1. Formulate the problem of solving a Sudoku as a CSP.

2. Consider the Bin Packing Problem: given at most B bins of size S and a list of n items with sizes a_1, \ldots, a_n, find a way to pack the items in bins without exceeding the size limit. Formulate the problem as a CSP.

3. Consider the Travelling Salesman Problem: given a list of cities, the distances between each pair of cities and a threshold value L, is there any possible route of length at most L that visits each city exactly once and returns to the origin city? Formulate this problem as a CSP.

4. Consider the Combinatorial Auction Problem. Imagine you are given a set of m goods, a set of n bids, where each bid i offers an amount of money v_i for a subset of the goods b_i, and a value $V \geq 0$. The goal is to find a subset of compatible bids with aggregated revenue higher than V. Formulate this problem as a CSP.

5. In order to form a team of exactly K people for the next Computer Science Olympic Games, UPC asks for volunteers amongst its best students. To optimize teamwork, it is desired that all members of the team known the rest of the team. For this reason, once it is known the set of N volunteers ($N \geq K$), each of them is asked to hand out a list of all those volunteers that he or she knows. Formulate the problem of finding such a team as a CSP.