Search Algorithms

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell (based on materials by Javier Larrosa)

March 10, 2022
Basic Backtracking

function $\text{BT}(\tau, X, D, C)$
// τ: current assignment
// X: vars; D: domains; C: constraints
\[
x_i := \text{Select}(X)
\]
if $x_i = \text{nil}$ then return τ
for each $a \in d_i$ do
\[
\text{if Consistent}(\tau, C, x_i, a) \text{ then }
\]
\[
\sigma := \text{BT}(\tau \circ (x_i \mapsto a), X, D[d_i \rightarrow \{a\}], C)
\]
\[
\text{if } \sigma \neq \text{nil} \text{ then return } \sigma
\]
return nil

function Consistent(τ, C, x_i, a):
\[
\text{for each } c \in C \text{ s.t. scope}(c) \nsubseteq \text{vars}(\tau) \land \text{scope}(c) \subseteq \text{vars}(\tau) \cup \{x_i\}
\]
\[
\text{if } \neg c(\tau \circ (x_i \mapsto a)) \text{ then return } \text{false}
\]
return true
Improvements on Backtracking

- We say a (partial) assignment is **good** if it can be extended to a solution, a **deadend** otherwise.

- We say BT **makes a mistake** when it moves from a good assignment to a deadend.

- We say BT **recovers from a mistake** when it backtracks from a deadend to a good assignment.

- Shortcomings of BT (which are related to each other):

 ◆ **BT detects very late when a mistake has been made**

 \[\iff \text{Look-ahead}\]

- Look-ahead
Basic Backtracking
Basic Backtracking
Basic Backtracking

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Q</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Q</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Q</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Q</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>Q</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Q</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Q</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Q</td>
<td>X</td>
</tr>
</tbody>
</table>

Diagram...
Improvements on Backtracking

- We say a (partial) assignment is **good** if it can be extended to a solution, a **deadend** otherwise.

- We say BT **makes a mistake** when it moves from a good assignment to a deadend.

- We say BT **recovers from a mistake** when it backtracks from a deadend to a good assignment.

- Shortcomings of BT (which are related to each other):
 - **BT** detects very late when a mistake has been made
 \(\iff\) **Look-ahead**
 - **BT** may make again and again the same mistakes
 \(\iff\) **Nogood recording**
Basic Backtracking
Basic Backtracking
Basic Backtracking
Improvements on Backtracking

- We say a (partial) assignment is **good** if it can be extended to a solution, a **deadend** otherwise.

- We say BT **makes a mistake** when it moves from a good assignment to a deadend.

- We say BT **recovers from a mistake** when it backtracks from a deadend to a good assignment.

- **Shortcomings of BT** (which are related to each other):
 - BT detects very late when a mistake has been made
 \(\Rightarrow\) **Look-ahead**
 - BT may make again and again the same mistakes
 \(\Rightarrow\) **Nogood recording**
 - **BT is very weak recovering from mistakes**
 \(\Rightarrow\) **Backjumping**
Basic Backtracking

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The backtracking process can be visualized as follows:

```
Q X X X X
Q X X X X X X
X X X X X X Q
X X X X X X X X Q
X Q X X X X X X X
X X X X X X X Q
X X X X X X X X Q
X X X X X X X X X
X X X X X X X X X
X X X X X X X X X
```

This grid represents the steps of the backtracking algorithm, where 'Q' marks the starting point and 'X' marks the subsequent steps. The process involves marking and unmarking positions until a solution is found or all possibilities are exhausted.
Improvements on Backtracking

- We say a (partial) assignment is good if it can be extended to a solution, a deadend otherwise.
- We say BT makes a mistake when it moves from a good assignment to a deadend.
- We say BT recovers from a mistake when it backtracks from a deadend to a good assignment.
- Shortcomings of BT (which are related to each other):
 - BT detects very late when a mistake has been made (⇒ Look-ahead)
 - BT may make again and again the same mistakes (⇒ Nogood recording)
 - BT is very weak recovering from mistakes (⇒ Backjumping)
Look Ahead

- At each step BT checks consistency wrt. past decisions
- This is why BT is called a look-back algorithm
- Look-ahead algorithms use domain filtering / propagation:
 they identify domain values of unassigned variables
 that are not compatible with the current assignment, and prune them
- When some domain becomes empty we can backtrack
 (as current assignment is incompatible with any value)
- One of the most common look-ahead algorithms: Forward Checking (FC)
- Forward checking guarantees that all the constraints between already assigned variables and one yet unassigned variable are arc consistent
Forward Checking

function FC(τ, X, D, C)

