

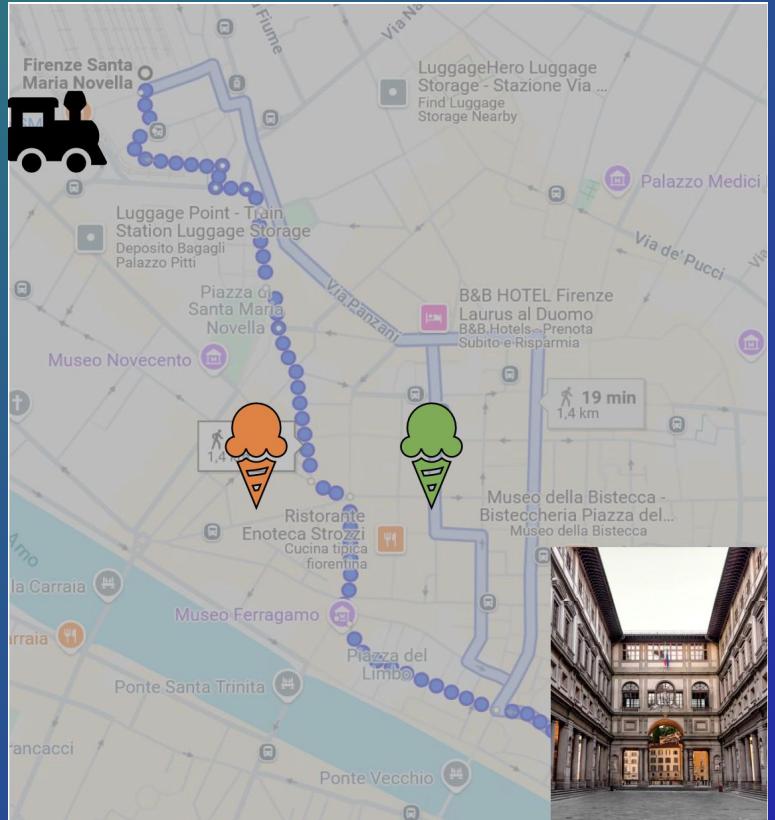
Beyond Shortest Paths: Node Fairness in Route Recommendation

Antonio Ferrara, David Garcia-Soriano, and Francesco Bonchi

CENTAI

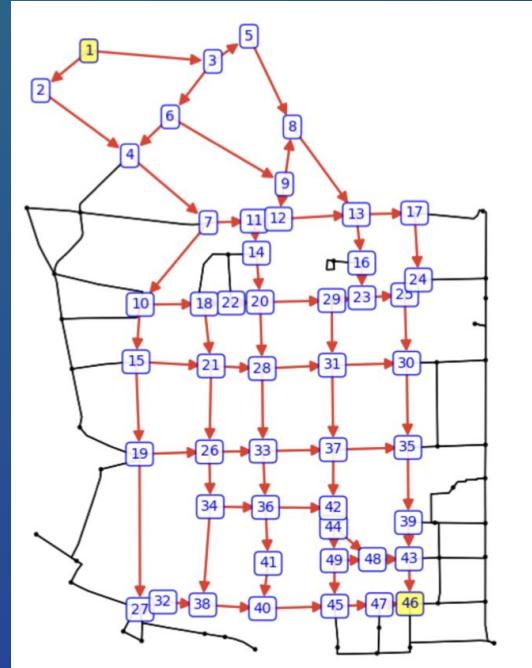
Motivating Scenario

The tourism office of the municipality of Florence produces an **app for helping tourists walking around the city center**, moving in between the key attractions and historic landmarks. Shortly after the introduction of the app, an **ice-cream parlor**, located in a strategic position for tourists flowing in between the Central Train Station and the Uffizi Gallery, sees a sudden **drop of its sales**. Investigating the issue, they realize that the new app was routing all the tourists moving in between the two landmarks, **always through the same shortest path**, greatly reducing the visibility of the ice-cream parlor which was located along a slightly longer path. At the same time, a newly opened ice-cream parlor located on the recommended shortest path, sees its sales skyrocketing.

