimum for \(D \)

- If \(B \) is an optimal feasible basis for \(P \),
 then simplex multipliers \(\pi^T := c_B^T B^{-1} \) are optimal feasible solution for \(D \)

- We can solve the dual by applying the simplex algorithm on the primal

- We can solve the primal by applying the simplex algorithm on the dual
Prop. Let \((P, D)\) be a primal-dual pair

\[
\begin{align*}
(P) \quad & \min c^T x \\
& Ax = b \\
& x \geq 0 \\
(D) \quad & \max b^T y \\
& A^T y \leq c
\end{align*}
\]

(1) If \(P\) has a feasible solution but is unbounded, then \(D\) is infeasible

(2) If \(D\) has a feasible solution but is unbounded, then \(P\) is infeasible

Proof:

Let us prove (1) by contradiction.

If \(y\) were a feasible solution to \(D\), by the weak duality theorem, objective of \(P\) would be lower bounded!

(2) is proved by duality.
Duality Theorems

Prop. Let \((P, D)\) be a primal-dual pair

\[
\begin{align*}
(P) & : \min c^T x \\
& \text{subject to } Ax = b \\
& \quad \quad x \geq 0 \\
(D) & : \max b^T y \\
& \text{subject to } A^T y \leq c
\end{align*}
\]

(1) If \(P\) has a feasible solution but is unbounded, then \(D\) is infeasible

(2) If \(D\) has a feasible solution but is unbounded, then \(P\) is infeasible

And the converse?
Does infeasibility of one imply unboundedness of the other?
Duality Theorems

Prop. Let \((P, D)\) be a primal-dual pair

\[
\begin{align*}
(P) & \quad \min c^T x \\
& \quad Ax = b \\
& \quad x \geq 0
\end{align*}
\]

\[
\begin{align*}
(D) & \quad \max b^T y \\
& \quad A^T y \leq c
\end{align*}
\]

(1) If \(P\) has a feasible solution but is unbounded, then \(D\) is infeasible

(2) If \(D\) has a feasible solution but is unbounded, then \(P\) is infeasible

And the converse? Does infeasibility of one imply unboundedness of the other?

\[
\begin{align*}
\min & \quad 3x_1 + 5x_2 \\
& \quad x_1 + 2x_2 = 3 \\
& \quad 2x_1 + 4x_2 = 1 \\
& \quad x_1, x_2 \text{ free}
\end{align*}
\]

\[
\begin{align*}
\max & \quad 3y_1 + y_2 \\
& \quad y_1 + 2y_2 = 3 \\
& \quad 2y_1 + 4y_2 = 5 \\
& \quad y_1, y_2 \text{ free}
\end{align*}
\]
Duality Theorems

<table>
<thead>
<tr>
<th>Condition</th>
<th>Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primal unbounded</td>
<td>\implies Dual infeasible</td>
</tr>
<tr>
<td>Dual unbounded</td>
<td>\implies Primal infeasible</td>
</tr>
<tr>
<td>Primal infeasible</td>
<td>\implies Dual { infeasible, unbounded }</td>
</tr>
<tr>
<td>Dual infeasible</td>
<td>\implies Primal { infeasible, unbounded }</td>
</tr>
</tbody>
</table>
Consider a primal-dual pair of the form

\[
\begin{align*}
\min & \quad c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad x \geq 0
\end{align*}
\quad \text{and} \quad
\begin{align*}
\max & \quad b^T y \\
\text{subject to} & \quad A^T y \leq c \\
& \quad \text{and} \quad w \geq 0
\end{align*}
\]

Karush-Kuhn-Tucker (KKT) optimality conditions are

- \(Ax = b \)
- \(A^T y + w = c \) (complementary slackness)
- \(x, w \geq 0 \)
- \(x^T w = 0 \)

They are necessary and sufficient conditions for optimality of the pair of primal-dual solutions \((x, (y, w))\)

Used, e.g., as a test of quality in LP solvers

\[
\begin{align*}
\min & \quad c^T x \\
\text{(P)} & \quad Ax = b \
\quad x \geq 0 \\
\max & \quad b^T y \\
\text{(D)} & \quad A^T y + w = c \\
\quad w \geq 0
\end{align*}
\]

\[\begin{align*}
\text{(KKT)}
\quad & \bullet Ax = b \\
\quad & \bullet A^T y + w = c \\
\quad & \bullet x, w \geq 0 \\
\quad & \bullet x^T w = 0
\end{align*}\]

