A constraint satisfaction problem (CSP) is a tuple \((X, D, C)\) where:

- \(X = \{x_1, x_2, \ldots, x_n\}\) is the set of variables
- \(D = \{d_1, d_2, \ldots, d_n\}\) is the set of domains
 \((d_i\) is a finite set of potential values for \(x_i\))
- \(C = \{c_1, c_2, \ldots, c_m\}\) is a set of constraints

For example: \(x, y, z \in \{0, 1\}, x + y = z\) is a CSP where:

- Variables are: \(x, y, z\)
- Domains are: \(d_x = d_y = d_z = \{0, 1\}\)
- There is a single constraint: \(x + y = z\)
Constraints

- A constraint C is a pair (S, R) where:
 - $S = (x_{i_1}, ..., x_{i_k})$ are the variables of C (scope)
 - $R \subseteq d_{i_1} \times ... \times d_{i_k}$ are the tuples satisfying C (relation)

- According to this definition: $x + y = z$ in the CSP
 $x, y, z \in \{0, 1\}, x + y = z$ is short for

 $$((x, y, z), \{(0, 0, 0), (1, 0, 1), (0, 1, 1)\})$$

- A tuple $\tau \in d_{i_1} \times ... \times d_{i_k}$ satisfies C iff $\tau \in R$

- The arity of a constraint is the size of its scope
 - Arity 1: unary constraint (usually embedded in domains)
 - Arity 2: binary constraint
 - Arity 3: ternary constraint
 - ...

- This corresponds to the extensional representation of constraints
Constraints

- But constraints are usually described more compactly: **intensional** representation
- A constraint with scope S is determined by a function

$$\prod_{x_i \in S} d_i \rightarrow \{true, false\}$$

- Satisfying tuples are exactly those that give **true**
- In the example: $x + y = z$
- Unless otherwise stated, we will assume that **evaluating** a constraint takes time linear in the arity
- This is usually, but not always, true
Solution

- Given a CSP with variables $X = \{x_1, x_2, \ldots, x_n\}$, domains $D = \{d_1, d_2, \ldots, d_n\}$ and constraints C, a solution is an assignment of values $(x_1 \mapsto \nu_1, \cdots, x_n \mapsto \nu_n)$ such that:
 - Domains are respected: $\nu_i \in d_i$
 - The assignment satisfies all constraints in C

- Solving a CSP consists in finding a solution to it

- Other related problems:
 - Finding all solutions
 - Finding a best solution wrt. an objective function (then we talk of a Constraint Optimization Problem)
Examples (I): Prop. Satisfiability

- Given a formula F in propositional logic, is F satisfiable?
- Variables are the atoms of the formula
- Variables have all domain $\{\text{true, false}\}$
- A single constraint: the evaluation of F must be 1

Let F be $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$:
Examples (I): Prop. Satisfiability

- Given a formula F in propositional logic, is F satisfiable?
- Variables are the atoms of the formula
- Variables have all domain $\{\text{true, false}\}$
- A single constraint: the evaluation of F must be 1

- Let F be $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$:
 - Variables are p, q
Examples (I): Prop. Satisfiability

- Given a formula F in propositional logic, is F satisfiable?
- Variables are the atoms of the formula
- Variables have all domain \{true, false\}
- A single constraint: the evaluation of F must be 1

- Let F be $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$:
 - Variables are p, q
 - Domains are $d_p = d_q = \{\text{true, false}\}$
Examples (I): Prop. Satisfiability

- Given a formula F in propositional logic, is F satisfiable?
- Variables are the atoms of the formula
- Variables have all domain \{true, false\}
- A single constraint: the evaluation of F must be 1

Let F be $(p \lor q) \land (p \lor \lnot q) \land (\lnot p \lor q)$:

- **Variables** are p, q
- **Domains** are $d_p = d_q = \{\text{true, false}\}$
- **Constraint** is $(p \lor q) \land (p \lor \lnot q) \land (\lnot p \lor q) = \text{true}$
Examples (II): Graph Coloring

- Given a graph $G = (V, E)$ and $K > 0$ colors, can vertices be painted so that neighbors have different colors?
Examples (II): Graph Coloring

- Given a graph $G = (V, E)$ and $K > 0$ colors, can vertices be painted so that neighbors have different colors?

- Variables are $\{c_v \mid v \in V\}$, the color for each vertex
Examples (II): Graph Coloring

Given a graph $G = (V, E)$ and $K > 0$ colors, can vertices be painted so that neighbors have different colors?

- Variables are $\{c_v \mid v \in V\}$, the color for each vertex
- Domains are $\{1, 2, \ldots, K\}$, the available colors
Examples (II): Graph Coloring

- Given a graph $G = (V, E)$ and $K > 0$ colors, can vertices be painted so that neighbors have different colors?

- **Variables** are $\{c_v \mid v \in V\}$, the color for each vertex
- **Domains** are $\{1, 2, \ldots, K\}$, the available colors
- **Constraints** are: for each $(u, v) \in E$, $c_u \neq c_v$
Examples (III): Knapsack

- **Given:**
 - n items with weights w_i and values v_i
 - a capacity W
 - a number $V,$

is there a subset S of the items s.t. $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq V$?
Examples (III): Knapsack

- Given:
 - n items with weights w_i and values v_i
 - a capacity W
 - a number V

 is there a subset S of the items s.t. $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq V$?

- Variables: n variables x_i meaning “item i is selected”
Examples (III): Knapsack

■ Given:

◆ n items with weights w_i and values v_i
◆ a capacity W
◆ a number V,

is there a subset S of the items s.t. $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq V$?