// τ: current assignment
// X: vars; D: domains; C: constraints

\[x_i := \text{Select}(X) \]

if \(x_i = \text{nil} \) then return τ

for each \(a \in d_i \) do

 // τ \(\circ (x_i \mapsto a) \) consistent
 \[D' := \text{LookAhead}(\tau \circ (x_i \mapsto a), X, D[d_i \to \{a\}], C) \]

 if \(\forall d'_i \in D' \; d'_i \neq \emptyset \) then

 \[\sigma := \text{FC}(\tau \circ (x_i \mapsto a), X, D', C) \]

 if \(\sigma \neq \text{nil} \) then return \(\sigma \)

return nil

function LookAhead(τ, X, D, C)

for each \(x_j \in X - \text{vars}(\tau) \) do

 for each \(c \in C \) s.t. \(\text{scope}(c) \nsubseteq \text{vars}(\tau) \wedge \text{scope}(c) \subseteq \text{vars}(\tau) \cup \{x_j\} \)

 for each \(b \in d_j \) do

 if \(\neg c(\tau \circ (x_j \mapsto b)) \) then remove \(b \) from \(d_j \)

return \(D \)
Other Look-Ahead Algorithms

In general:

```plaintext
function DFS+Propagation(X, D, C)
  // X: vars; D: domains; C: constraints
  x_i := Select(X, D, C)
  if x_i = nil then return solution
  for each a ∈ d_i do
    D' := Propagation(x_i, X, D[d_i → {a}], C)
    if ∀ d'_i ∈ D' d'_i ≠ ∅ then
      σ := DFS+Propagation(X, D', C)
      if σ ≠ nil then return σ
  return nil
```
Other Look-Ahead Algorithms

Many options for function Propagation:

- **Full AC** (results in the algorithm Maintaining Arc Consistency, MAC)

- **Full Look-Ahead** (binary CSP’s):

 function $FL(x_i, X, D, C)$

 // ... x_{i-1}: already assigned; x_i: last assigned; x_{i+1},...: unassigned

 for each $j = i + 1 \ldots n$ do // Forward checking

 Revise(x_j, c_{ij})

 for each $j = i + 1 \ldots n$, $k = i + 1 \ldots n$, $j \neq k$ do

 Revise(x_j, c_{jk})

- Use ReviseBounds instead of Revise

- ...

Variable/Value Selection Heuristics

function DFS+Propagation(X, D, C)
// X: vars; D: domains; C: constraints

$x_i := \text{Select}(X, D, C)$ // variable selection is done here
if $x_i = \text{nil}$ then return solution

for each $a \in d_i$ do // value selection is done here

$D' := \text{Propagation}(X, D[d_i \rightarrow \{a\}], C)$
if $\forall d'_i \in D' \ d'_i \neq \emptyset$ then

$\sigma := \text{DFS+Propagation}(X, D', C)$
if $\sigma \neq \text{nil}$ then return σ

return nil

- **Variable Selection**: the next variable to branch on
- **Value Selection**: how the domain of the chosen variable is to be explored
- **Choices at the top of the search tree have a huge impact on efficiency**
Variable/Value Selection Heuristics

- Goal:
 - Minimize no. of nodes of the search space visited by the algorithm

- The heuristics can be:
 - Deterministic vs. randomized
 - Static vs. dynamic
 - Local vs. shared
 - General-purpose vs. application-dependent
Variable Selection Heuristics

- Observation: given a partial assignment τ

 (1) If there is a solution extending τ, then any variable is OK

 (2) If there is no solution extending τ, we should choose a variable that discovers that asap

- The most common situation in the search is (2)

- First-fail principle:
 choose the variable that leads to a conflict the fastest
Variable Heuristics in Gecode

- Deterministic dynamic local heuristics
 - ...
 - INT_VAR_SIZE_MIN(): smallest domain size
 - INT_VAR_DEGREE_MAX(): largest degree

- degree of a variable = number of constraints where it appears
Variable Heuristics in Gecode

■ Deterministic dynamic shared heuristics

◆ …
◆ INT_VAR_AFC_MAX(afc, t): largest AFC

■ Accumulated failure count (AFC) of a constraint counts how often domains of variables in its scope became empty while propagating the constraint

■ AFC of a variable is the sum of AFCs of all constraints where the variable appears
Variable Heuristics in Gecode

More precisely:

- The AFC $afc(p)$ of a constraint p is initialized to 1. So the AFC of a variable x is initialized to its degree.