Th. \((x, (y, w))\) is solution to **KKT** iff
\(x\) optimal solution to **P** and \((y, w)\) optimal solution to **D**

Proof:

\[0 = x^T w = x^T (c - A^T y) = c^T x - b^T y, \text{ and Weak Duality}\]

\[x \text{ is feasible solution to **P**, } (y, w) \text{ is feasible solution to **D}.\]

By Strong Duality \(x^T w = x^T (c - A^T y) = c^T x - b^T y = 0\)
as both solutions are optimal
Consider a primal-dual pair of the form

\[\begin{align*}
\min_z \ z &= c^T x \\
(P) \ Ax &= b \\
x &\geq 0
\end{align*} \]

\[\begin{align*}
\max_Z \ Z &= b^T y \\
(D) \ A^T y + w &= c \\
w &\geq 0
\end{align*} \]

Let us denote by a_1, \ldots, a_n the columns of A, i.e., $A = (a_1, \ldots, a_n)$.

Let B be a basis of P. Let us see how we can get a basis of D.

Assume that the basic variables are the first m: $B = (a_1, \ldots, a_m)$. Then $R = (a_{m+1}, \ldots, a_n)$.

If slacks w are split into $w_B^T = (w_1, \ldots, w_m)$, $w_R^T = (w_{m+1}, \ldots, w_n)$, then

\[
A^T y + w = \begin{pmatrix}
 a^T_1 y \\
 \vdots \\
 a^T_m y \\
 a^T_{m+1} y \\
 \vdots \\
 a^T_n y
\end{pmatrix} + \begin{pmatrix}
 w_1 \\
 \vdots \\
 w_m \\
 w_{m+1} \\
 \vdots \\
 w_n
\end{pmatrix} = \begin{pmatrix}
 B^T y + w_B \\
 R^T y + w_R
\end{pmatrix}
\]
Relating Bases

■ Hence we have

\[A^T y + w = \left(\begin{array}{c} B^T y + w_B \\ R^T y + w_R \end{array} \right) \]

■ Then the matrix of the system in the dual problem \(D \) is

\[
\begin{pmatrix}
B^T & I & 0 \\
R^T & 0 & I
\end{pmatrix}
\begin{pmatrix}
y \\
w_B \\
w_R
\end{pmatrix}
\]

■ Now let us consider the submatrix of vars \(y \) and vars \(w_R \):

\[\hat{B} = \begin{pmatrix}
B^T \\
R^T
\end{pmatrix}
\begin{pmatrix}
0 \\
I
\end{pmatrix} \]

■ Note \(\hat{B} \) is a square \(n \times n \) matrix
Relating Bases

- Dual variables $\hat{B} = (y, w_\mathcal{R})$ determine a basis of D:

$$\hat{B} = \left(\begin{array}{c|c} B^T & 0 \\ \hline R^T & I \end{array} \right)$$

$$\hat{B}^{-1} = \left(\begin{array}{c|c} B^{-T} & 0 \\ \hline -R^T B^{-T} & I \end{array} \right)$$
Relating Bases

- Dual variables $\hat{\mathcal{B}} = (y, w_\mathcal{R})$ determine a basis of D:

$$
\hat{B} = \begin{pmatrix}
B^T & 0 \\
R^T & I
\end{pmatrix}
$$

$$
\hat{B}^{-1} = \begin{pmatrix}
B^{-T} & 0 \\
-R^T B^{-T} & I
\end{pmatrix}
$$

- In the next slides we answer the following questions:

1. If basis $\hat{\mathcal{B}}$ of the dual D is feasible, what can we say about basis \mathcal{B} of the primal P?

2. If basis $\hat{\mathcal{B}}$ of the dual D is optimal (satisfies the optimality conds.), what can we say about basis \mathcal{B} of the primal P?

3. If we apply the simplex algorithm to the dual D using basis $\hat{\mathcal{B}}$, how does that translate into the primal P and its basis \mathcal{B}?
Relating Bases

- Dual variables $\hat{B} = (y, w_\mathcal{R})$ determine a basis of D:

$$\hat{B} = \begin{pmatrix} B^T & 0 \\ R^T & I \end{pmatrix}$$

$$\hat{B}^{-1} = \begin{pmatrix} B^{-T} & 0 \\ -R^T B^{-T} & I \end{pmatrix}$$

- In the next slides we answer the following questions:
 1. If basis \hat{B} of the dual D is feasible, what can we say about basis B of the primal P?
 2. If basis \hat{B} of the dual D is optimal (satisfies the optimality conds.), what can we say about basis B of the primal P?
 3. If we apply the simplex algorithm to the dual D using basis \hat{B}, how does that translate into the primal P and its basis B?

