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NTAC - Neuronal Type Assignment from Connectivity
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NTAC - Neuronal Type Assignment from Connectivity

Seeded \ Unseeded
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Seeded NTAC - Problem statement

• Input: edge weighted directed graph with partial labels


• Output: labels for all unlabeled nodes


• Goal: maximize accuracy
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Problem statement

• Input: edge weighted directed graph with partial labels


• Output: labels for all unlabeled nodes


• Goal: maximize accuracy
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Unseeded NTAC - Problem statement

• Input: edge weighted directed graph


• Output: labels for all nodes


• Goal: maximize accuracy (via Hungarian alg)
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Unseeded NTAC - Problem statement

• Input: edge weighted directed graph


• Output: labels for all nodes


• Goal: maximize accuracy (via Hungarian alg)
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*Hungarian algorithm: computes clustering accuracy by optimally matching predicted 
cluster labels to true labels to maximize correct assignments
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Prior research

• NBLAST (Costa et al. 2016)


• Use morphological data to calculate neuron similarity


• Deep learning approaches (Troidel et al. 2025, Liao et al. 2024, