Introduction to Constraint Programming

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell (based on materials by Javier Larrosa)

February 19, 2018
A constraint satisfaction problem (CSP) is a tuple (X, D, C) where:

- $X = \{x_1, x_2, \ldots, x_n\}$ is the set of variables
- $D = \{d_1, d_2, \ldots, d_n\}$ is the set of domains (d_i is a finite set of potential values for x_i)
- $C = \{c_1, c_2, \ldots, c_m\}$ is a set of constraints

For example: $x, y, z \in \{0, 1\}, x + y = z$ is a CSP where:

- Variables are: x, y, z
- Domains are: $d_x = d_y = d_z = \{0, 1\}$
- There is a single constraint: $x + y = z$
A constraint C is a pair (S, R) where:

- $S = (x_{i_1}, ..., x_{i_k})$ are the variables of C (scope)
- $R \subseteq d_{i_1} \times ... \times d_{i_k}$ are the tuples satisfying C (relation)

According to this definition: $x + y = z$ in the CSP $x, y, z \in \{0, 1\}$, $x + y = z$ is short for

$$(x, y, z), \{(0, 0, 0), (1, 0, 1), (0, 1, 1)\}$$

A tuple $\tau \in d_{i_1} \times ... \times d_{i_k}$ satisfies C iff $\tau \in R$

The arity of a constraint is the size of its scope

- Arity 1: unary constraint (usually embedded in domains)
- Arity 2: binary constraint
- Arity 3: ternary constraint
- ...

This corresponds to the extensional representation of constraints
Constraints

- But constraints are usually described more compactly: intensional representation
- A constraint with scope S is determined by a function

\[\prod_{x_i \in S} d_i \rightarrow \{\text{true, false}\} \]

- Satisfying tuples are exactly those that give true
- In the example: $x + y = z$
- Unless otherwise stated, we will assume that evaluating a constraint takes time linear in the arity
- This is usually, but not always, true
Given a CSP with variables \(X = \{x_1, x_2, \ldots, x_n\} \), domains \(D = \{d_1, d_2, \ldots, d_n\} \) and constraints \(C \), a solution is an assignment of values \((x_1 \mapsto \nu_1, \cdots, x_n \mapsto \nu_n)\) such that:

- Domains are respected: \(\nu_i \in d_i \)
- The assignment satisfies all constraints in \(C \)

Solving a CSP consists in finding a solution to it

Other related problems:

- Finding all solutions
- Finding a best solution wrt. an objective function
 (then we talk of a Constraint Optimization Problem)
Examples (I): Prop. Satisfiability

- Given a formula F in propositional logic, is F satisfiable?
- Variables are the atoms of the formula
- Variables have all domain $\{\text{true, false}\}$
- A single constraint: the evaluation of F must be 1

- Let F be $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$:
Examples (I): Prop. Satisfiability

- Given a formula F in propositional logic, is F satisfiable?
- Variables are the atoms of the formula
- Variables have all domain \{true, false\}
- A single constraint: the evaluation of F must be 1

Let F be $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$:

- Variables are p, q
Examples (I): Prop. Satisfiability

- Given a formula F in propositional logic, is F satisfiable?
- Variables are the atoms of the formula
- Variables have all domain \{true, false\}
- A single constraint: the evaluation of F must be 1

- Let F be $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$:
 - Variables are p, q
 - Domains are $d_p = d_q = \{true, false\}$
Examples (I): Prop. Satisfiability

- Given a formula F in propositional logic, is F satisfiable?
- Variables are the atoms of the formula
- Variables have all domain \{true, false\}
- A single constraint: the evaluation of F must be 1

Let F be $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q)$:

- **Variables** are p, q
- **Domains** are $d_p = d_q = \{true, false\}$
- **Constraint** is $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q) = true$
Examples (II): Graph Coloring

- Given a graph $G = (V, E)$ and $K > 0$ colors, can vertices be painted so that neighbors have different colors?
Examples (II): Graph Coloring

Given a graph \(G = (V, E) \) and \(K > 0 \) colors, can vertices be painted so that neighbors have different colors?

- Variables are \(\{c_v \mid v \in V\} \), the color for each vertex
Examples (II): Graph Coloring

- Given a graph $G = (V, E)$ and $K > 0$ colors, can vertices be painted so that neighbors have different colors?

- Variables are $\{c_v \mid v \in V\}$, the color for each vertex
- Domains are $\{1, 2, \ldots, K\}$, the available colors
Examples (II): Graph Coloring

- Given a graph $G = (V, E)$ and $K > 0$ colors, can vertices be painted so that neighbors have different colors?

- **Variables** are $\{c_v \mid v \in V\}$, the color for each vertex
- **Domains** are $\{1, 2, \ldots, K\}$, the available colors
- **Constraints** are: for each $(u, v) \in E$, $c_u \neq c_v$
Examples (III): Knapsack

Given:

- *n* items with weights w_i and values v_i
- a capacity W
- a number V

is there a subset S of the items s.t. $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq V$?
Examples (III): Knapsack

Given:

- n items with weights w_i and values v_i
- a capacity W
- a number V

is there a subset S of the items s.t. $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq V$?

Variables: n variables x_i meaning “item i is selected”
Examples (III): Knapsack

- **Given:**
 - n items with weights w_i and values v_i
 - a capacity W
 - a number V,

is there a subset S of the items s.t. $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq V$?

- **Variables:** n variables x_i meaning “item i is selected”
- **Domains:** $d_i = \{0, 1\}$
Examples (III): Knapsack

- Given:
 - n items with weights w_i and values v_i
 - a capacity W
 - a number V

 is there a subset S of the items s.t. $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq V$?

- Variables: n variables x_i meaning “item i is selected”
- Domains: $d_i = \{0, 1\}$
- Constraints: $\sum_{i=1}^{n} w_i x_i \leq W$, $\sum_{i=1}^{n} v_i x_i \geq V$
Complexity

- **Theorem.** Solving a CSP is an **NP-complete** problem

Proof:

- It is in **NP**, because one can check a solution in polynomial time
- It is **NP-hard**, as there is a reduction e.g. from Graph Coloring (which is known to be NP-complete)

- For any CSP, there are instances that require exp time
 Can we solve real life instances in reasonable time?
Constraint Programming

- **Constraint programming (CP)** is a general framework for modeling and solving CSP's:

 - Offers the user many kinds of constraints, which makes modeling easy and natural

 Check out the Global Constraint Catalogue at http://www.emn.fr/z-info/sdemasse/gccat/ with more than 400 different types of constraints!

 - Provides solving engines for those constraints (CP toolkits: in this course, Gecode http://www.gecode.org)
Generate and Test

■ How can we solve CSP’s?
■ 1st naïf approach: Generate and Test (aka Brute Force)
 ◆ Generate all possible candidate solutions
 (assignments of values from domains to variables)
 ◆ Test whether any of these is a true solution indeed
Example: *Queens Problem*. Given $n \geq 4$, put n queens on an $n \times n$ chessboard so that they don’t attack each other.

Wlog, we can place one queen per row so that no two are in the same column or diagonal.

- **Variables**: c_i, column of the queen of row i
- **Domains**: all domains are $\{1, 2, \ldots, n\}$
- **Constraints**: no two are in same column/diagonal
Basic Backtracking

- Generate and Test is very inefficient
- 2nd approach to solving CSP’s: Basic Backtracking
- The algorithm maintains a partial assignment that is consistent with the constraints whose variables are all assigned:
 - Start with an empty assignment
 - At each step choose a var and a value in its domain
 - Whenever we detect a partial assignment that cannot be extended to a solution, backtrack: undo last decision
Basic Backtracking

- We can solve the problem by calling `backtrack(x1):

```
function backtrack(variable X) returns bool
    for all a in domain(X) do
        val(X) := a
        if compatible(X, assigned)
            assigned := assigned ∪ {X}
            if no next(X) then return TRUE
            else if backtrack(next(X)) then return TRUE
            else assigned := assigned - {X}
        return FALSE

function compatible(variable X, set A) returns bool
    for all constraint C with scope in A∪{X} and not in A do
        // Let A be {Y1, ..., Yn}
        if (val(X), val(Y1),..., val(Yn)) don’t satisfy C then
            return FALSE
        return TRUE
```

Basic Backtracking

Using backtracking to solve 4-queens

The orange squares represent the placement of queens.

Based off of a diagram in [5]
Basic Backtracking

- The set of all possible partial assignments forms a search tree:
 - The root corresponds to the empty assignment
 - Each edge corresponds to assigning a value to a variable
 - For each node, there are as many children as values in the domain of the chosen variable
 - Generate and Test corresponds to visiting each of the leaves until a solution is found
 - Complexity: $O(m^n \cdot e \cdot r)$
 - $n =$ no. of variables
 - $m =$ size of the largest domain
 - $e =$ no. of constraints
 - $r =$ largest arity

- Basic Backtracking performs a depth-first traversal
- Complexity: the same, as in the worst case we need to visit all leaves
- But in practice it works much better than Generate and Test
Basic Backtracking

- Problems with backtracking
 - Inconsistencies may be found late, after a lot of useless work

 If \(x_1 \mapsto a \) is incompatible with \(x_n \mapsto \text{anything} \), then BT explores the subtree rooted at \(x_1 \mapsto a \left(\frac{1}{m} \text{ of the search tree!} \right) \) to realize that no solution can be found

 - The right backtracking point may not be the last decision
Basic Backtracking

![Diagram](image_url)
Basic Backtracking

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Q</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Q</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Propagation

- CP approach: prune search tree \textit{a priori} by removing values from the domains that can’t appear in any solution

 \[
 \text{while (solution not found) do} \\
 \hspace{1cm} \text{assign values to some of the variables} \\
 \hspace{1cm} \text{propagate with constraints to prune other domains} \\
 \hspace{1cm} \text{if (found inconsistency) undo last decision}
 \]

- Smaller search tree, at the cost of more time per node
- There exist different kinds of propagation with different \textit{tradeoffs} between pruning power and cost in time
Propagating
Propagation

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>Q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Propagation

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>X</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Q</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Propagation

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>Q</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

The diagram shows a propagation pattern with 'Q' at the top and 'X' in the subsequent rows, indicating a sequence of events or states.
Propagation

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No search!