Local Consistency

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell (based on materials by Javier Larrosa)

February 28, 2020
The interaction graph of a CSP is an undirected graph $G = (V, E)$ s.t.:

- there is a vertex i associated to each variable x_i
- there is an edge (i, j) if there exists some constraint having both x_i and x_j in its scope

CSP with Boolean variables x, y, z, p, q and constraints: $x + y = z, |p - q| = z$

For example, the interaction graph of graph coloring is the same graph!
Interaction Graph

- The interaction graph of a CSP is interesting to study
- E.g., connected components of the interaction graph can be solved independently (then just join the solutions)
- Here it is used to describe some propagation notions
Binary CSP’s

- A CSP is **binary** if all its constraints have arity 2

- When considering binary CSP’s, c_{ij} indicates the constraint between variables x_i and x_j

- In what follows we will focus on binary CSP’s. We can do it wlog because of the following property:

 Theorem. Any CSP can be transformed into an equisatisfiable binary one.
Consider the CSP with Boolean variables x, y, z, p, q and constraints: $x + y = z, |p - q| = z$.

The equivalent binary CSP has:

- **variables**: one for each original constraint

$$v_{x+y=z}, \quad v_{|p-q|=z}$$

- **domains**: the tuples that satisfy the original constraint

$$d_{x+y=z} = \{(x, y, z) \in \{(0, 0, 0), (1, 0, 1), (0, 1, 1)\}\}$$
$$d_{|p-q|=z} = \{(p, q, z) \in \{(0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0)\}\}$$

- **constraint**: satisfying tuples are consistent on common values

$$\{((0, 0, 0), (0, 0, 0)), ((0, 0, 0), (1, 1, 0)), ((1, 0, 1), (1, 0, 1)), ((1, 0, 1), (0, 1, 1)), ((0, 1, 1), (1, 0, 1)), ((0, 1, 1), (0, 1, 1))\}$$
Binary CSP’s

Proof: Let \(P = (X, D, C) \) be the non-binary CSP. An equisatisfiable binary one is \(P' = (X', D', C') \) defined as follows:

- There is a variable associated to every constraint in \(P \). Let \(x'_i \) be the variable associated to constraint \(c_i \in C \).
- Let \(S = (x_{i1}, ..., x_{ik}) \) be the scope of \(c_i \). The domain of \(x'_i \) is the set of tuples \(\tau \in d_{i1} \times ... \times d_{ik} \) s.t. \(c_i(\tau) = 1 \).
- There is a binary constraint \(c'_{ij} \in C' \) iff \(c_i \) and \(c_j \) have some common variable in their scopes.
- The constraint \(c'_{ij}(\tau, \sigma) \) is true if \(\tau \) and \(\sigma \) match in their common variables.
- This is known as the dual graph translation

- If \(\sigma \) is a solution to \(P \), then a solution \(\sigma' \) to \(P' \) is obtained as follows: the value for \(x'_i \) is the projection of \(\sigma \) on the scope of \(c_i \).
- If \(\sigma' \) is a solution to \(P' \), then a solution \(\sigma \) to \(P \) is obtained as follows: the value for \(x_j \) is the value assigned in \(\sigma' \) by any of the constraints where \(x_j \) appears.
Filtering, Propagation

- Let $P = (X, D, C)$ be a (binary) CSP, $x_i \in X$ a variable and $a \in d_i$ a domain value.
- $P[x_i \rightarrow a]$ is the CSP obtained from P by replacing d_i by $\{a\}$.
- $a \in d_i$ is \textbf{feasible} if $P[x_i \rightarrow a]$ has solutions, \textbf{unfeasible} otherwise.

Example:
- Let x, y be two integer variables with domains $[1, 10]$.
- Consider constraint $|x - y| > 5 \equiv (x - y > 5) \lor (y - x > 5)$.
- Values 5 and 6 for both variables are unfeasible.
Filtering, Propagation

- Let $P = (X, D, C)$ be a (binary) CSP, $x_i \in X$ a variable and $a \in d_i$ a domain value

- $P[x_i \rightarrow a]$ is the CSP obtained from P by replacing d_i by $\{a\}$

- $a \in d_i$ is feasible if $P[x_i \rightarrow a]$ has solutions, unfeasible otherwise

- Example:
 - Let x, y be two integer variables with domains $[1, 10]$
 - Consider constraint $|x - y| > 5 \equiv (x - y > 5) \lor (y - x > 5)$
 - Values 5 and 6 for both variables are unfeasible

- Detecting unfeasible values is useful because they can be removed without losing solutions

- In general, detecting if a value is feasible is an NP-Complete problem

- But in some cases unfeasible values can be easily detected

- Filtering algorithms identify and remove unfeasible values efficiently
 Filtering is also called propagation (and filtering algorithms, propagators)
Local Consistency

- A clean way of designing filtering techniques is by means of the concept of local consistency

 ◆ A local consistency property allows identifying unfeasible values: inconsistent values, i.e., not satisfying the property, are unfeasible

 ◆ Local because only small pieces of the problem are considered (typically, one constraint)

 ◆ Enforcing a local consistency property means propagating: removing the inconsistent values until the property is achieved

 ◆ Enforcing local consistency should be cheap (polynomial time)
Local Consistency Properties

- The most important is **Arc Consistency (AC)** (aka **Domain Consistency**)

- Weaker than AC:
 - Directional AC (DAC)
 - Bounds Consistency (BC)
 - ...

- Stronger than AC:
 - Singleton AC (SAC)
 - Neighborhood Inverse Consistency (NIC)
 - ...
Arc Consistency

- Let $P = (X, D, C)$ be a (binary) CSP

- Value $a \in d_i$ of variable $x_i \in X$ is arc-consistent wrt. x_j if there is $b \in d_j$ (the support of a in x_j) s.t. $c_{ij}(a, b) = \text{true}$

- The definition of arc-consistency is then lifted in the natural way:
 - Variable $x_i \in X$ is arc-consistent wrt. x_j if all values in its domain are arc-consistent wrt. x_j
 - Constraint $c_{ij} \in C$ is arc-consistent if x_i is arc-consistent wrt. x_j, and vice-versa
 - A CSP P is arc-consistent if all $c \in C$ are arc-consistent

- Notation: AC means arc-consistent

- If $a \in d_i$ is arc-inconsistent (not arc-consistent) wrt. some x_j, it is unfeasible. Hence, it can be safely removed!