- Recall that each variable w_j in D is associated to a variable x_j in P.
- Note that w_j is \hat{B}-basic iff x_j is not B-basic
Dual Feasibility = Primal Optimality

- If \hat{B} is feasible for dual D, what about B in primal P?

$$\hat{B}^{-1}c = \begin{pmatrix} B^{-T} & 0 \\ -R^TB^{-T} & I \end{pmatrix} \begin{pmatrix} c_B \\ c_R \end{pmatrix} = \begin{pmatrix} B^{-T}c_B \\ -R^TB^{-T}c_B + c_R \end{pmatrix}$$

- There is no restriction on the sign of y_1, \ldots, y_m
- Variables w_j have to be non-negative. But

$$-R^TB^{-T}c_B + c_R \geq 0 \iff c_R^T - c_B^TB^{-1}R \geq 0$$
Dual Feasibility $=$ Primal Optimality

- If \hat{B} is feasible for dual D, what about B in primal P?

$$\hat{B}^{-1}c = \begin{pmatrix} B^{-T} & 0 \\ -R^T & I \end{pmatrix} \begin{pmatrix} c_B \\ c_R \end{pmatrix} = \begin{pmatrix} B^{-T}c_B \\ -R^T B^{-T}c_B + c_R \end{pmatrix}$$

- There is no restriction on the sign of y_1, \ldots, y_m

- Variables w_j have to be non-negative. But

$$-R^T B^{-T}c_B + c_R \geq 0 \iff c_R^T c_B B^{-1} R \geq 0 \iff d_R^T \geq 0$$
Dual Feasibility = Primal Optimality

- If \(\hat{B} \) is feasible for dual \(D \), what about \(B \) in primal \(P \)?

\[
\hat{B}^{-1}c = \begin{pmatrix}
 B^{-T} & 0 \\
 -R^T B^{-T} & I
\end{pmatrix}
\begin{pmatrix}
 c_B \\
 c_R
\end{pmatrix}
= \begin{pmatrix}
 B^{-T}c_B \\
 -R^T B^{-T}c_B + c_R
\end{pmatrix}
\]

- There is no restriction on the sign of \(y_1, \ldots, y_m \)
- Variables \(w_j \) have to be non-negative. But

\[
-R^T B^{-T}c_B + c_R \geq 0 \iff c_R^T - c_B^T B^{-1}R \geq 0 \iff d_R^T \geq 0
\]

- \(\hat{B} \) is dual feasible iff \(d_j \geq 0 \) for all \(j \in R \)
- Dual feasibility is primal optimality!
Dual Optimality = Primal Feasibility

- If \(\hat{B} \) satisfies the optimality conds. for dual \(D \), what about \(B \) in primal \(P \)?
- Non \(\hat{B} \)-basic vars: \(w_B \) with costs \((0)\)
- \(\hat{B} \)-basic vars: \((y \mid w_R)\) with costs \((b^T \mid 0)\)
- Matrix of non \(\hat{B} \)-basic vars: \(\begin{pmatrix} I \\ 0 \end{pmatrix} \)
- Optimality condition: \(0 \geq \) reduced costs (maximization!)

\[
0 \geq \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} b^T \\ 0 \end{pmatrix} \begin{pmatrix} B^{-T} \\ -R^T B^{-T} \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ I \end{pmatrix} \begin{pmatrix} I \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} b^T B^{-T} \\ 0 \end{pmatrix} \begin{pmatrix} I \\ 0 \end{pmatrix} = -b^T B^{-T} = -(B^{-1}b)^T
\]
Dual Optimality = Primal Feasibility

- If \hat{B} satisfies the optimality conds. for dual D, what about B in primal P?
- Non \hat{B}-basic vars: w_B with costs (0)
- \hat{B}-basic vars: $(y \mid w_R)$ with costs $(b^T \mid 0)$
- Matrix of non \hat{B}-basic vars: $\begin{pmatrix} I \\ 0 \end{pmatrix}$
- Optimality condition: $0 \geq$ reduced costs (maximization!)