- After constraint propagation, the AFCs of all constraints are updated:

 - If some domain becomes empty while propagating p, $afc(p)$ is incremented by 1

 - For all other constraints q, $afc(q)$ is updated by a decay-factor d ($0 < d \leq 1$): $afc(q) := d \cdot afc(q)$

- The AFC $afc(x)$ of a variable x is then defined as:

 $afc(x) = afc(p_1) + \cdots + afc(p_n)$,

 where the p_i are the constraints that depend on x.
Variable Heuristics in Gecode

- Deterministic dynamic shared heuristics
 - ...
 - INT_VAR_ACTION_MAX(a, t): highest action

- The action of a variable captures how often its domain has been reduced during constraint propagation
Variable Heuristics in Gecode

More precisely:

- The action of a variable x is initially 1

- After constraint propagation, the actions of all variables are updated:

 - If some value has been removed from the domain of x, $\text{act}(x)$ is incremented by 1: $\text{act}(x) := \text{act}(x) + 1$

 - Otherwise, $\text{act}(x)$ is updated by a decay-factor d ($0 < d \leq 1$):
 $\text{act}(x) := d \times \text{act}(x)$
Value Selection Heuristics

- Observation: given a partial assignment τ and a var x

 (1) If there is no solution extending τ, we can choose any value for x

 (2) If there is a solution extending τ, then value chosen for x should belong to a solution

- First-success principle:
 choose the value that has the most chances of being part in a solution
Branching Strategies

- Branching tells how to extend nodes in search tree. Let:
 - x be a var chosen by the variable selection heuristic
 - v be a value chosen by the value selection heuristic

A node can be extended according to different strategies:

- **Enumeration**: a branch $x = v$ for each value $v \in d_x$

- **Binary Choice Points**:
 - two branches, one with $x = v$ and the other with $x \neq v$

- **Domain Splitting**:
 - two branches, one with $x \leq v$ and the other with $x > v$
 - (or one with $x < v$ and the other with $x \geq v$)

- The constraints that label the new edges (e.g., $x = v$) are called branching constraints
Branching in Gecode

[enumeration]
- INT_VALUES_MIN(): all values starting from smallest
- INT_VALUES_MAX(): all values starting from largest

[domain splitting]
- INT_VAL_SPLIT_MIN(): values not greater than \(\frac{\text{min} + \text{max}}{2} \)
- INT_VAL_SPLIT_MAX(): values greater than \(\frac{\text{min} + \text{max}}{2} \)

- ...
Branching in Gecode

[binary choice points]
- INT_VAL_RND(r): random value
- INT_VAL_MIN(): smallest value
- INT_VAL_MED(): greatest value not greater than the median
- INT_VAL_MAX(): largest value
- ...
Improvements on Backtracking

- We say a (partial) assignment is **good** if it can be extended to a solution, a **deadend** otherwise

- We say BT **makes a mistake** when it moves from a good assignment to a deadend

- We say BT **recovers from a mistake** when it backtracks from a deadend to a good assignment

- Shortcomings of BT (which are related to each other):
 - BT detects very late when a mistake has been made (\iff Look-ahead)
 - BT may make again and again the same mistakes (\iff Nogood recording)
 - BT is very weak recovering from mistakes (\iff Backjumping)
Nogood Recording

- We can add redundant constraints recording past mistakes to avoid repeating them in the future.

- A **nogood** is a set of branching constraints inconsistent with any solution (and then the negation of the nogood is satisfied by any solution).

- In backtracking search, each deadend gives a nogood.

- Adding the negation of this nogood is too late for this node, but may be useful for pruning in the future.

- Nogood recording is a form of **caching/memoization**: store computations & reuse them instead of recomputing.

- This can reduce the search tree significantly.
Nogood Recording

\[
\begin{array}{cccccc}
& & & & & Q \\
& & & & X & X \\
& & & X & X & X \\
& & X & X & X & X \\
& X & X & X & X & X \\
& X & X & X & X & X \\
& X & Q & X & X & X \\
& X & X & X & X & X \\
& X & X & Q & X & X \\
& X & X & X & X & X \\
& X & X & X & X & X \\
& X & X & X & X & X \\
& X & X & X & X & X \\
& X & X & X & X & X \\
& X & X & X & X & X \\
& X & X & X & X & X \\
& X & X & X & X & X \\
& X & X & X & X & X \\
\end{array}
\]