- Enforcing AC means removing arc-inconsistent values until AC is achieved
Arc Consistency

- The AC name comes from the arcs (constraints) of the interaction graph.

- Example of enforcing AC.

 Consider the CSP with variables x, y, z, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y, \ y < z$.

- Recall nodes are labelled with variables (here, also with their domains).

- Recall edges are labelled with constraints.
Arc Consistency

- The AC name comes from the arcs (constraints) of the interaction graph.

- Example of enforcing AC.

Consider the CSP with variables x, y, z, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y, \ y < z$.

- Recall nodes are labelled with variables (here, also with their domains).
- Recall edges are labelled with constraints.

```
+---+---+---+
|   |   |   |
+---+---+---+
    |   |
+---+---+---+
    |   |
+---+---+---+
    |   |
    +---+
```

```
1 2 3
```

```
1 2 3
```

```
0 2 3
```

```
x < y
```

```
y < z
```
Arc Consistency

- The AC name comes from the arcs (constraints) of the interaction graph.

- Example of enforcing AC.

 Consider the CSP with variables x, y, z, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y$, $y < z$.

- Recall nodes are labelled with variables (here, also with their domains).

- Recall edges are labelled with constraints.

\[
\begin{align*}
&D_x = D_y = \{1, 2, 3\} \quad \text{and} \quad D_z = \{0, 2, 3\}, \\
&\text{and constraints} \quad x < y, \quad y < z
\end{align*}
\]
Arc Consistency

- The AC name comes from the arcs (constraints) of the interaction graph.

Example of enforcing AC.

Consider the CSP with variables x, y, z, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y, \quad y < z$

- Recall nodes are labelled with variables (here, also with their domains)
- Recall edges are labelled with constraints
Arc Consistency

- The AC name comes from the arcs (constraints) of the interaction graph.

- Example of enforcing AC.

 Consider the CSP with variables x, y, z, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y$, $y < z$.

- Recall nodes are labelled with variables (here, also with their domains).

- Recall edges are labelled with constraints.
Arc Consistency

- The AC name comes from the arcs (constraints) of the interaction graph.

- Example of enforcing AC.

 Consider the CSP with variables x, y, z, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y, \ y < z$.

- Recall nodes are labelled with variables (here, also with their domains).

- Recall edges are labelled with constraints.
Arc Consistency

- The AC name comes from the arcs (constraints) of the interaction graph.
- Example of enforcing AC.

Consider the CSP with variables x, y, z, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y, y < z$.

- Recall nodes are labelled with variables (here, also with their domains).
- Recall edges are labelled with constraints.
Arc Consistency

- The AC name comes from the arcs (constraints) of the interaction graph.

- Example of enforcing AC.

Consider the CSP with variables x, y, z, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y$, $y < z$.

- Recall nodes are labelled with variables (here, also with their domains).
- Recall edges are labelled with constraints.
Arc Consistency

- The AC name comes from the arcs (constraints) of the interaction graph.
- Example of enforcing AC.

Consider the CSP with variables x, y, z, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y$, $y < z$.

- Recall nodes are labelled with variables (here, also with their domains).
- Recall edges are labelled with constraints.

![Diagram of the interaction graph with variables x, y, and z and constraints $x < y$ and $y < z$.]
Another example of enforcing AC.

Consider the CSP with variables \(x, y, z \), domains \(d_x = d_y = \{1, 2, 3\} \) and \(d_z = \{0, 2, 3\} \), and constraints \(x < y, y < z, x > z \)
Another example of enforcing AC.

Consider the CSP with variables \(x, y, z \),
domains \(d_x = d_y = \{1, 2, 3\} \) and \(d_z = \{0, 2, 3\} \),
and constraints \(x < y, \ y < z, \ x > z \)
Another example of enforcing AC.

Consider the CSP with variables \(x, y, z \), domains \(d_x = d_y = \{1, 2, 3\} \) and \(d_z = \{0, 2, 3\} \), and constraints \(x < y, y < z, x > z \)
Another example of enforcing AC.

Consider the CSP with variables x, y, z, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y$, $y < z$, $x > z$.

The domain of x has become empty!

So the CSP cannot have any solution.
Arc Consistency

- If while enforcing AC some domain becomes empty, then we know the original CSP has no solution.

- Else, when there are no more arc-inconsistent values, we have a smaller equivalent CSP (no solution is lost).

- Uniqueness: the order of removal of arc-inconsistent values is irrelevant.

- Now let us see algorithms for effectively enforcing AC.
The simplest algorithm to enforce AC is called AC-1
Based on function \texttt{Revise}(i, j),
which removes values from d_i without support in d_j.
Returns \texttt{true} if some value is removed

\begin{verbatim}
function Revise(i, j)
 change := false
 for each $a \in d_i$ do
 if $\forall b \in d_j \neg c_{ij}(a, b)$ then
 change := true
 remove a from d_i
 return change
\end{verbatim}

The time complexity of \texttt{Revise}(i, j) is $O(|d_i| \cdot |d_j|)$
(we assume that evaluating a binary constraint takes constant time)
AC-1

procedure AC-1(X, D, C)
repeat
 change := false
 for each \(c_{ij} \in C \) do
 change := change \lor Revise(i,j) \lor Revise(j,i)
 until \(\neg change \)

- The time complexity of AC-1 is \(O(e \cdot n \cdot m^3) \),
 with \(n = |X| \), \(m = \max_i{|d_i|} \) and \(e = |C| \) (note \(e = O(n^2) \))
- Whenever a value has been removed,
 the domain should be checked if empty (not done here for simplicity)
AC-3