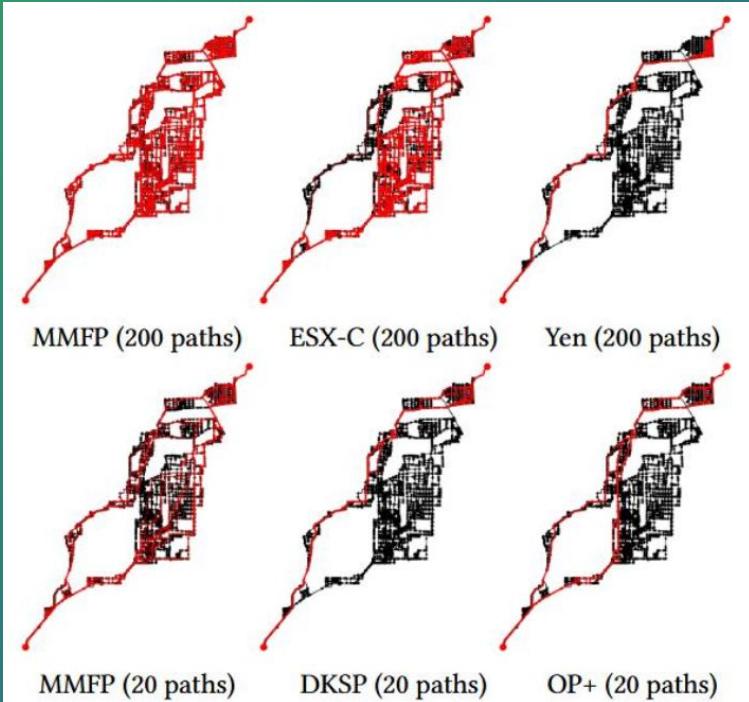


Goal:

“Guarantee a fair distribution of visits across network nodes while maintain near-optimal routes.”



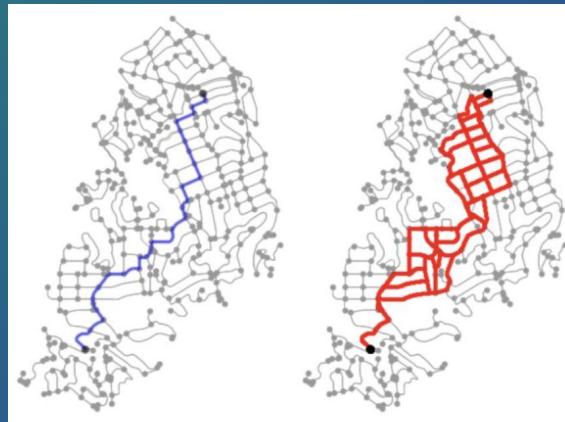
Related work: Diversity in point-to-point path queries



- Lots of work, several slightly different problem statements:
 - E.g., find a set of k paths that are sufficiently dissimilar and as short as possible
- Diversity and Fairness are related notions, however:
 - Fairness guarantees some level of diversity
 - while diversity does not provide any fairness guarantee
- Diversity is necessary yet not sufficient condition for fairness

What kind of paths should be allowed?

- In a weighted graph the **s-t shortest path** is often unique
- We need to relax the requirement of being the shortest to have a basis for fairness
- Instead of using a tolerance parameter, we define **forward paths**

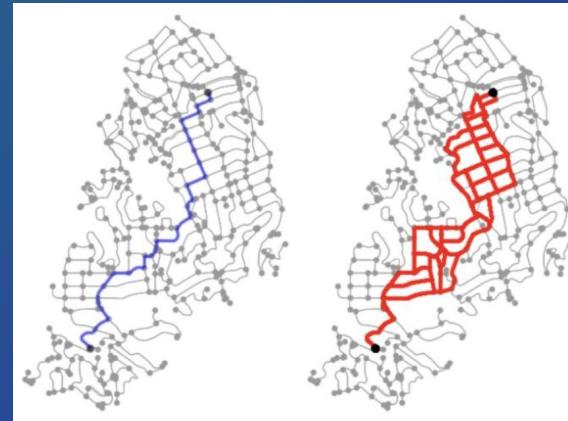


First contribution: Forward Paths

Definition:

