Search Algorithms

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell (based on materials by Javier Larrosa)

March 27, 2020
function \texttt{BT}(\tau, X, D, C)
\hspace{1em} // \ \tau: \text{current assignment}
\hspace{1em} // X: \text{vars}; D: \text{domains}; C: \text{constraints}
\hspace{1em} \hspace{1em} x_i := \text{Select}(X)
\hspace{1em} \hspace{1em} \text{if } x_i = \text{nil} \text{ then return } \tau
\hspace{1em} \hspace{1em} \text{for each } a \in d_i \text{ do}
\hspace{1em} \hspace{2em} \text{if } \text{Consistent}(\tau, C, x_i, a) \text{ then}
\hspace{1em} \hspace{3em} \sigma := \text{BT}(\tau \circ (x_i \mapsto a), X, D[d_i \to \{a\}], C)
\hspace{1em} \hspace{3em} \text{if } \sigma \neq \text{nil} \text{ then return } \sigma
\hspace{1em} \hspace{1em} \text{return } \text{nil}
\hspace{1em} \hspace{1em} \text{function } \text{Consistent}(\tau, C, x_i, a):
\hspace{1em} \hspace{2em} \text{for each } c \in C \text{ s.t. } \text{scope}(c) \not\subseteq \text{vars}(\tau) \land \text{scope}(c) \subseteq \text{vars}(\tau) \cup \{x_i\}
\hspace{1em} \hspace{3em} \text{if } \neg c(\tau \circ (x_i \mapsto a)) \text{ then return } \text{false}
\hspace{1em} \hspace{1em} \text{return } \text{true}
Improvements on Backtracking

- We say a (partial) assignment is good if it can be extended to a solution, a deadend otherwise
- We say BT makes a mistake when it moves from a good assignment to a deadend
- We say BT recovers from a mistake when it backtracks from a deadend to a good assignment
- Shortcomings of BT (which are related to each other):
 - BT detects very late when a mistake has been made (⇒ Look-ahead)
Basic Backtracking
Basic Backtracking

```

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Q</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
</tr>
</tbody>
</table>
```

- **Q** represents the starting position.
- **X** represents the positions visited during the backtracking process.
- The backtracking process involves reversing the path when a dead end is reached.
Improvements on Backtracking

- We say a (partial) assignment is **good** if it can be extended to a solution, a **deadend** otherwise

- We say BT **makes a mistake** when it moves from a good assignment to a deadend

- We say BT **recovers from a mistake** when it backtracks from a deadend to a good assignment

- Shortcomings of BT (which are related to each other):
 - BT detects very late when a mistake has been made (⇒ Look-ahead)
 - BT **may make again and again the same mistakes** (⇒ Nogood recording)
Basic Backtracking
Basic Backtracking
Basic Backtracking
Improvements on Backtracking

- We say a (partial) assignment is **good** if it can be extended to a solution, a **deadend** otherwise

- We say BT **makes a mistake** when it moves from a good assignment to a deadend

- We say BT **recovers from a mistake** when it backtracks from a deadend to a good assignment

- **Shortcomings of BT** (which are related to each other):

 ◆ BT detects very late when a mistake has been made
 \(\Leftrightarrow \text{Look-ahead} \)

 ◆ BT may make again and again the same mistakes
 \(\Leftrightarrow \text{Nogood recording} \)

 ◆ **BT is very weak recovering from mistakes**
 \(\Leftrightarrow \text{Backjumping} \)
Basic Backtracking

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Q</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Q</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Q</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Q</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Q</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

This grid represents a backtracking problem. Each cell can either be an 'X' or a 'Q'. The goal is to find a path from one corner to another, avoiding 'X's, with the maximum number of 'Q's included in the path. This problem is a classic example of backtracking, where the algorithm tries different paths and backtracks when it hits a dead end.
Improvements on Backtracking

- We say a (partial) assignment is **good** if it can be extended to a solution, a **deadend** otherwise.

- We say BT **makes a mistake** when it moves from a good assignment to a deadend.

- We say BT **recovers from a mistake** when it backtracks from a deadend to a good assignment.

- Shortcomings of BT (which are related to each other):
 - BT detects very late when a mistake has been made (\iff Look-ahead)
 - BT may make again and again the same mistakes (\iff Nogood recording)
 - BT is very weak recovering from mistakes (\iff Backjumping)
Look Ahead

- At each step BT checks consistency wrt. past decisions

- This is why BT is called a look-back algorithm

- Look-ahead algorithms use domain filtering / propagation: they identify domain values of unassigned variables that are not compatible with the current assignment, and prune them

- When some domain becomes empty we can backtrack (as current assignment is incompatible with any value)

- One of the most common look-ahead algorithms: Forward Checking (FC)

- Forward checking guarantees that all the constraints between already assigned variables and one yet unassigned variable are arc consistent
Forward Checking

function $FC(\tau, X, D, C)$
// τ: current assignment
// X: vars; D: domains; C: constraints

$x_i := \text{Select}(X)$
if $x_i = \text{nil}$ then return τ
for each $a \in d_i$ do
 // $\tau \circ (x_i \mapsto a)$ consistent
 $D' := \text{LookAhead}(\tau \circ (x_i \mapsto a), X, D[d_i \rightarrow \{a\}], C)$
 if $\forall d' \in D'$ $d'_i \neq \emptyset$ then
 $\sigma := FC(\tau \circ (x_i \mapsto a), X, D', C)$
 if $\sigma \neq \text{nil}$ then return σ
return nil

function $\text{LookAhead}(\tau, X, D, C)$
for each $x_j \in X - \text{vars}(\tau)$ do
 for each $c \in C$ s.t. $\text{scope}(c) \not\subseteq \text{vars}(\tau)$ \& $\text{scope}(c) \subseteq \text{vars}(\tau) \cup \{x_j\}$
 for each $b \in d_j$ do
 if $\neg c(\tau \circ (x_j \mapsto b))$ then remove b from d_j

return D
Other Look-Ahead Algorithms

In general:

```plaintext
function DFS+Propagation(X, D, C)
// X: vars; D: domains; C: constraints
    x_i := Select(X, D, C)
    if x_i = nil then return solution
    for each a ∈ d_i do
        D' := Propagation(x_i, X, D [d_i → {a}], C)
        if ∀ d'_i ∈ D' d'_i ≠ ∅ then
            σ := DFS+Propagation(X, D', C)
            if σ ≠ nil then return σ
    return nil
```
Other Look-Ahead Algorithms

Many options for function Propagation:

- **Full AC** (results in the algorithm Maintaining Arc Consistency, MAC)
- **Full Look-Ahead** (binary CSP’s):

 \[
 \text{function FL}(x_i, X, D, C) \\
 \quad // \ldots, x_{i-1}: \text{already assigned}; x_i: \text{last assigned}; x_{i+1}, \ldots: \text{unassigned} \\
 \quad \text{for each } j = i + 1 \ldots n \text{ do} \quad // \text{Forward checking} \\
 \quad \quad \text{Revise}(x_j, c_{ij}) \\
 \quad \text{for each } j = i + 1 \ldots n, k = i + 1 \ldots n, j \neq k \text{ do} \\
 \quad \quad \text{Revise}(x_j, c_{jk})
 \]

- **Partial Look-Ahead** (binary CSP’s):

 \[
 \text{function PL}(x_i, X, D, C) \\
 \quad // \ldots, x_{i-1}: \text{already assigned}; x_i: \text{last assigned}; x_{i+1}, \ldots: \text{unassigned} \\
 \quad \text{for each } j = i + 1 \ldots n \text{ do} \quad // \text{Forward checking} \\
 \quad \quad \text{Revise}(x_j, c_{ij}) \\
 \quad \text{for each } j = i + 1 \ldots n, k = j + 1 \ldots n \text{ do} \\
 \quad \quad \text{Revise}(x_j, c_{jk})
 \]
Variable/Value Selection Heuristics

function DFS+Propagation(X, D, C)
// X: vars; D: domains; C: constraints
 $x_i := \text{Select}(X, D, C)$ // variable selection is done here
 if $x_i = \text{nil}$ then return solution
 for each $a \in d_i$ do // value selection is done here
 $D' := \text{Propagation}(X, D[d_i \rightarrow \{a\}], C)$
 if $\forall d'_i \in D'$ $d'_i \neq \emptyset$ then
 $\sigma := \text{DFS+Propagation}(X, D', C)$
 if $\sigma \neq \text{nil}$ then return σ
 return nil

- **Variable Selection**: the next variable to branch on
- **Value Selection**: how the domain of the chosen variable is to be explored
- **Choices at the top of the search tree** have a huge impact on efficiency
Variable/Value Selection Heuristics

■ Goal:
 ◆ Minimize no. of nodes of the search space visited by the algorithm

■ The heuristics can be:
 ◆ Deterministic vs. randomized
 ◆ Static vs. dynamic
 ◆ Local vs. shared
 ◆ General-purpose vs. application-dependent
Variable Selection Heuristics

- Observation: given a partial assignment τ

 (1) If there is a solution extending τ, then any variable is OK

 (2) If there is no solution extending τ, we should choose a variable that discovers that asap