- A more efficient algorithm is AC-3, which only revises constraints with a chance of filtering domains.
- AC-3 uses a set of pairs Q s.t. if $(i, j) \in Q$ then we can’t ensure that all values in d_i have support in x_j

procedure AC-3(X, D, C)

$$Q := \{(i, j), (j, i) \mid c_{ij} \in C\} \quad // \text{each pair is added twice}$$

while $Q \neq \emptyset$ **do**

$$(i, j) := \text{Fetch}(Q) \quad // \text{selects and removes from } Q$$

if Revise(i, j) **then**

$$Q := Q \cup \{(k, i) \mid c_{ki} \in C, k \neq j\}$$

- Space complexity: $O(e)$
- Time complexity: $O(e \cdot m^3)$
Complexity of AC-3

\[Q := \{(i, j), (j, i) | c_{ij} \in C\} \] // each pair is added twice

while \(Q \neq \emptyset \) do
 \[(i, j) := \text{Fetch}(Q) \] // selects and removes from \(Q \)
 \[\text{if \,} \text{Revise}(i, j) \ \text{then} \]
 \[Q := Q \cup \{(k, i) | c_{ki} \in C, k \neq j\} \]

- \((i, j) \) is in \(Q \) because \(d_j \) has been pruned.
 Therefore, it will be in \(Q \) at most \(m \) times.
 Consequently, the loop iterates at most \(O(e \cdot m) \) times

- Without the red part, the cost of AC-3 would be \(O(e \cdot m^3) \)

- For a given \(i \), \(\text{Revise}(i, j) \) will be true at most \(m \) times.
 Aggregated cost of red part due to \(i \) is
 \[O(\{|k| c_{ki} \in C\} \cdot m) = O(\deg(i) \cdot m) \]

 So aggregated cost of red part due to all vars is \(O(e \cdot m) \)

- So the total cost in time is \(O(e \cdot m^3) \)
Example of AC-3

Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}$, $d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \neq z$.
Example of AC-3

- Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}$, $d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \neq z$

Let us count the number of constraint checks of $\text{Revise}(x, y)$

- Finding support for $(x, 1)$: 1
Example of AC-3

- Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}$, $d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \neq z$

- Let us count the number of constraint checks of $\text{Revise}(x, y)$
 - Finding support for $(x, 2)$: 2
Example of AC-3

Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}, d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \neq z$

Let us count the number of constraint checks of $\text{Revise}(x, y)$

- Finding support for $(x, 3)$: 3
Example of AC-3

Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}$, $d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \neq z$

Let us count the number of constraint checks of $\text{Revise}(x, y)$

- Finding support for $(x, 4)$: 4
Let \(x, y, z \) be vars with domains \(d_x = d_y = \{1, 2, 3, 4\} \), \(d_z = \{3\} \), and \(c_1 \equiv x \leq y \), \(c_2 \equiv y \neq z \)

Let us count the number of constraint checks of \(\text{Revise}(y, x) \)

- Finding support for \((y, 1)\): 1
Example of AC-3

- Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}$, $d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \neq z$

Let us count the number of constraint checks of $\text{Revise}(y, x)$

- Finding support for $(y, 2)$: 1
Example of AC-3

Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}$, $d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \neq z$

Let us count the number of constraint checks of $\text{Revise}(y, x)$

- Finding support for $(y, 3)$: 1
Example of AC-3

- Let \(x, y, z \) be vars with domains \(d_x = d_y = \{1, 2, 3, 4\}, \ d_z = \{3\} \), and \(c_1 \equiv x \leq y, \ c_2 \equiv y \neq z \)

```
   1
  / \
1 2
 /   \\  \\
1 2 3 4
```

- Let us count the number of constraint checks of \(\text{Revise}(y, x) \)
 - Finding support for \((y, 4) \): 1
Example of AC-3

- Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}$, $d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \neq z$

- Let us count the number of constraint checks of $\text{Revise}(y, z)$
 - Finding support for $(y, 1)$: 1
Example of AC-3

Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}$, $d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \neq z$

Let us count the number of constraint checks of $\text{Revise}(y, z)$

- Finding support for $(y, 2)$: 1
Example of AC-3

- Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}$, $d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \neq z$

- Let us count the number of constraint checks of $\text{Revise}(y, z)$
 - Finding support for $(y, 3)$: 1
Example of AC-3

Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}$, $d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \neq z$

Let us count the number of constraint checks of $\text{Revise}(y, z)$

- Finding support for $(y, 4)$: 1
Example of AC-3

- Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}$, $d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \neq z$

- Let us count the number of constraint checks of $\text{Revise}(z, y)$
 - Finding support for $(z, 3)$: 1
Example of AC-3

Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}$, $d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \neq z$

Let us count the number of constraint checks of $\text{Revise}(x, y)$

- Finding support for $(x, 1)$: 1
Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}$, $d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \neq z$

Let us count the number of constraint checks of $\text{Revise}(x, y)$

- Finding support for $(x, 2)$: 2
Example of AC-3

- Let \(x, y, z \) be vars with domains \(d_x = d_y = \{1, 2, 3, 4\} \), \(d_z = \{3\} \), and \(c_1 \equiv x \leq y \), \(c_2 \equiv y \neq z \)

\[x \leq y\]
\[y \neq z\]

- Let us count the number of constraint checks of \(\text{Revise}(x, y) \)
 - Finding support for \((x, 3)\): 3
Example of AC-3

Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}$, $d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \not= z$

Let us count the number of constraint checks of $\text{Revise}(x, y)$

- Finding support for $(x, 4)$: 3
Example of AC-3

- Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}$, $d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \neq z$

- Altogether $10 + 4 + 4 + 1 + 9 = 28$ constraint checks
- From last 9, the only new check is $((x, 3), (y, 4))$
- Still a lot of work is repeated over and over again
AC-4