A *s-t forward path* is a path that, at each step, decreases the distance to the target

- Aligns well with user preferences in real-world applications
 - Always progressing toward their destination, no backtracking or moving in circles



First contribution: Forward Paths

Definition 1 (s-t-Forward path). An s - t -path $P = (v_1 = s, \dots, v_k = t)$ in a graph G is called **forward** if for $i = 1, \dots, k - 1$,

$$d(v_{i+1}, t) < d(v_i, t) ,$$

where d represents the shortest path distance in G .

Proposition 1: Let G be a directed (weighted or unweighted) graph. Any **shortest path** in G is a **forward path**.

Proposition 2: Let G be a directed unweighted graph. An s - t -path is a **shortest path** if and only if it is a **forward path**.

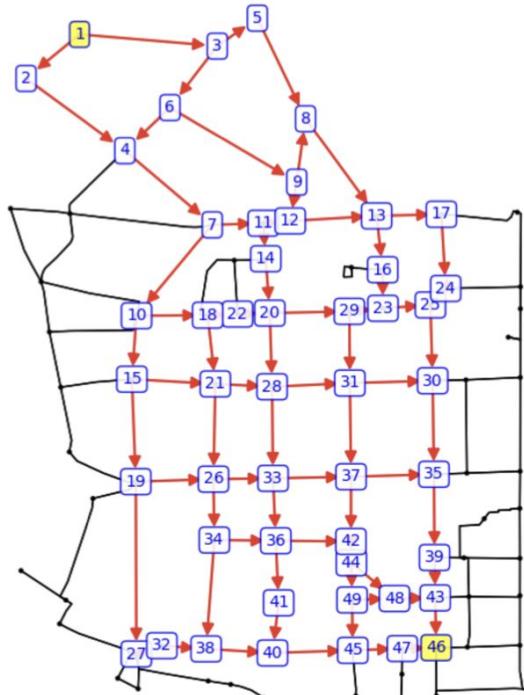
First contribution: Forward Paths

- We empirically show that in many real-world weighted graphs, **forward paths are very close in length to the shortest path** and **they're many more**
 - with a minimal increase in the worst-case forward path length
 - the number of locations visited by the union of all forward paths increases significantly

Dataset	# nodes	# edges	SP length	LFP length	LFP/SP length	SP nodes	FP nodes	FP/SP nodes
Piedmont, California	352	937	1 860.07	2 061.58	1.11 ± 0.11	19.91	39.48	1.81 ± 0.66
Essaouira, Morocco	1 277	3 429	3 650.36	3 967.11	1.13 ± 0.14	37.20	107.03	2.52 ± 1.33
Florence, Italy	6 096	11 737	6 909.52	7 287.29	1.05 ± 0.05	75.10	121.27	1.58 ± 0.65
Buenos Aires, Argentina	17 890	37 474	9 065.83	9 642.57	1.06 ± 0.04	89.10	387.50	4.00 ± 2.12
Kyoto, Japan	44 828	118 087	8 501.42	9 243.75	1.09 ± 0.06	117.90	536.77	4.16 ± 2.21
Florida, USA	1 070 376	2 687 902	$4.12 \cdot 10^6$	$4.22 \cdot 10^6$	1.02 ± 0.02	1 194.27	2 720.63	2.33 ± 0.95
Eastern USA	3 598 623	8 708 058	$4.39 \cdot 10^6$	$4.57 \cdot 10^6$	1.04 ± 0.02	1 924.43	7 046.97	3.28 ± 1.45

Our Problem

Given a weighted graph (road network), a source node s , a destination node t , produce a **probabilistic distribution over forward paths** from s to t such that it is **maxmin-fair** for all the eligible nodes (those that belong to at least a forward path).