\[
0 \geq \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} b^T \\ 0 \end{pmatrix} \begin{pmatrix} B^{-T} & 0 \\ -R^T B^{-T} & I \end{pmatrix} \begin{pmatrix} I \\ 0 \end{pmatrix} =
\begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} b^T B^{-T} \\ 0 \end{pmatrix} \begin{pmatrix} I \\ 0 \end{pmatrix} = -b^T B^{-T} = -(B^{-1}b)^T = -\beta^T \quad \text{iff} \quad \beta \geq 0
\]
Dual Optimality = Primal Feasibility

- If \(\hat{B} \) satisfies the optimality conds. for dual \(D \), what about \(B \) in primal \(P \)?
- Non \(\hat{B} \)-basic vars: \(w_B \) with costs \((0)\)
- \(\hat{B} \)-basic vars: \((y \mid w_R)\) with costs \((b^T \mid 0)\)
- Matrix of non \(\hat{B} \)-basic vars: \(\begin{pmatrix} I \\ 0 \end{pmatrix} \)
- Optimality condition: \(0 \geq \) reduced costs (maximization!)

\[
0 \geq \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} b^T \mid 0 \end{pmatrix} \begin{pmatrix} \frac{B^{-T}}{-R^T B^{-T}} & 0 \\ I \end{pmatrix} \begin{pmatrix} I \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} b^T B^{-T} \mid 0 \end{pmatrix} \begin{pmatrix} I \\ 0 \end{pmatrix} = -b^T B^{-T} = -(B^{-1}b)^T = -\beta^T \quad \text{iff} \quad \beta \geq 0
\]

- In the dual problem,
 for all \(1 \leq p \leq m \), var \(w_{kp} \) cannot improve objective function iff \(\beta_p \geq 0 \)
- Dual optimality is primal feasibility!
Improving a Non-Optimal Solution

- Next we apply the simplex algorithm to basis \hat{B} in the dual problem D and translate it to the primal problem P.

- Let p (where $1 \leq p \leq m$) be such that $\beta_p < 0$. I.e., the reduced cost of non-basic dual variable w_{kp} is positive.
So by giving w_{kp} a larger value we can improve the dual objective value. If w_{kp} takes value $t \geq 0$:

$$
\begin{pmatrix}
 y(t) \\
 w_\mathcal{R}(t)
\end{pmatrix} = \hat{B}^{-1}c - \hat{B}^{-1}te_p =
$$

$$
= \begin{pmatrix}
 B^{-T}c_B \\
 d_\mathcal{R}
\end{pmatrix} - \begin{pmatrix}
 B^{-T} \\
 -R^TB^{-T}
\end{pmatrix} \begin{pmatrix}
 0 \\
 I
\end{pmatrix} \begin{pmatrix}
 te_p \\
 0
\end{pmatrix} = \begin{pmatrix}
 B^{-T}c_B - tB^{-T}e_p \\
 d_\mathcal{R} + tR^TB^{-T}e_p
\end{pmatrix}
$$

- Dual objective value improvement is

$$
\Delta Z = b^Ty(t) - b^Ty(0) = -tb^TB^{-T}e_p = -t\beta^Te_p = -t\beta_p = t(-\beta_p)
$$
Improving a Non-Optimal Solution

- Of all basic dual variables, only $w_\mathcal{R}$ variables need to be ≥ 0

- For $j \in \mathcal{R}$

$$w_j(t) = d_j + t\alpha^T_j B^{-T}e_p = d_j + t\alpha^p_j$$

where α^p_j is the p-th component of α_j. Hence:

$$w_j(t) \geq 0 \iff d_j + t\alpha^p_j \geq 0$$

- If $\alpha^p_j \geq 0$ the constraint is satisfied for all $t \geq 0$

- If $\alpha^p_j < 0$ we need $\frac{d_j}{-\alpha^p_j} \geq t$

- **Best improvement** achieved with

$$\Theta_D := \min\{\frac{d_j}{-\alpha^p_j} \mid \alpha^p_j < 0\}$$

- Variable w_q is **blocking** when $\Theta_D = \frac{d_q}{-\alpha^p_q}$
Improving a Non-Optimal Solution

1. If $\Theta_D = +\infty$ (there is no $j \in \mathcal{R}$ such that $\alpha_j^p < 0$):

 Value of dual objective can be increased infinitely.

 Dual LP is unbounded.
 Primal LP is infeasible.