AC-4 is an even more efficient algorithm. It uses:

- \(N[i, a, j] = \) “number of supports that \(a \in d_i \) has in \(d_j \)”
- \(S[j, b] = \) “set of pairs \((i, a)\) supported by \(b \in d_j \)”
- \((i, a) \in Q\) means that \(a \) has been pruned from \(d_i \) and its effect has not been updated on the \(N \) array yet

procedure AC-4\((X, D, C)\)

// \(N \) is constructed full of 0’s and \(S \) is constructed full of \(\emptyset \)’s
// Initialization phase
for each \(c_{ij} \in C, a \in d_i, b \in d_j \) such that \(c_{ij}(a, b) \) do
 // Value \(b \) in \(d_j \) is a support for value \(a \in d_i \)
 \(N[i, a, j] \) ++
 \(S[j, b] := S[j, b] \cup \{(i, a)\} \)

for each \(c_{ij} \in C, a \in d_i \) such that \(N[i, a, j] = 0 \) do
 remove \(a \) from \(d_i \)
 \(Q := Q \cup (i, a) \)

...
AC-4

...
// Propagation phase
while \(Q \neq \emptyset \) do
 \((j, b) := \text{Fetch}(Q)\)
 for each \((i, a) \in S[j, b]\) such that \(a \in d_i\) do
 \(N[i, a, j] -= \)
 if \(N[i, a, j] = 0\) then
 remove \(a\) from \(d_i\)
 \(Q := Q \cup (i, a)\)

- Time complexity of AC-4: \(O(e \cdot m^2)\) (provable optimal!)
 - the initialization phase has cost \(O(e \cdot m^2)\)
 - the propagation phase has cost \(O(e \cdot m^2)\)

- Space complexity of AC-4: \(O(e \cdot m^2)\)
Example of AC-4

Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}$, $d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \neq z$

During initialization, AC-4 performs all possible constraint checks for every value in each domain

- For c_1: $4 \cdot 4 = 16$ constraint checks
- For c_2: $4 \cdot 1 = 4$ constraint checks
- In total 20 constraint checks
Example of AC-4

Let \(x, y, z \) be vars with domains \(d_x = d_y = \{1, 2, 3, 4\} \), \(d_z = \{3\} \), and \(c_1 \equiv x \leq y \), \(c_2 \equiv y \neq z \)

After initialization:

\[
\begin{align*}
N[x, 1, y] & = 4 & N[y, 1, x] & = 1 & N[y, 1, z] & = 1 & N[z, 3, y] & = 3 \\
N[x, 2, y] & = 3 & N[y, 2, x] & = 2 & N[y, 2, z] & = 1 \\
N[x, 3, y] & = 2 & N[y, 3, x] & = 3 & N[y, 3, z] & = 0 \\
N[x, 4, y] & = 1 & N[y, 4, x] & = 4 & N[y, 4, z] & = 1
\end{align*}
\]

\[
\begin{align*}
S[x, 1] & = \{(y, 1), (y, 2), (y, 3), (y, 4)\} & S[y, 1] & = \{(z, 3), (x, 1)\} \\
S[x, 2] & = \{(y, 2), (y, 3), (y, 4)\} & S[y, 2] & = \{(z, 3), (x, 1), (x, 2)\} \\
S[x, 3] & = \{(y, 3), (y, 4)\} & S[y, 3] & = \{(x, 1), (x, 2), (x, 3)\} \\
S[x, 3] & = \{(y, 4)\} & S[y, 4] & = \{(z, 3), (x, 1), (x, 2), (x, 3), (x, 4)\} \\
S[z, 3] & = \{(y, 1), (y, 2), (y, 4)\}
\end{align*}
\]
Example of AC-4

- The only counter equal to zero is $N[y, 3, z]$
- $(y, 3)$ is removed, propagation loop starts with $(y, 3)$ in Q
- When $(y, 3)$ is picked, traverse $S[y, 3] = \{(x, 1), (x, 2), (x, 3)\}$
 - $N[x, 1, y], N[x, 2, y], N[x, 3, y]$ are decremented
- No counter becomes zero, so nothing is added to Q
- Propagation did not require any extra constraint check!
- However
 - Space complexity is very high
 - The initialization phase can be prohibitive
 (AC-4 has optimal worst-case complexity ... but always reaches this worst case)
AC-6

- **Motivation:** keep the optimal worst-case of AC-4 but instead of counting all supports that a value has, just ensure that there is at least one.
- AC-6 keeps the smallest support for each \((x_i, a)\) on \(c_{ij}\).
AC-6

- **Motivation:** keep the optimal worst-case of AC-4 but instead of counting all supports that a value has, just ensure that there is at least one
- AC-6 keeps the smallest support for each \((x_i, a)\) on \(c_{ij}\)
- **Initialization phase:** cheaper than in AC-4
- **Propagation phase:** if value \(b\) of var \(x_j\) is removed
 - if it is not the current support of value \(a\) of var \(x_i\): no work due to constraint \(c_{ij}\) has to be done
 - if it is the current support of value \(a\) of var \(x_i\): a new support is sought, but starting from next value of \(b\) in \(d_j\) instead of \(\min\{d_j\}\)
AC-6

- **Motivation**: keep the optimal worst-case of AC-4 but instead of counting all supports that a value has, just ensure that there is at least one
- AC-6 keeps the smallest support for each \((x_i, a)\) on \(c_{ij}\)
- **Initialization phase**: cheaper than in AC-4
- **Propagation phase**: if value \(b\) of var \(x_j\) is removed
 - if it is not the current support of value \(a\) of var \(x_i\): no work due to constraint \(c_{ij}\) has to be done
 - if it is the current support of value \(a\) of var \(x_i\): a new support is sought, but starting from next value of \(b\) in \(d_j\) instead of \(\min\{d_j\}\)