- The most common situation in the search is (2)

- First-fail principle:
 choose the variable that leads to a conflict the fastest
Variable Heuristics in Gecode

- Deterministic dynamic local heuristics
 - ...
 - INT_VAR_SIZE_MIN(): smallest domain size
 - INT_VAR DEGREE_MAX(): largest degree

- degree of a variable = number of constraints where it appears
Variable Heuristics in Gecode

- Deterministic dynamic shared heuristics
 - ...
 - \texttt{INT_VAR_AFC_MAX}(afc, t): largest AFC

- Accumulated failure count (AFC) of a constraint counts how often domains of variables in its scope became empty while propagating the constraint

- AFC of a variable is the sum of AFCs of all constraints where the variable appears
Variable Heuristics in Gecode

More precisely:

- The AFC \(\text{afc}(p) \) of a constraint \(p \) is initialized to 1. So the AFC of a variable \(x \) is initialized to its degree.

- After constraint propagation, the AFCs of all constraints are updated:
 - If some domain becomes empty while propagating \(p \), \(\text{afc}(p) \) is incremented by 1
 - For all other constraints \(q \), \(\text{afc}(q) \) is updated by a decay-factor \(d \) (\(0 < d \leq 1 \)): \(\text{afc}(q) := d \cdot \text{afc}(q) \)

- The AFC \(\text{afc}(x) \) of a variable \(x \) is then defined as:
 \[
 \text{afc}(x) = \text{afc}(p_1) + \cdots + \text{afc}(p_n),
 \]
 where the \(p_i \) are the constraints that depend on \(x \).
Variable Heuristics in Gecode

- Deterministic dynamic shared heuristics
 - ...
 - INT_VAR_ACTION_MAX(a, t): highest action

- The action of a variable captures how often its domain has been reduced during constraint propagation
Variable Heuristics in Gecode

More precisely:

- The action of a variable \(x \) is initially 1

- After constraint propagation, the actions of all variables are updated:

 - If some value has been removed from the domain of \(x \), \(\text{act}(x) \) is incremented by 1: \(\text{act}(x) := \text{act}(x) + 1 \)

 - Otherwise, \(\text{act}(x) \) is updated by a decay-factor \(d \) (\(0 < d \leq 1 \)):

 \[
 \text{act}(x) := d \text{ act}(x)
 \]
Value Selection Heuristics

- **Observation:** given a partial assignment \(\tau \) and a var \(x \)

 1. If there is no solution extending \(\tau \),
 we can choose any value for \(x \)
 2. If there is a solution extending \(\tau \),
 then value chosen for \(x \) should belong to a solution

- **First-success principle:**
 choose the value that has the most chances of being part in a solution
Branching Strategies

Branching tells how to extend nodes in search tree. Let:

- x be a var chosen by the variable selection heuristic
- v be a value chosen by the value selection heuristic

A node can be extended according to different strategies:

- **Enumeration:** a branch $x = v$ for each value $v \in d_x$
- **Binary Choice Points:**
 two branches, one with $x = v$ and the other with $x \neq v$
- **Domain Splitting:**
 two branches, one with $x \leq v$ and the other with $x > v$
 (or one with $x < v$ and the other with $x \geq v$)

The constraints that label the new edges (e.g., $x = v$) are called branching constraints
Branching in Gecode

[enumeration]
- INT_VALUES_MIN(): all values starting from smallest
- INT_VALUES_MAX(): all values starting from largest

[domain splitting]
- INT_VAL_SPLIT_MIN(): values not greater than $\frac{\text{min} + \text{max}}{2}$
- INT_VAL_SPLIT_MAX(): values greater than $\frac{\text{min} + \text{max}}{2}$

...
Branching in Gecode

[binary choice points]

- **INT_VAL_RND(r)**: random value
- **INT_VAL_MIN()** : smallest value
- **INT_VAL_MED()** : greatest value not greater than the median
- **INT_VAL_MAX()** : largest value
- ...
Improvements on Backtracking

- We say a (partial) assignment is **good** if it can be extended to a solution, a **deadend** otherwise.

- We say BT **makes a mistake** when it moves from a good assignment to a deadend.

- We say BT **recovers from a mistake** when it backtracks from a deadend to a good assignment.

- Shortcomings of BT (which are related to each other):

 - BT detects very late when a mistake has been made (⇒ **Look-ahead**)

 - BT may make again and again the same mistakes (⇒ **Nogood recording**)

 - BT is very weak recovering from mistakes (⇒ **Backjumping**)

Nogood Recording

- We can add redundant constraints recording past mistakes to avoid repeating them in the future.

