1. (3 points) Let \(G = (V, E) \) be an undirected graph. A feedback vertex set \(W \subseteq V \) of \(G \) is a set of vertices whose removal leaves a graph without cycles, i.e., the graph \(G_W = (V_W, E_W) \) where \(V_W = V - W \) and \(E_W = \{(u, v) \in E \mid u \notin W \text{ and } v \notin W\} \) is a disjoint union of trees.

(a) (2 points) Let \(G = (V, E) \) be the interaction graph of a binary CSP \(P \), and assume \(G \) has a feedback vertex set \(W \) of size \(k \). Describe an algorithm for solving \(P \) in time \(O(em^{k+2}) \) in the worst-case, where \(e \) is the number of constraints in \(P \), and \(m \) is the maximum size of the domains of the variables in \(P \). Assume the number of variables in \(P \) is \(O(e) \), and that evaluating a constraint takes time \(O(1) \).

(b) (1 point) Apply your algorithm from (a) to solve the following CSP \(P = (X, D, C) \):

\[
\begin{align*}
X &= \{x_i \mid 1 \leq i \leq 9\} \\
D(x_i) &= \{1, 2, 3\} \text{ for } 1 \leq i \leq 9 \\
C &= \left\{ \begin{array}{l}
x_1 \geq x_3 + 2, \quad x_3 \neq x_5, \quad x_5 = x_7 + 1, \\
x_3 \neq x_4, \quad x_4 \neq x_5, \quad x_8 \mod x_5 = 1, \\
x_4 > x_2, \quad x_4 = 2x_6 + 1, \quad x_7 \leq x_8 - 2, \\
x_8 = x_9 \end{array} \right.
\end{align*}
\]

2. (4 points) We want to schedule \(n \) tasks, i.e., for each task \(i \) (\(1 \leq i \leq n \)), we want to determine its start time \(s_i \) (when the task starts) and its end time \(e_i \) (when the task ends). We are given the following input data:

- For each task \(i \) (\(1 \leq i \leq n \)), its duration \(d_i > 0 \).
- A list of time constraints of one of the following two forms:

 (A) There should be at least \(k_{ij} \) units of time after task \(i \) ends before task \(j \) can start (for certain \(i \) and \(j \) such that \(1 \leq i, j \leq n, i \neq j \)).

 (B) The difference (in absolute value) between the start times of tasks \(i \) and \(j \) should be of at most \(l_{ij} \) units of time (for certain \(i \) and \(j \) such that \(1 \leq i, j \leq n, i \neq j \)).

The goal is to minimize the time span, i.e., to minimize \(\max_{1 \leq i \leq n} e_i - \min_{1 \leq i \leq n} s_i \).

(a) (1.5 points) Formalize this problem as a (real) linear program.

(b) (0.5 points) Show that the linear program cannot be unbounded.

(c) (2 points) Show that, if \(d_i, k_{ij}, l_{ij} \in \mathbb{Z} \) and the linear program is feasible, then we can ensure that the optimum solution produced by the simplex algorithm has integer values.

3. (3 points) A problem of linear boolean optimization consists in, given a boolean formula \(F \) defined over variables \(x_1, \ldots, x_n \), finding the model of \(F \) that minimizes over all models of \(F \) a function of the form \(c_1x_1 + \ldots + x_n \), where \(c_i \in \mathbb{Z} \) (or reporting that \(F \) is unsatisfiable).

Assume you have the code of a CDCL SAT-solver. Explain which changes you would make to the SAT solver in order to solve a problem of linear boolean optimization.