\[c_1 = 11, \quad c_3 = 6, \quad c_4 = 3, \quad c_5 = 1, \quad c_6 = 10, \]
\[c_7 = 7, \quad c_8 = 9, \quad c_9 = 2, \quad c_{10} = 5, \quad c_{11} = 8,\]

is a nogood
Nogood Recording

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

\[
c_1 = 11, \quad c_3 = 6, \quad c_4 = 3, \quad c_5 = 1, \quad c_6 = 10, \\
\quad c_7 = 7, \quad c_8 = 9, \quad c_9 = 2, \quad c_{10} = 5, \quad c_{11} = 8,
\]

is a nogood

\[
\neg(c_1 = 11 \land c_3 = 6 \land c_4 = 3 \land c_5 = 1 \land c_6 = 10 \land \neg(c_7 = 7 \land c_8 = 9 \land c_9 = 2 \land c_{10} = 5 \land c_{11} = 8) \text{ can be added}
\]
$c_3 = 6, \quad c_4 = 3, \quad c_5 = 1,$

$c_6 = 10, \quad c_7 = 7, \quad c_8 = 9$

is a nogood too (it is the actual reason for the conflict!)

$\neg(c_3 = 6 \land c_4 = 3 \land c_5 = 1 \land c_6 = 10 \land c_7 = 7 \land c_8 = 9)$ can be added
If the nogood database becomes too large and too expensive to query, the search reduction may not pay off.

Idea: keep only nogoods that are most likely to be useful.

E.g., clean up the nogood database after every M decisions/backtracks, discarding a nogood if it has not been active enough (for instance, measured with the accumulated failure count).
Improvements on Backtracking

- We say a (partial) assignment is **good** if it can be extended to a solution, a **deadend** otherwise

- We say BT **makes a mistake** when it moves from a good assignment to a deadend

- We say BT **recovers from a mistake** when it backtracks from a deadend to a good assignment

- Shortcomings of BT (which are related to each other):
 - BT detects very late when a mistake has been made (⇒ Look-ahead)
 - BT may make again and again the same mistakes (⇒ Nogood recording)
 - BT is very weak recovering from mistakes (⇒ Backjumping)
Backjumping

- BT very weak recovering from mistakes as it backtracks chronologically (back to previously instantiated variable)

- However, the reason for the conflict may not be the last assigned variable, but earlier!

- **Backjumping:** backtrack to last choice with responsibility in the conflict

- Backjumping may **jump more than one tree-level**, without missing solutions
Backjumping

\[c_1 = 6, c_2 = 3, c_3 = 1, c_4 = 10, c_5 = 7, c_6 = 9, c_7 = 2, c_8 = 5, c_9 = 8 \]

is a nogood
$c_1 = 6, c_2 = 3, c_3 = 1, c_4 = 10, c_5 = 7, c_6 = 9$ is the reason for the conflict!
Retract $c_6 = 9, c_7 = 2, c_8 = 5, c_9 = 8$
Randomization and Restarts

- Backtracking algorithms can be very sensitive to variable/value heuristics
- Early mistakes in the search tree have dramatic effects
- Idea:

 - Add randomization to the backtracking algorithm
 - Each run of the algorithm terminates either when:
 - a solution has been found; or
 - current run is too long, so search must be restarted
 - After each restart, a new run is executed that hopefully behaves better
Randomizing Heuristics

- Variable/value selection heuristics can be randomized by
 - Taking a random variable/value for breaking ties
 - Ranking variables/values with the chosen heuristic and randomly taking one of those “close” to the best
 - Randomly picking among a set of existing selection heuristics
When to Restart

A restart strategy \(S = \{ t_1, t_2, \ldots \} \) is an infinite sequence where each \(t_i \) is either a positive integer or \(\infty \).

Randomized backtracking algorithm is run for \(t_1 \) “steps”. If no solution is found so far, a restart is applied, and the algorithm is run again for \(t_2 \) steps, and so on.

What is a “step” of computation?

Several possibilities:

- Number of backtracks
- Number of visited nodes

What are good restart strategies?
Restart Strategies: Luby Sequence

- Luby showed that, given full knowledge of the runtime distribution, the optimal strategy is given by $S_{t^*} = (t^*, t^*, \ldots)$, for some fixed t^*

- For the (mostly common) case in which there is no knowledge of the runtime distribution, Luby shows that any universal strategy of the form $S_u = (l_0, l_1, l_2, \ldots)$ where

$$l_i = \begin{cases}
N \cdot 2^{k-1} & \text{if } \exists k \text{ with } i = 2^k - 1 \\
 l_{i-2^{k-1}+1} & \text{if } \exists k \text{ with } 2^{k-1} \leq i < 2^k - 1
\end{cases}$$

for a fixed constant $N > 0$ has a behaviour that is “close” to that of the optimal strategy S_{t^*}
Restart Strategies: Luby Sequence

- For $N = 1$ Luby sequence is:

 \[(1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, \ldots)\]

- For $N = 512$:

![Luby-based restart sequence with initial 512](image-url)
Restart Strategies: Geometric Seq.

- Walsh proposes a universal strategy $S_g = (1, r, r^2, \ldots)$ where the restart values are geometrically increasing.

- Works well in practice ($1 < r < 2$), but comes with no formal guarantees of its worst-case performance.

- It can be shown that the expected runtime of the geometric strategy can be arbitrarily worse than that of the optimal strategy.
Optimization Problems

- Often CSP’s have, in addition to the constraints to be satisfied, an objective function f that must be optimized (maximized/minimized).

A CSP with an objective function is called a constraint optimization problem (COP).

- Wlog, let us assume there is a constraint $c = f(X)$, where c is a variable, and the goal is to minimize c.

- COP’s can be solved by solving a sequence of CSP’s:
 - Initially an algorithm for solving CSP’s is used to find a solution S that satisfies the constraints.
 - A constraint of the form $c < f(S)$ is then added, which excludes solutions that are not better than solution S.
 - The process is repeated until the resulting CSP has no solution: the last solution that was found is optimal.
Let us write this procedure in pseudo-code

Assume that $\min(f) \in \text{dom}(c)$

\[
\begin{align*}
 u & = \max(\text{dom}(c)); \quad // \text{ } u \text{ is an upper bound on } \min(f) \\
 S & = \text{solve}(C \land c \leq u - 1); \\
 \text{while } (S \neq \bot) \quad \{ \\
 & \quad // \bot \text{ means "no solution"} \\
 & \quad u = f(S); \\
 & \quad S = \text{solve}(C \land c \leq u - 1); \quad // \text{ equivalent to solve}(C \land c < f(S)) \\
 \} \quad // \text{ on exit } \min(f) \text{ is } u
\end{align*}
\]

It is a **linear search** for $\min(f)$ in the domain of c from the largest value in $\text{dom}(c)$ to the smallest one (until a solution is no longer found)

Another approach is to do a **linear search** from the smallest value in $\text{dom}(c)$ to the largest one (until a solution is found):

\[
\begin{align*}
 l & = \min(\text{dom}(c)); \quad // \text{ } l \text{ is a lower bound on } \min(f) \\
 S & = \text{solve}(C \land c \leq l); \\
 \text{while } (S == \bot) \quad \{ \\
 & \quad l = l + 1; \\
 & \quad S = \text{solve}(C \land c \leq l); \\
 \} \quad // \text{ on exit } \min(f) \text{ is } l
\end{align*}
\]
Yet another approach is to do a binary search:

\[l = \min(\text{dom}(c)) ; \quad // \ l \text{ is a lower bound on min}(f) \]
\[u = \max(\text{dom}(c)) ; \quad // \ u \text{ is an upper bound on min}(f) \]

\textbf{while } (l \neq u) \{ \\
\quad m = (l + u)/2 ; \\
\quad S = \textbf{solve}(C \land c \leq m) ; \\
\quad \textbf{if} (S == \bot) \quad l = m + 1 ; \\
\quad \textbf{else} \quad u = f(S) ; \quad // \ f(S) \leq m \\
\}\]

\textit{// on exit min}(f) \text{ is } l

Which approach is the best?
Optimization Problems

- Yet another approach is to do a binary search:

\[
\begin{align*}
l &= \min(\text{dom}(c)); & \text{// } l \text{ is a lower bound on } \min(f) \\
u &= \max(\text{dom}(c)); & \text{// } u \text{ is an upper bound on } \min(f) \\
\textbf{while} \ (l \neq u) \ {\{} \\
& \quad m = (l + u)/2; \\
& \quad S = \text{solve}\,(C \land c \leq m); \\
& \quad \textbf{if} \ (S == \bot) \ l = m + 1; \\
& \quad \textbf{else} \ u = f(S); & \text{// } f(S) \leq m \\
{\}} \\
\text{\{} & \text{on exit } \min(f) \text{ is } l
\end{align*}
\]

- Which approach is the best?

- It depends on the problem.

 Binary search is likely to perform less calls to solve, but unfeasible CSP’s may be more difficult to solve.