Introduction:
Combinatorial Problems

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell

February 11, 2020
Combinatorial Problems

- A **combinatorial problem** consists in finding, among a **finite** set of objects, one that satisfies a set of **constraints**

- Several variations:
 - Find **one** solution
 - Find **all** solutions
 - Find **best** solution according to an objective function
Examples (I): Prop. Satisfiability

- Given a formula F in propositional logic, is F satisfiable?

 ($=$ is there any assignment of Boolean values to variables that evaluates F to “true”?)

Examples (I): Prop. Satisfiability

- Given a formula F in propositional logic, is F satisfiable?

 (= is there any assignment of Boolean values to variables that evaluates F to “true”?)

- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$ satisfiable?
Examples (I): Prop. Satisfiability

- Given a formula F in propositional logic, is F satisfiable?

 (≡ is there any assignment of Boolean values to variables that evaluates F to “true”?)

- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$ satisfiable?

 Yes: set p, q to true
Examples (I): Prop. Satisfiability

- Given a formula F in propositional logic, is F satisfiable?
 (\equiv is there any assignment of Boolean values to variables that evaluates F to “true”?)

- Is $(p \lor q) \land (p \lor \lnot q) \land (\lnot p \lor q)$ satisfiable?
 Yes: set p, q to true

- Is $(p \lor q) \land (p \lor \lnot q) \land (\lnot p \lor q) \land (\lnot p \lor \lnot q)$ satisfiable?
Examples (I): Prop. Satisfiability

- Given a formula F in propositional logic, is F satisfiable?

 (= is there any assignment of Boolean values to variables that evaluates F to “true”?)

- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$ satisfiable?

 Yes: set p, q to true

- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$ satisfiable?

 No
Examples (I): Prop. Satisfiability

- Given a formula F in propositional logic, is F satisfiable?

 (= is there any assignment of Boolean values to variables that evaluates F to “true”?)

- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$ satisfiable?

 Yes: set p, q to true

- Is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$ satisfiable?

 No

- Arises in:

 ◆ Hardware verification
 ◆ Circuit optimization
 ◆ ...

Examples (II): Graph Coloring

- Given a graph and a number of colors, can vertices be painted so that neighbors have different colors?

- Arises in:
 - Frequency assignment
 - Register allocation
 - ...

![Graph Coloring Example](image)
Examples (III): Knapsack

Given \(n \) items with weights \(w_i \) and values \(v_i \), a capacity \(W \) and a number \(V \), is there a subset \(S \) of the items such that \(\sum_{i \in S} w_i \leq W \) and \(\sum_{i \in S} v_i \geq V \)?

Arises in:

- Selection of capital investments
- Cutting stock problems
- ...
Examples (IV): Bin Packing

- Given n items with volumes v_i and k identical bins with capacity V, is it possible to place all items in bins?

- Arises in:
 - Logistics
 - ...
A Note on Complexity

- All previous examples are NP-complete
 - No known polynomial algorithm (likely none exists)
 - Available algorithms have worst-case exp behavior: there will be small instances that are hard to solve
 - In real-world problems there is a lot of structure, which can hopefully be exploited
A Note on Complexity

- All previous examples are **NP-complete**
 - No known polynomial algorithm (likely none exists)
 - Available algorithms have worst-case exp behavior: there will be small instances that are hard to solve
 - In real-world problems there is a lot of structure, which can hopefully be exploited

- Other combinatorial problems solvable in **P-time**, e.g.
 - **Bipartite matching**: given a set of boys and girls and their compatibilities, can we marry all of them?
 - **Shortest paths**: given a graph and two vertices, which is the shortest way to go from one to the other?
A Note on Complexity

- All previous examples are NP-complete
 - No known polynomial algorithm (likely none exists)
 - Available algorithms have worst-case exp behavior: there will be small instances that are hard to solve
 - In real-world problems there is a lot of structure, which can hopefully be exploited

- Other combinatorial problems solvable in P-time, e.g.
 - Bipartite matching: given a set of boys and girls and their compatibilities, can we marry all of them?
 - Shortest paths: given a graph and two vertices, which is the shortest way to go from one to the other?

- Our focus will be on hard (\(\equiv\) NP-complete) problems
Approaches to Problem Solving

- Specialized algorithms
 - Costly to design, implement and extend
Approaches to Problem Solving

- Specialized algorithms
 - Costly to design, implement and extend

- Declarative methodology
 1. Choose a problem solving framework (*what is my language?*)
 2. Model the problem (*what is a solution?*)
 - Define variables
 - Define constraints
 3. Solve it (with an off-the-shelf solver)
Approaches to Problem Solving

- Specialized algorithms
 - Costly to design, implement and extend

- Declarative methodology
 1. Choose a problem solving framework *(what is my language?)*
 2. Model the problem *(what is a solution?)*
 - Define variables
 - Define constraints
 3. Solve it (with an off-the-shelf solver)

- Pros of Declarative methodology
 - Specification of the problem is all we need to solve it!
 - Fast development and easy maintenance
 - Often better performance than ad-hoc techniques
About CPS

Problem solving frameworks

- Constraint Programming (CP)
- Linear Programming (LP)
- Propositional Satisfiability (SAT)

For each of these frameworks

- Modeling techniques
- Inner workings of solvers