- The algorithm uses:

 \[S[j, b] = \text{“set of } (i, a) \text{ s.t. } b \text{ is current support of value } a \text{ of } x_i \text{ wrt. } x_j \text{”} \]

 \[Q = \text{“set of } (i, a) \text{ s.t. } a \text{ has been pruned from } d_i \text{ but its effect has not been updated on } S \text{ yet”} \]
procedure AC-6(X, D, C)

\[Q := \emptyset; \ S[j, b] := \emptyset, \forall x_j \in X, \forall b \in d_j \]

// Initialization phase
for each \(x_i \in X, \ c_{ij} \in C, \ a \in d_i \) do

\[b := \text{smallest value in } d_j \text{ s.t. } c_{ij}(a, b) \]
if \(b \neq \bot \) then add \((i, a)\) to \(S[j, b] \)
else remove \(a \) from \(d_i \) and add \((i, a)\) to \(Q \)

// Propagation phase
while \(Q \neq \emptyset \) do

\((j, b) := \text{Fetch}(Q)\)
for each \((i, a) \in S[j, b] \) such that \(a \in d_i \) do

\[c := \text{smallest value } b' \in d_j \text{ s.t. } b' > b \land c_{ij}(a, b') \]
if \(c \neq \bot \) then add \((i, a)\) to \(S[j, c] \)
else remove \(a \) from \(d_i \) and add \((i, a)\) to \(Q \)

- Time complexity: \(O(e \cdot m^2) \)
- Space complexity: \(O(e \cdot m) \)
Example of AC-6

Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}$, $d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \neq z$

In initialization, AC-6 performs the same number of constraint checks as AC-3: 10+4 on c_1 and 4+1 on c_2

$$S[x, 1] = \{(y, 1), (y, 2), (y, 3), (y, 4)\} \quad S[y, 1] = \{(z, 3), (x, 1)\}$$
$$S[x, 2] = \{} \quad \quad \quad \quad \quad \quad \quad S[y, 2] = \{(x, 2)\}$$
$$S[x, 3] = \{} \quad \quad \quad \quad \quad \quad \quad S[y, 3] = \{(x, 3)\}$$
$$S[x, 3] = \{} \quad \quad \quad \quad \quad \quad \quad S[y, 4] = \{(x, 4)\}$$
$$S[z, 3] = \{(y, 1), (y, 2), (y, 4)\} \quad \quad \quad \quad \quad \quad \quad S[z, 3] = \{(y, 1), (y, 2), (y, 4)\}$$
Example of AC-6

- Let \(x, y, z \) be vars with domains \(d_x = d_y = \{1, 2, 3, 4\} \), \(d_z = \{3\} \), and
 \(c_1 \equiv x \leq y \), \(c_2 \equiv y \neq z \)

- In initialization, AC-6 performs the same number of constraint checks as
 AC-3: 10+4 on \(c_1 \) and 4+1 on \(c_2 \)

\[
\begin{align*}
S[x, 1] &= \{(y, 1), (y, 2), (y, 3), (y, 4)\} & S[y, 1] &= \{(z, 3), (x, 1)\} \\
S[x, 2] &= \{} & S[y, 2] &= \{(x, 2)\} \\
S[x, 3] &= \{} & S[y, 3] &= \{(x, 3)\} \\
S[x, 3] &= \{} & S[y, 4] &= \{(x, 4)\} \\
S[z, 3] &= \{(y, 1), (y, 2), (y, 4)\}
\end{align*}
\]

- \(Q \) contains \((y, 3)\), and \(3\) has been removed from the domain of \(y \)
Example of AC-6

Let \(x, y, z \) be vars with domains \(d_x = d_y = \{1, 2, 3, 4\} \), \(d_z = \{3\} \), and \(c_1 \equiv x \leq y \), \(c_2 \equiv y \neq z \).

In initialization, AC-6 performs the same number of constraint checks as AC-3: 10+4 on \(c_1 \) and 4+1 on \(c_2 \).

\[
S[x,1] = \{(y,1), (y,2), (y,3), (y,4)\} \quad S[y,1] = \{(z,3), (x,1)\}
\]

\[
S[x,2] = \{} \quad S[y,2] = \{(x,2)\}
\]

\[
S[x,3] = \{} \quad S[y,3] = \{(x,3)\}
\]

\[
S[x,4] = \{} \quad S[y,4] = \{(x,4)\}
\]

\[
S[z,3] = \{(y,1), (y,2), (y,4)\}
\]

When AC-6 enters the propagation loop it pops \((y,3)\) from \(Q \), \(S[y,3] = \{(x,3)\} \) is traversed and a new support greater than 3 is sought for \((x,3)\).
Example of AC-6

- Let \(x, y, z \) be vars with domains \(d_x = d_y = \{1, 2, 3, 4\} \), \(d_z = \{3\} \), and \(c_1 \equiv x \leq y \), \(c_2 \equiv y \neq z \)

- In initialization, AC-6 performs the same number of constraint checks as AC-3: 10+4 on \(c_1 \) and 4+1 on \(c_2 \)

\[
\begin{align*}
S[x, 1] &= \{(y, 1), (y, 2), (y, 3), (y, 4)\} & S[y, 1] &= \{(z, 3), (x, 1)\} \\
S[x, 2] &= \{} & S[y, 2] &= \{(x, 2)\} \\
S[x, 3] &= \{} & S[y, 3] &= \{(x, 3)\} \\
S[x, 3] &= \{} & S[y, 4] &= \{(x, 4)\} \\
S[z, 3] &= \{(y, 1), (y, 2), (y, 4)\}
\end{align*}
\]

- Just 1 extra constraint check: as \(c_1(3, 4) \), we add \((x, 3) \) to \(S[y, 4] \)
Example of AC-6

- Let x, y, z be vars with domains $d_x = d_y = \{1, 2, 3, 4\}$, $d_z = \{3\}$, and $c_1 \equiv x \leq y$, $c_2 \equiv y \neq z$

- In initialization, AC-6 performs the same number of constraint checks as AC-3: 10+4 on c_1 and 4+1 on c_2

$$S[x, 1] = \{(y, 1), (y, 2), (y, 3), (y, 4)\} \quad S[y, 1] = \{(z, 3), (x, 1)\}$$

$$S[x, 2] = \{} \quad S[y, 2] = \{(x, 2)\}$$

$$S[x, 3] = \{} \quad S[y, 3] = \{(x, 3)\}$$

$$S[x, 3] = \{} \quad S[y, 4] = \{(x, 4)\}$$

$$S[z, 3] = \{(y, 1), (y, 2), (y, 4)\}$$

- In total 20 constraint checks
Weaker than AC

- Directional AC (DAC)
- Bounds Consistency (BC)
Directional Arc Consistency

- Given an order \prec among variables, each x_i only needs supports with respect to greater variables in the order.