Path	Probability (%)
[1, 2, 4, 7, 10, 15, 19, 27, 32, 38, 40, 45, 47, 46]	10.4
[1, 3, 6, 9, 12, 13, 16, 23, 25, 30, 35, 39, 43, 46]	8.3
[1, 3, 6, 9, 12, 13, 17, 24, 25, 30, 35, 39, 43, 46]	8.3
[1, 3, 5, 8, 13, 16, 23, 25, 30, 35, 39, 43, 46]	8.3
[1, 3, 5, 8, 13, 17, 24, 25, 30, 35, 39, 43, 46]	8.3
[1, 3, 6, 4, 7, 10, 15, 19, 27, 32, 38, 40, 45, 47, 46]	6.2
[1, 2, 4, 7, 10, 18, 22, 20, 29, 31, 37, 42, 44, 49, 48, 43, 46]	5.2
[1, 2, 4, 7, 11, 14, 20, 29, 31, 37, 42, 44, 49, 48, 43, 46]	5.2
[1, 2, 4, 7, 10, 18, 22, 20, 28, 33, 36, 41, 40, 45, 47, 46]	3.5
[1, 2, 4, 7, 11, 14, 20, 28, 33, 36, 41, 40, 45, 47, 46]	3.5
[1, 2, 4, 7, 10, 15, 21, 26, 34, 36, 41, 40, 45, 47, 46]	3.5
[1, 2, 4, 7, 10, 18, 21, 26, 34, 36, 41, 40, 45, 47, 46]	3.5
[1, 3, 6, 4, 7, 10, 18, 22, 20, 29, 31, 37, 42, 44, 49, 48, 43, 46]	3.1
[1, 3, 6, 4, 7, 11, 14, 20, 29, 31, 37, 42, 44, 49, 48, 43, 46]	3.1
[1, 3, 6, 4, 7, 10, 18, 22, 20, 28, 33, 36, 41, 40, 45, 47, 46]	2.1
[1, 3, 6, 4, 7, 11, 14, 20, 28, 33, 36, 41, 40, 45, 47, 46]	2.1
[1, 3, 6, 4, 7, 10, 15, 21, 26, 34, 36, 41, 40, 45, 47, 46]	2.1
[1, 3, 6, 4, 7, 10, 18, 21, 26, 34, 36, 41, 40, 45, 47, 46]	2.1
[1, 2, 4, 7, 10, 18, 22, 20, 28, 33, 37, 42, 44, 49, 48, 43, 46]	1.7
[1, 2, 4, 7, 11, 14, 20, 28, 33, 37, 42, 44, 49, 48, 43, 46]	1.7
[1, 2, 4, 7, 10, 15, 21, 26, 34, 38, 40, 45, 47, 46]	1.7
[1, 2, 4, 7, 10, 18, 21, 26, 34, 38, 40, 45, 47, 46]	1.7
[1, 3, 6, 4, 7, 10, 18, 22, 20, 28, 33, 37, 42, 44, 49, 48, 43, 46]	1.0
[1, 3, 6, 4, 7, 11, 14, 20, 28, 33, 37, 42, 44, 49, 48, 43, 46]	1.0
[1, 3, 6, 4, 7, 10, 15, 21, 26, 34, 38, 40, 45, 47, 46]	1.0
[1, 3, 6, 4, 7, 10, 18, 21, 26, 34, 38, 40, 45, 47, 46]	1.0