- A nogood is a set of branching constraints inconsistent with any solution.

- In backtracking search, each deadend gives a nogood.

- Adding a constraint forbidding this nogood is too late for this node, but may be useful for pruning in the future.

- Nogood recording is a form of caching/memoization: store computations & reuse them instead of recomputing.

- This can reduce the search tree significantly.
Nogood Recording

\[
\begin{array}{cccccccccc}
& & & & & & & & & & \text{Q} \\
& & & & & & & & & & X \\
& & & & & & & & & & X \\
& & & & & & & & & & X \\
& & & & & & & & & & X \\
& & & & & & & & & & X \\
& & & & & & & & & & X \\
& & & & & & & & & & X \\
& & & & & & & & & & X \\
\end{array}
\]

\[
c_1 = 11, \quad c_3 = 6, \quad c_4 = 3, \quad c_5 = 1, \quad c_6 = 10, \\
c_7 = 7, \quad c_8 = 9, \quad c_9 = 2, \quad c_{10} = 5, \quad c_{11} = 8,
\]

is a nogood
is a nogood

\[-(c_1 = 11 \land c_3 = 6 \land c_4 = 3 \land c_5 = 1 \land c_6 = 10 \land c_7 = 7 \land c_8 = 9 \land c_9 = 2 \land c_{10} = 5 \land c_{11} = 8)\] can be added
\[c_3 = 6, \quad c_4 = 3, \quad c_5 = 1, \]
\[c_6 = 10, \quad c_7 = 7, \quad c_8 = 9 \]

is a nogood too (it is the actual reason for the conflict!)

\[\neg(c_3 = 6 \land c_4 = 3 \land c_5 = 1 \land c_6 = 10 \land c_7 = 7 \land c_8 = 9) \text{ can be added} \]
Nogood Database Management

- If the nogood database becomes too large and too expensive to query, the search reduction may not pay off.

- Idea: keep only nogoods that are most likely to be useful.

- E.g., clean up the nogood database after every M decisions, discarding a nogood if it has not been active enough (for instance, measured with the accumulated failure count).
Improvements on Backtracking

- We say a (partial) assignment is **good** if it can be extended to a solution, a **deadend** otherwise.

- We say BT **makes a mistake** when it moves from a good assignment to a deadend.

- We say BT **recovers from a mistake** when it backtracks from a deadend to a good assignment.

- **Shortcomings of BT** (which are related to each other):
 - BT detects very late when a mistake has been made (⇒ Look-ahead)
 - BT may make again and again the same mistakes (⇒ Nogood recording)
 - BT is very weak recovering from mistakes (⇒ Backjumping)
Backjumping

- BT very weak recovering from mistakes as it backtracks chronologically (back to previously instantiated variable)

- However, the reason for the conflict may not be the last assigned variable, but earlier!

- **Backjumping**: backtrack to last choice with responsibility in the conflict

- Backjumping may jump more than one tree-level, without missing solutions
Backjumping

\[c_1 = 6, \quad c_2 = 3, \quad c_3 = 1, \quad c_4 = 10, \quad c_5 = 7, \quad c_6 = 9, \quad c_7 = 2, \quad c_8 = 5, \quad c_9 = 8 \]

is a nogood
Backjumping

\[c_1 = 6, c_2 = 3, c_3 = 1, c_4 = 10, c_5 = 7, c_6 = 9 \]
is the reason for the conflict!

Retract \(c_6 = 9, c_7 = 2, c_8 = 5, c_9 = 8 \)
Randomization and Restarts

- Backtracking algorithms can be very sensitive to variable/value heuristics
- Early mistakes in the search tree have dramatic effects

Idea:

- Add randomization to the backtracking algorithm
- Each run of the algorithm terminates either when:
 - a solution has been found; or
 - current run is too long, so search must be restarted
- After each restart, a new run is executed that hopefully behaves better
Randomizing Heuristics

Variable/value selection heuristics can be randomized by

- Taking a random variable/value for breaking ties
- Ranking variables/values with the chosen heuristic and randomly taking one of those “close” to the best
- Randomly picking among a set of existing selection heuristics
When to Restart

- A restart strategy $S = \{ t_1, t_2, \ldots \}$ is an infinite sequence where each t_i is either a positive integer or ∞.

- Randomized backtracking algorithm is run for t_1 “steps”. If no solution is found so far, a restart is applied, and the algorithm is run again for t_2 steps, and so on.

- What is a “step” of computation?

 Several possibilities:
 - Number of backtracks
 - Number of visited nodes

- What are good restart strategies?
Restart Strategies: Luby Sequence

- Luby showed that, given full knowledge of the runtime distribution, the optimal strategy is given by \(S_{t^*} = (t^*, t^*, \ldots) \), for some fixed \(t^* \)

- For the (mostly common) case in which there is no knowledge of the runtime distribution, Luby shows that any universal strategy of the form \(S_u = (l_0, l_1, l_2, \ldots) \) where

\[
l_i = \begin{cases}
N \cdot 2^{k-1} & \text{if } \exists k \text{ with } i = 2^k - 1 \\
l_{i-2^k-1+1} & \text{if } \exists k \text{ with } 2^{k-1} \leq i < 2^k - 1
\end{cases}
\]

for a fixed constant \(N > 0 \) has a behaviour that is “close” to that of the optimal strategy \(S_{t^*} \)
Restart Strategies: Luby Sequence

- For $N = 1$ Luby sequence is:

$$(1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, \ldots)$$

- For $N = 512$:

![Luby-based restart sequence with initial 512](chart.png)
Walsh proposes a universal strategy $S_g = (1, r, r^2, \ldots)$ where the restart values are geometrically increasing.

Works well in practice ($1 < r < 2$), but comes with no formal guarantees of its worst-case performance.

It can be shown that the expected runtime of the geometric strategy can be arbitrarily worse than that of the optimal strategy.
Optimization Problems

- Often CSP’s have, in addition to the constraints to be satisfied, an objective function f that must be optimized (maximized/minimized).

A CSP with an objective function is called a constraint optimization problem (COP).

- Wlog, let us assume there is a constraint $c = f(X)$, where c is a variable, and the goal is to minimize c.

- COP’s can be solved by solving a sequence of CSP’s:
 - Initially an algorithm for solving CSP’s is used to find a solution S that satisfies the constraints.
 - A constraint of the form $c < f(S)$ is then added, which excludes solutions that are not better than solution S.
 - The process is repeated until the resulting CSP has no solution: the last solution that was found is optimal.
Optimization Problems

- Let us write this procedure in pseudo-code
- Assume that $\min(f) \in \text{dom}(c)$

\[
\begin{align*}
u &= \max(\text{dom}(c)); \quad &// u \text{ is an upper bound on } \min(f) \\
S &= \text{solve}(C \land c \leq u - 1); \\
\text{while } (S \neq \bot) \{ &// \bot \text{ means "no solution"}
 u &= f(S); \\
 S &= \text{solve}(C \land c \leq u - 1); &// \text{equivalent to solve}(C \land c < f(S))
\}
\end{align*}
\]

It is a linear search for $\min(f)$ in the domain of c from the largest value in $\text{dom}(c)$ to the smallest one (until a solution is no longer found)

- Another approach is to do a linear search from the smallest value in $\text{dom}(c)$ to the largest one (until a solution is found):

\[
\begin{align*}
l &= \min(\text{dom}(c)); \quad &// l \text{ is a lower bound on } \min(f) \\
S &= \text{solve}(C \land c \leq l); \\
\text{while } (S == \bot) \{ \\
 l &= l + 1; \\
 S &= \text{solve}(C \land c \leq l);
\}
\end{align*}
\]

// on exit $\min(f)$ is l
Yet another approach is to do a binary search:

\[
\begin{align*}
l &= \min(\text{dom}(c)); & \text{// } l & \text{ is a lower bound on } \min(f) \\
u &= \max(\text{dom}(c)); & \text{// } u & \text{ is an upper bound on } \min(f) \\
\text{while } (l \neq u) \{ \\
 & m = (l + u)/2; \\
 & S = \text{solve}(C \land c \leq m); \\
 & \text{if } (S == \bot) \quad l = m + 1; \\
 & \text{else } \quad u = f(S); & \text{// } f(S) \leq m \\
\}
\]
\text{// on exit } \min(f) \text{ is } l

Which approach is the best?
Yet another approach is to do a binary search:

\[
\begin{align*}
l &= \min(\text{dom}(c)); \quad \text{// } l \text{ is a lower bound on } \min(f) \\
u &= \max(\text{dom}(c)); \quad \text{// } u \text{ is an upper bound on } \min(f) \\
\text{while } (l \neq u) \{ \\
 m &= (l + u)/2; \\
 S &= \text{solve}(C \land c \leq m); \\
 \text{if } (S == \bot) \quad l &= m + 1; \\
 \text{else } u &= f(S); \quad \text{// } f(S) \leq m \\
\}
\text{// on exit } \min(f) \text{ is } l
\end{align*}
\]

Which approach is the best?

It depends on the problem.

Binary search is likely to perform less calls to \text{solve}, but unfeasible CSP’s may be more difficult to solve.