- Consider a CSP $P = (X, D, C)$. Constraint $c_{ij} \in C$ is directionally arc-consistent iff $x_i \prec x_j$ implies x_i is arc-consistent with respect to x_j.

- The CSP P is directionally arc-consistent (DAC) iff all its constraints are directionally arc-consistent.

- DAC is weaker than AC but is enforced more efficiently in practice.
Consider CSP with vars $x < y < z$, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y$, $y < z$, $x > z$.
Consider CSP with vars $x < y < z$, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y$, $y < z$, $x > z$.
Consider CSP with vars $x < y < z$, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y$, $y < z$, $x > z$.
Consider CSP with vars $x < y < z$, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y$, $y < z$, $x > z$.
Consider CSP with vars $x < y < z$, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y$, $y < z$, $x > z$.

![Diagram of directional arc consistency with variables x, y, z and their domains and constraints.](image)
Consider CSP with vars \(x \prec y \prec z \),
domains \(d_x = d_y = \{1, 2, 3\} \) and \(d_z = \{0, 2, 3\} \),
and constraints \(x < y, \ y < z, \ x > z \)

Inconsistency is not detected by DAC!
DAC enforcing

procedure DAC\((X, D, C)\)
\(\text{for each } i := n - 1 \text{ downto } 1 \text{ do} \)
\(\text{for each } c_{ij} \text{ s.t. } x_i \prec x_j \text{ do} \) Revise\((i, j)\)
endprocedure

- Only one pass is required
- Once \(x_i\) is made arc-consistent with respect to \(x_j \succ x_i\), removing values from \(x_k \prec x_i\) does not destroy the arc-consistency of \(x_i\) wrt. \(x_j\)
- Time complexity: \(O(e \cdot m^2)\)
A CSP is **acyclic** if its interaction graph has no loops

Theorem. Acyclic CSP’s can be solved in time $O(e \cdot m^2)$

To prove this theorem we need some ingredients

Given an acyclic graph, i.e. a forest,
let us choose a root for each tree and orient edges away from the roots

Given a directed acyclic graph $G = (V, E)$,
a **topological ordering** is a sequence of all vertices in V s.t.
if $(u, v) \in E$ then u comes before v in the sequence
Consider a CSP with 5 integer vars with domain $[1, 5]$, and constraints
$|x_2 - x_3| = 3, \ x_3 > x_4, \ x_4 + x_1 = 5, \ x_4 = x_5$

This CSP is **acyclic**, as its interaction graph is:

- $(x_3, x_4, x_5, x_1, x_2)$ is a topological ordering
- $(x_3, x_2, x_4, x_1, x_5)$ is a topological ordering
- $(x_3, x_2, x_1, x_4, x_5)$ is not a topological ordering
Theorem. Acyclic CSP’s can be solved in time $O(e \cdot m^2)$

Proof. Consider the following algorithm:

```plaintext
// Pre: The graph of the CSP $(X, D, C)$ is a tree rooted at $x_1$
// $(x_1, x_2, \ldots, x_n)$ is a topological ordering
// Post: The algorithm returns a solution $\mu$

procedure AcyclicSolver($X, D, C$)

$(X, D, C) := DAC(X, D, C)$ // enforce DAC wrt. the ordering
$a :=$ any element from $d_1$
$\mu := (x_1 \mapsto a)$

for each $i := 2$ to $n$ do

// Any non-root node $x_i$ of the tree has a parent
$x_j := \text{parent}(x_i)$ // $x_j$ already assigned due to topological ordering
$v :=$ any support of $\mu(x_j)$ from $d_i$ // $\exists$ because DAC
$\mu := \mu \circ (x_i \mapsto v)$
```
Consider a CSP with 5 integer vars with domain \([1, 5]\), and constraints

\[|x_2 - x_3| = 3, \ x_3 > x_4, \ x_4 + x_1 = 5, \ x_4 = x_5 \]

Let us take the topological ordering \((x_3, x_4, x_5, x_1, x_2)\)

First we enforce DAC

\[|x_2 - x_3| = 3 \]

\[x_3 > x_4 \]

\[x_4 + x_1 = 5 \]

\[x_4 = x_5 \]
DAC and Acyclic CSP’s

- Consider a CSP with 5 integer vars with domain $[1, 5]$, and constraints $|x_2 - x_3| = 3$, $x_3 > x_4$, $x_4 + x_1 = 5$, $x_4 = x_5$
- Let us take the topological ordering $(x_3, x_4, x_5, x_1, x_2)$
- First we enforce DAC

\[
\begin{align*}
|x_2 - x_3| &= 3 \\
x_3 &> x_4 \\
x_4 + x_1 &= 5 \\
x_4 &= x_5
\end{align*}
\]
Consider a CSP with 5 integer vars with domain \([1, 5]\), and constraints \(|x_2 - x_3| = 3\), \(x_3 > x_4\), \(x_4 + x_1 = 5\), \(x_4 = x_5\).

Let us take the topological ordering \((x_3, x_4, x_5, x_1, x_2)\).

First we enforce DAC.
Consider a CSP with 5 integer vars with domain $[1, 5]$, and constraints $|x_2 - x_3| = 3$, $x_3 > x_4$, $x_4 + x_1 = 5$, $x_4 = x_5$

Let us take the topological ordering $(x_3, x_4, x_5, x_1, x_2)$

First we enforce DAC
Consider a CSP with 5 integer vars with domain $[1, 5]$, and constraints $|x_2 - x_3| = 3$, $x_3 > x_4$, $x_4 + x_1 = 5$, $x_4 = x_5$.

Let us take the topological ordering $(x_3, x_4, x_5, x_1, x_2)$.

First we enforce DAC.
Consider a CSP with 5 integer vars with domain \([1, 5]\), and constraints $|x_2 - x_3| = 3$, $x_3 > x_4$, $x_4 + x_1 = 5$, $x_4 = x_5$

Let us take the topological ordering $(x_3, x_4, x_5, x_1, x_2)$

First we enforce DAC

- $|x_2 - x_3| = 3$
- $x_3 > x_4$
- $x_4 + x_1 = 5$
- $x_4 = x_5$
Consider a CSP with 5 integer vars with domain \([1, 5]\), and constraints
\[|x_2 - x_3| = 3, \ x_3 > x_4, \ x_4 + x_1 = 5, \ x_4 = x_5 \]

Let us take the topological ordering \((x_3, x_4, x_5, x_1, x_2)\)

Second we build the assignment

\[|x_2 - x_3| = 3 \]

\[x_3 > x_4 \]

\[x_4 + x_1 = 5 \]

\[x_4 = x_5 \]
Consider a CSP with 5 integer vars with domain \([1, 5]\), and constraints
\[|x_2 - x_3| = 3, \ x_3 > x_4, \ x_4 + x_1 = 5, \ x_4 = x_5\]

Let us take the topological ordering \((x_3, x_4, x_5, x_1, x_2)\)

Second we build the assignment
Consider a CSP with 5 integer vars with domain $[1, 5]$, and constraints $|x_2 - x_3| = 3$, $x_3 > x_4$, $x_4 + x_1 = 5$, $x_4 = x_5$

Let us take the topological ordering $(x_3, x_4, x_5, x_1, x_2)$

Second we build the assignment
Consider a CSP with 5 integer vars with domain \([1, 5]\), and constraints
\(|x_2 - x_3| = 3, \ x_3 > x_4, \ x_4 + x_1 = 5, \ x_4 = x_5\)

Let us take the topological ordering \((x_3, x_4, x_5, x_1, x_2)\)

Second we build the assignment
Consider a CSP with 5 integer vars with domain \([1, 5]\), and constraints
\(|x_2 - x_3| = 3, x_3 > x_4, x_4 + x_1 = 5, x_4 = x_5\)

Let us take the topological ordering \((x_3, x_4, x_5, x_1, x_2)\)

Second we build the assignment
Bounds Consistency

- **AC** may be too costly when domains are very large

- **Idea:** Establish an order on domain values and require supports only for the extreme values (i.e., \(\min\{d_i\} \) and \(\max\{d_i\} \))

- Consider a CSP \((X, D, C)\) with ordered domains

 - Variable \(x_i \in X \) is bounds-consistent wrt. \(x_j \) iff \(\min\{d_i\} \) and \(\max\{d_i\} \) have a support in \(x_j \)

 - Constraint \(c_{ij} \in C \) is bounds-consistent iff \(x_i \) is bounds-consistent wrt. \(x_j \), and \(x_j \) wrt. \(x_i \)

 - The CSP is bounds-consistent iff all its constraints are bounds-consistent

- **Notation:** \(BC \) means bounds-consistent

- **BC** weaker than **AC**, but can be enforced more efficiently in practice
Bounds Consistency

- Let \(x, y \in X \) be integer variables with domains \([1, 10]\). Constraint \(|x - y| > 5\) is BC (but not AC nor DAC)

- Consider CSP with vars \(x, y, z \), domains \(d_x = d_y = \{1, 2, 3\} \) and \(d_z = \{0, 2, 3\} \), and constraints \(x < y, y < z, x > z \)
Bounds Consistency

- Let $x, y \in X$ be integer variables with domains $[1, 10]$. Constraint $|x - y| > 5$ is BC (but not AC nor DAC).

- Consider CSP with vars x, y, z, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y$, $y < z$, $x > z$.

![Diagram showing the constraints and domains of variables x, y, and z with possible values 1, 2, 3 and 0, 2, 3 respectively, and the relationships $x < y$, $y < z$, and $x > z$.]
Bounds Consistency

- Let $x, y \in X$ be integer variables with domains $[1, 10]$. Constraint $|x - y| > 5$ is BC (but not AC nor DAC)

- Consider CSP with vars x, y, z, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y$, $y < z$, $x > z$
Let \(x, y \in X \) be integer variables with domains \([1, 10]\). Constraint \(|x - y| > 5\) is BC (but not AC nor DAC).

Consider CSP with vars \(x, y, z \), domains \(d_x = d_y = \{1, 2, 3\} \) and \(d_z = \{0, 2, 3\} \), and constraints \(x < y, \ y < z, \ x > z \).
Bounds Consistency

- Let $x, y \in X$ be integer variables with domains $[1, 10]$. Constraint $|x - y| > 5$ is BC (but not AC nor DAC).

- Consider CSP with vars x, y, z, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y, y < z, x > z$.

![Diagram showing constraints between x, y, and z.]
Bounds Consistency

- Let $x, y \in X$ be integer variables with domains $[1, 10]$. Constraint $|x - y| > 5$ is BC (but not AC nor DAC)
- Consider CSP with vars x, y, z, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y$, $y < z$, $x > z$
Bounds Consistency

- Let $x, y \in X$ be integer variables with domains $[1, 10]$. Constraint $|x - y| > 5$ is BC (but not AC nor DAC)
- Consider CSP with vars x, y, z, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y$, $y < z$, $x > z$
Bounds Consistency

- Let \(x, y \in X \) be integer variables with domains \([1, 10]\). Constraint \(|x - y| > 5\) is BC (but not AC nor DAC).

- Consider CSP with vars \(x, y, z \), domains \(d_x = d_y = \{1, 2, 3\} \) and \(d_z = \{0, 2, 3\} \), and constraints \(x < y, \ y < z, \ x > z \).
Bounds Consistency

- Let $x, y \in X$ be integer variables with domains $[1, 10]$. Constraint $|x - y| > 5$ is BC (but not AC nor DAC)

- Consider CSP with vars x, y, z, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y$, $y < z$, $x > z$
Bounds Consistency

- Let $x, y \in X$ be integer variables with domains $[1, 10]$. Constraint $|x - y| > 5$ is BC (but not AC nor DAC).

- Consider CSP with vars x, y, z, domains $d_x = d_y = \{1, 2, 3\}$ and $d_z = \{0, 2, 3\}$, and constraints $x < y, y < z, x > z$.

- The examples show that DAC and BC are incomparable (and both weaker than AC).
BC-3: ReviseBounds\((i, j)\)

- Natural adaptation of AC-3 to bounds consistency: BC-3
- Based on function ReviseBounds\((i, j)\), which removes values from the extremes of \(d_i\) without support in \(d_j\)
 Returns true if some value is removed

function ReviseBounds\((i, j)\)

\[
\text{change} := \text{false} \\
\text{while } |d_i| \neq \emptyset \land (\forall_{b \in d_j} \neg c_{ij}(\min\{d_i\}, b)) \text{ do} \\
\quad \text{change} := \text{true} \\
\quad \text{remove} \ \min\{d_i\} \ \text{from} \ d_i \\
\text{while } |d_i| \neq \emptyset \land \forall_{b \in d_j} \neg c_{ij}(\max\{d_i\}, b) \text{ do} \\
\quad \text{change} := \text{true} \\
\quad \text{remove} \ \max\{d_i\} \ \text{from} \ d_i \\
\text{return} \ \text{change}
\]

- The time complexity of ReviseBounds\((i, j)\) is \(O(|d_i| \cdot |d_j|)\)
BC-3

// \((i, j) \in Q\) means
“cannot guarantee \(\min\{d_i\}, \max\{d_i\}\) have support in \(d_j\)"

procedure \(BC3(X, D, C)\)
\[
Q := \{(i, j), (j, i)\mid c_{ij} \in C\} \quad // \text{each constraint is added twice}
\]
while \(Q \neq \emptyset\) do
\[
(i, j) := \text{Fetch}(Q)
\]
if \(\text{ReviseBounds}(i, j)\) then
\[
Q := Q \cup \{(k, i)\mid c_{ki} \in C, k \neq j\}
\]

\begin{itemize}
 \item \text{Space complexity: } \(O(e)\)
 \item \text{Time complexity: } \(O(e \cdot m^3)\)
 \item \text{Same asymptotic costs of AC-3, but BC-3 is more efficient in practice}
\end{itemize}
Stronger than AC

- Singleton AC (SAC)
- Neighborhood Inverse Consistency (NIC)
Let $AC(P)$ denote the CSP resulting from enforcing AC on P

If $AC(P[x_i \rightarrow a])$ has an empty domain, then $P[x_i \rightarrow a]$ does not have any solution, and $a \in d_i$ is unfeasible in P

A CSP $P = (X, D, C)$ is singleton arc-consistent (SAC) iff $\forall d_i \in D, \forall a \in d_i$, problem $AC(P[x_i \rightarrow a])$ has no empty domains
Singleton AC

- Let us enforce SAC in the 4-queens problem
Let us enforce SAC in the 4-queens problem
Let us enforce SAC in the 4-queens problem

```
Q  X  X  X  
X  X   
X   X
X   X
X   X
```
Let us enforce SAC in the 4-queens problem

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>Q</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Let us enforce SAC in the 4-queens problem

\[\begin{array}{cccc}
Q & X & X & X \\
X & X & X & X \\
X & X & Q & X \\
X & X & & X
\end{array} \]
Let us enforce SAC in the 4-queens problem
Let us enforce SAC in the 4-queens problem

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Q</td>
</tr>
<tr>
<td>X</td>
<td>Q</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Let us enforce SAC in the 4-queens problem

\[
\begin{array}{ccc}
X & & X \\
X & X & X \\
X & X & X \\
X & & X \\
\end{array}
\]

by symmetry
Enforcing SAC

procedure SAC(P)
 $P := AC(P)$
 repeat
 change := false
 for each $d_i \in D$, $a \in d_i$ do
 if $AC(P[x_i \rightarrow a])$ has an empty domain then
 change := true
 remove a from d_i
 if change then
 $P := AC(P)$
 until \neg change

- Complexity: $O(e \cdot n^2 \cdot m^4)$
Neighborhood Inverse Consistency

- Let $P = (X, D, C)$ be a CSP.
- The neighborhood of $x_i \in X$, noted N_i, is the set of vars containing x_i and all x_j such that $c_{ij} \in C$.
- The projection of P on N_i, noted $P[N_i]$, is the problem obtained from P by taking all variables in N_i and all constraints c such that $\text{scope}(c) \subseteq N_i$.
- If $a \in d_i$ is unfeasible in $P[N_i]$, then so is in P.
- A CSP $P = (X, D, C)$ is neighborhood inverse consistent (NIC) iff for every $x_i \in X$, $a \in d_i$, we have a is feasible in $P[N_i]$.
Enforcing NIC

procedure NIC(P)
 P := AC(P)
 repeat
 change := false
 for each $d_i \in D, \ a \in d_i$ do
 if SOL(P[Ni][x_i \rightarrow a]) = \emptyset then
 change := true
 remove a from d_i
 endfunction
 until \neg \ change

- Complexity: $O(g^2 \cdot m^{g+2} \cdot n^2)$,
where g is the degree of the interaction graph
(i.e, the max number of neighbors that some vertex has)