Technical challenges and contributions

1. How to enumerate all forward paths (which can be exponential in number)?

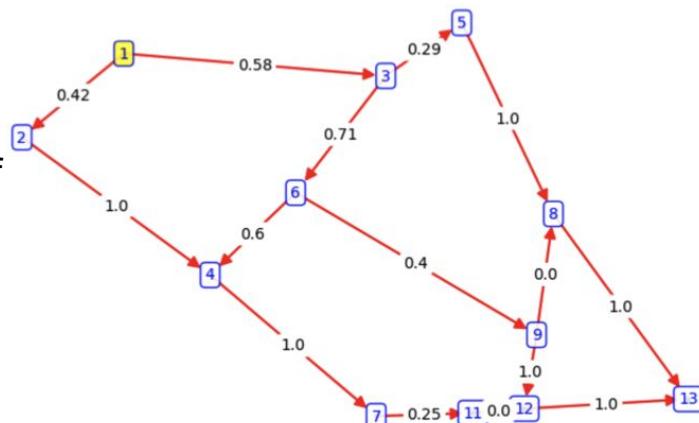
- We can compute a Directed Acyclic Graph (**DAG**) representing all the forward paths
- Avoid the need to explicitly enumerate the set of all possible forward paths

2. How to compute the maxmin-fair distribution over forward paths?

- We design a **Linear Programming Flow Problem** which allows us to derive the maxmin-fair distribution over forward paths

3. How to store and sample from the maxmin-fair distribution?

- Our method does not materialize the distribution explicitly
- Just assigns the correct transition probability to each arc of the DAG
- We show that a **random-walk** on this probabilistic graph from s to t is equivalent to sampling from the underlying maxmin-fair distribution



Algorithm 1: DAG of Forward Paths

Algorithm 1 DAG-FP: Creates a DAG containing the Forward Paths from s to t

Input: Graph $G = (V, E, \ell)$, source node s , target node t

Output: DAG with Forward Paths

```
1: dist_from_s  $\leftarrow$  distance( $G, s, V$ )
2: dist_to_t  $\leftarrow$  distance( $G, V, t$ )
3: reachable_from_s  $\leftarrow \{i \mid \text{dist\_from\_s}[i] < \infty\}$ 
4: reachable_to_t  $\leftarrow \{i \mid \text{dist\_to\_t}[i] < \infty\}$ 
5: reachable  $\leftarrow \text{reachable\_from\_s} \cap \text{reachable\_to\_t}$ 
6:  $G' \leftarrow G.\text{induced\_subgraph}(\text{reachable})$ 
7: for all  $(u, v)$  in  $G'.\text{edges}$  do
8:   if  $\text{dist\_to\_t}[u] \leq \text{dist\_to\_t}[v]$  then
9:     remove  $(u, v)$  from  $G'$ 
10:   end if
11: end for
12: return  $G'$ 
```

Same asymptotic computational runtime as solving a single shortest-path query

Algorithm 2: Maxmin-Fair Forward Paths

maximize $\lambda \in \mathbb{R}$ subject to

$$\begin{aligned}
 & \sum_{u|(u,t) \in E} f_{u,t} = 1 \\
 & \sum_{u|(s,u) \in E} -f_{s,u} = -1 \\
 & \sum_{u|(u,v) \in E} f_{u,v} - \sum_{w|(v,w) \in E} f_{v,w} = 0 \quad \forall v \neq s, t \\
 & \lambda - \sum_{u|(u,v) \in E} f_{u,v} \leq 0 \quad \forall v \notin K \\
 & - \sum_{u|(u,v) \in E} f_{u,v} \leq -\alpha_v \quad \forall v \in K \\
 & f_{u,v} \geq 0 \quad \forall (u,v) \in E
 \end{aligned} \tag{1}$$

minimize $d_t - d_s - \sum_{v \in K} \alpha_v w_v$ subject to

$$\begin{aligned}
 & d_v - d_u - w_v \geq 0 \quad \forall (u,v) \in E \\
 & \sum_{v \notin K} w_v = 1 \\
 & w_v \geq 0 \quad \forall v \in V \\
 & d_v \in \mathbb{R} \quad \forall v \in V
 \end{aligned} \tag{2}$$

