Introduction: Combinatorial Problems

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell

February 14, 2023
Combinatorial Problems

- A **combinatorial problem** consists in finding, among a **finite** set of objects, one that satisfies a set of **constraints**

- Several variations:
 - Find **one** solution
 - Find **all** solutions
 - Find **best** solution according to an objective function
Examples (I): Prop. Satisfiability

Given a formula F in propositional logic, is F satisfiable?

(= is there any assignment of Boolean values to variables that evaluates F to “true”?)
Examples (I): Prop. Satisfiability

- Given a formula F in propositional logic, is F satisfiable?

 (= is there any assignment of Boolean values to variables that evaluates F to “true”?)

- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$ satisfiable?
Examples (I): Prop. Satisfiability

- Given a formula F in propositional logic, is F satisfiable?
 ($=$ is there any assignment of Boolean values to variables that evaluates F to “true”?)

- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$ satisfiable?
 Yes: set p, q to true
Examples (I): Prop. Satisfiability

- Given a formula F in propositional logic, is F satisfiable?

 (= is there any assignment of Boolean values to variables that evaluates F to “true”?)

- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$ satisfiable?
 Yes: set p, q to true

- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$ satisfiable?
Examples (I): Prop. Satisfiability

Given a formula F in propositional logic, is F satisfiable?

(= is there any assignment of Boolean values to variables that evaluates F to “true”?)

- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$ satisfiable?
 Yes: set p, q to true

- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$ satisfiable?
 No
Examples (I): Prop. Satisfiability

Given a formula F in propositional logic, is F satisfiable?

($=$ is there any assignment of Boolean values to variables that evaluates F to “true”?)

- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$ satisfiable?
 Yes: set p, q to true

- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$ satisfiable?
 No

- Arises in:
 - Hardware verification
 - Circuit optimization
 - ...

Examples (II): Graph Coloring

- Given a graph and a number of colors, can vertices be painted so that neighbors have different colors?

- Arises in:
 - Frequency assignment
 - Register allocation
 - ...
Examples (III): Knapsack

Given n items with weights w_i and values v_i, a capacity W and a number V, is there a subset S of the items such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq V$?

- Arises in:
 - Selection of capital investments
 - Cutting stock problems
 - ...
Examples (IV): Bin Packing

- Given \(n \) items with volumes \(v_i \) and \(k \) identical bins with capacity \(V \), is it possible to place all items in bins?

- Arises in:
 - Logistics
 - ...

![Diagram of bin packing example](image)
A Note on Complexity

- All previous examples are **NP-complete**
 - No known polynomial algorithm (likely none exists)
 - Available algorithms have worst-case exp behavior: there will be small instances that are hard to solve
 - In real-world problems there is a lot of structure, which can hopefully be exploited
A Note on Complexity

- All previous examples are NP-complete
 - No known polynomial algorithm (likely none exists)
 - Available algorithms have worst-case exp behavior: there will be small instances that are hard to solve
 - In real-world problems there is a lot of structure, which can hopefully be exploited

- Other combinatorial problems solvable in P-time, e.g.
 - Bipartite matching: given a set of boys and girls and their compatibilities, can we marry all of them?
 - Shortest paths: given a graph and two vertices, which is the shortest way to go from one to the other?
A Note on Complexity

- All previous examples are **NP-complete**
 - No known polynomial algorithm (likely none exists)
 - Available algorithms have worst-case exp behavior: there will be small instances that are hard to solve
 - In real-world problems there is a lot of structure, which can hopefully be exploited

- Other combinatorial problems solvable in **P-time**, e.g.
 - **Bipartite matching**: given a set of boys and girls and their compatibilities, can we marry all of them?
 - **Shortest paths**: given a graph and two vertices, which is the shortest way to go from one to the other?

- Our focus will be on **hard** (= NP-complete) problems
Approaches to Problem Solving

- Specialized algorithms
 - Costly to design, implement and extend
Approaches to Problem Solving

- Specialized algorithms
 - Costly to design, implement and extend

- Declarative methodology
 1. Choose a problem solving framework *(what is my language?*)
 2. Model the problem *(what is a solution?*)
 - Define variables
 - Define constraints
 3. Solve it *(with an off-the-shelf solver)*
Approaches to Problem Solving

■ Specialized algorithms
 ◆ Costly to design, implement and extend

■ Declarative methodology
 1. Choose a problem solving framework (what is my language?)
 2. Model the problem (what is a solution?)
 ◆ Define variables
 ◆ Define constraints
 3. Solve it (with an off-the-shelf solver)

■ Pros of Declarative methodology
 ◆ Specification of the problem is all we need to solve it!
 ◆ Fast development and easy maintenance
 ◆ Often better performance than ad-hoc techniques
About CPS

- Problem solving frameworks
 - Constraint Programming (CP)
 - Linear Programming (LP)
 - Propositional Satisfiability (SAT)

- For each of these frameworks
 - Modeling techniques
 - Inner workings of solvers