2. If $\Theta_D < +\infty$ and w_q is blocking:

 When setting $w_{kp} = \Theta_D$,
 non-negativity constraints of basic vars of dual are respected

 In particular, $w_q(\Theta_D) = d_q + \Theta_D \alpha_q^p = d_q + \left(\frac{d_q}{-\alpha_q^p}\right)\alpha_q^p = 0$

 We can make a basis change:

 - In dual: w_{kp} enters $\hat{\mathcal{B}}$ and w_q leaves
 - In primal: x_{kp} leaves \mathcal{B} and x_q enters
Update

- We do **not** actually need to form the dual LP: it is **enough** to have a representation of the primal LP

- **New basic indices:** \(\overline{B} = (k_1, \ldots, k_{p-1}, q, k_{p+1} \ldots, k_m) \)

- **New dual objective value:** \(\overline{Z} = Z - \Theta_D \beta_p \)

- **New dual basic sol:** \(\overline{y} = y - \Theta_D \rho_p \)
 \(\overline{d}_j = d_j + \Theta_D \alpha_j^p \) if \(j \in \mathcal{R}, \overline{d}_{k_p} = \Theta_D \)

- **New primal basic sol:** \(\overline{\beta}_p = \Theta_P, \quad \overline{\beta}_i = \beta_i - \Theta_P \alpha_i^q \) if \(i \neq p \)
 where \(\Theta_P = \frac{\beta_p}{\alpha_q^p} \)

- **New basis inverse:** \(\overline{B}^{-1} = E \overline{B}^{-1} \)
 where \(E = (e_1, \ldots, e_{p-1}, \eta, e_{p+1}, \ldots, e_m) \) and
 \(\eta^T = \left(\left(\frac{-\alpha_1^p}{\alpha_q^p} \right), \ldots, \left(\frac{-\alpha_{p-1}^p}{\alpha_q^p} \right), \frac{1}{\alpha_q^p} \left(\frac{-\alpha_{p+1}^p}{\alpha_q^p} \right), \ldots, \left(\frac{-\alpha_m^p}{\alpha_q^p} \right) \right)^T \)
Algorithmic Description

1. **Initialization:** Find an initial dual feasible basis B

 Compute B^{-1}, $\beta = B^{-1}b$,

 $y^T = c_B^T B^{-1}$, $d_R^T = c_R^T - y^T R$, $Z = b^T y$

2. **Dual Pricing:**

 If for all $i \in B$, $\beta_i \geq 0$ then return **OPTIMAL**

 Else let p be such that $\beta_p < 0$.

 Compute $\rho_p^T = e_p^T B^{-1}$ and $\alpha^p_j = \rho_p^T a_j$ for $j \in R$

3. **Dual Ratio test:** Compute $\mathcal{J} = \{j \mid j \in R, \alpha^p_j < 0\}$.

 If $\mathcal{J} = \emptyset$ then return **INFEASIBLE**

 Else compute $\Theta_D = \min_{j \in \mathcal{J}} \left(\frac{d_j}{-\alpha^p_j} \right)$ and q st. $\Theta_D = \frac{d_q}{-\alpha^q_p}$
Algorithmic Description

4. Update:
\[
\bar{B} = B - \{k_p\} \cup \{q\} \\
\bar{Z} = Z - \Theta_D \beta_p
\]

Dual solution

\[
\bar{y} = y - \Theta_D \rho_p \\
\bar{d}_j = d_j + \Theta_D \alpha^p_j \quad \text{if } j \in \mathcal{R}, \quad \bar{d}_{kp} = \Theta_D
\]

Primal solution

Compute \(\alpha_q = B^{-1} a_q \) and \(\Theta_P = \frac{\beta_p}{\alpha^q_p} \)

\[
\bar{\beta}_p = \Theta_P, \quad \bar{\beta}_i = \beta_i - \Theta_P \alpha^i_q \quad \text{if } i \neq p
\]

\[\bar{B}^{-1} = EB^{-1}\]

Go to 2.
Primal vs. Dual Simplex

<table>
<thead>
<tr>
<th>PRIMAL</th>
<th>DUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can handle bounds efficiently</td>
<td>Can handle bounds efficiently (not explained here)</td>
</tr>
<tr>
<td>Many years of research and implementation</td>
<td>Developments in the 90’s made it an alternative</td>
</tr>
<tr>
<td>There are classes of LP’s for which it is the best</td>
<td>Nowadays on average it gives better performance</td>
</tr>
<tr>
<td>Not suitable for solving LP’s with integer variables</td>
<td>Suitable for solving LP’s with integer variables</td>
</tr>
</tbody>
</table>