Algorithm 2 MMFP - MaxMin Fair Forward Paths

Input: DAG G , source node s , target node t

Output: Encoding of a maxmin-fair distribution for s, t -forward paths

- 1: $K \leftarrow \emptyset$
- 2: **while** $K \neq V$ **do**
- 3: Solve LP (1) and its dual LP (2);
- 4: let λ^* , $\{f_{u,v}^*\}$, $\{w_v^*\}$ be the optimum values
- 5: $K' \leftarrow \{v \notin K \mid w_v^* > 0\}$
- 6: $K \leftarrow K \cup K'$
- 7: **for all** $v \in K'$ **do**
- 8: $\alpha_v \leftarrow \lambda^*$
- 9: **end for**
- 10: **end while**
- 11: Return the flow values $f_{u,v}^*$

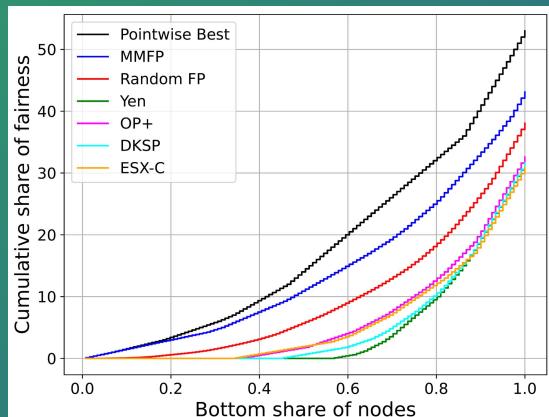
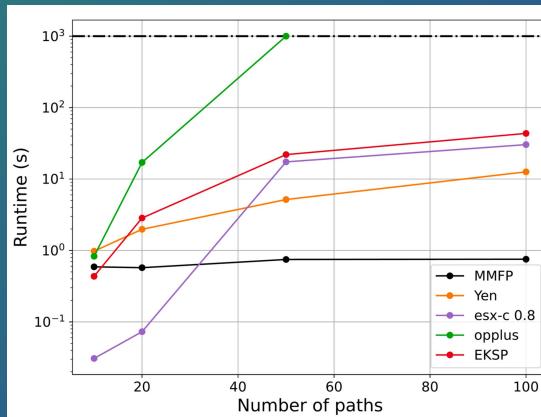
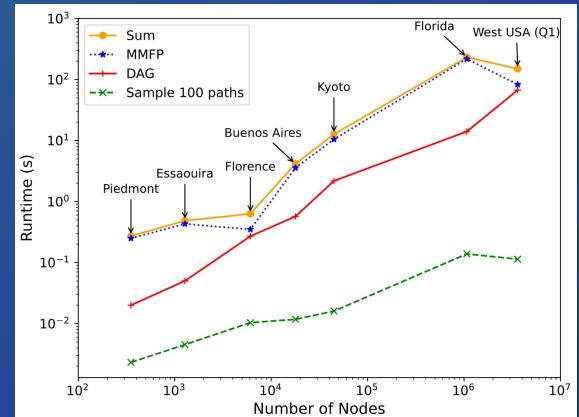
- It can be solved in **polynomial time** by solving a sequence of small linear programs
- MMFP is **Optimal**

Practical implications and deployment

- Same query can be served many times for different users
 - Well suited when computing high volumes of different alternative paths
 - Methods from the literature on diverse path recommendations face significant challenges to recommend several different alternative paths
- Each $s-t$ pair defines its own problem instance
 - Highly parallelizable
- The maxmin-fair distribution for an $s-t$ pair needs only be computed once and stored
 - At query time only sampling from the distribution is needed

Main results and takeaways

- MMFP reduces inequalities
- Well suited to serve a high amount of paths
- Empirical results confirm theoretical runtimes



THANKS!

Antonio Ferrara

antonio.ferrara@centai.eu

David Garcia-Soriano

Francesco Bonchi

Scan me to
download
the paper