■ Variables: n variables x_i meaning “item i is selected”
■ Domains: $d_i = \{0, 1\}$
Examples (III): Knapsack

- **Given:**
 - n items with weights w_i and values v_i
 - a capacity W
 - a number V,

 is there a subset S of the items s.t. $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq V$?

- **Variables:** n variables x_i meaning “item i is selected”
- **Domains:** $d_i = \{0, 1\}$
- **Constraints:** $\sum_{i=1}^{n} w_i x_i \leq W$, $\sum_{i=1}^{n} v_i x_i \geq V$
Complexity

- **Theorem.** Solving a CSP is an NP-complete problem

 Proof:

 - It is in NP, because one can check a solution in polynomial time
 - It is NP-hard, as there is a reduction e.g. from Prop. Satisfiability (which is known to be NP-complete)

- For any CSP, there are instances that require exp time
 Can we solve real life instances in reasonable time?
Constraint Programming

- **Constraint programming (CP)** is a general framework for modeling and solving CSP’s:

 ◆ Offers the user many kinds of constraints, which makes modeling easy and natural

 Check out the Global Constraint Catalogue at https://sofdem.github.io/gccat/gccat/sec5.html with more than 400 different types of constraints!

 ◆ Provides solving engines for those constraints (CP toolkits: in this course, Gecode http://www.gecode.org)
Generate and Test

- How can we solve CSP’s?
- 1st naïf approach: Generate and Test (aka Brute Force)
 - Generate all possible candidate solutions (assignments of values from domains to variables)
 - Test whether any of these is a true solution indeed
Example: Queens Problem. Given \(n \geq 4 \), put \(n \) queens on an \(n \times n \) chessboard so that they don’t attack each other.

Wlog, we can place one queen per row so that no two are in the same column or diagonal.

- **Variables:** \(c_i \), column of the queen of row \(i \)
- **Domains:** all domains are \(\{1, 2, \ldots, n\} \)
- **Constraints:** no two are in same column/diagonal
Basic Backtracking

- Generate and Test is very inefficient
- 2nd approach to solving CSP’s: Basic Backtracking
- The algorithm maintains a partial assignment that is consistent with the constraints whose variables are all assigned:
 - Start with an empty assignment
 - At each step choose a var and a value in its domain
 - Whenever we detect a partial assignment that cannot be extended to a solution, backtrack: undo last decision
Basic Backtracking

- We can solve the problem by calling `backtrack(x1):

```plaintext
function backtrack(variable X) returns bool
    for all a in domain(X) do
        val(X) := a
        if compatible(X, assigned)
            assigned := assigned ∪ {X}
            if no next(X) then return TRUE
            else if backtrack(next(X)) then return TRUE
            else assigned := assigned - {X}
        return FALSE

function compatible(variable X, set A) returns bool
    for all constraint C with scope in AU{X} and not in A do
        // Let A be {Y1, ..., Yn}
        if (val(X), val(Y1),..., val(Yn)) don't satisfy C then
            return FALSE
    return TRUE
```
Basic Backtracking

USING BACKTRACKING TO SOLVE 4-QUEENS

THE ORANGE SQUARES REPRESENT THE PLACEMENT OF QUEENS.
BASED OFF OF A DIAGRAM IN [5]
Basic Backtracking

- The set of all possible partial assignments forms a **search tree**:
 - The root corresponds to the empty assignment
 - Each edge corresponds to assigning a value to a var
 - For each node, there are as many children as values in the domain of the chosen variable
 - **Generate and Test** corresponds to visiting each of the leaves until a solution is found
 - Complexity: \(O(m^n \cdot e \cdot r) \)
 - \(n \) = no. of variables
 - \(m \) = size of the largest domain
 - \(e \) = no. of constraints
 - \(r \) = largest arity
 - **Basic Backtracking** performs a depth-first traversal
 - Complexity: the same, as in the worst case we need to visit all leaves
 - But in practice it works much better than Generate and Test
Basic Backtracking

- Problems with backtracking

 - Inconsistencies may be found late, after a lot of useless work

 If \(x_1 \mapsto a \) is incompatible with \(x_n \mapsto \text{anything} \),
 then BT explores the subtree rooted at \(x_1 \mapsto a \)
 (if \(x_1 \) can take \(m \) values, this subtree is \(\frac{1}{m} \) of the whole search tree!)
 to realize that no solution can be found

 - The right backtracking point may not be the last decision
Basic Backtracking
Basic Backtracking

\[
\begin{array}{cccc}
& & & \text{Q} \\
Q & X & X & X \\
\text{Q} & X & X & X & X \\
X & X & X & X \\
X & X & X & X & Q \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
\end{array}
\]
Propagation

- CP approach: prune search tree *a priori* by removing values from the domains that can’t appear in any solution

 while (solution not found) do

 assign values to some of the variables
 propagate with constraints to prune other domains

 if (found inconsistency) undo last decision

- Smaller search tree, at the cost of more time per node

- There exist different kinds of propagation with different tradeoffs between pruning power and cost in time
Propagation

<table>
<thead>
<tr>
<th>Q</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Propagation

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Propagation

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- **Q**
- **X**

Cells marked with **Q** indicate the initial points of propagation. **X** marks the cells that have been affected by the propagation.
Propagation

<table>
<thead>
<tr>
<th>Q</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>Q</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>Q</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Propagation

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>Q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Q</td>
</tr>
<tr>
<td>X</td>
<td>Q</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Q</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

No search!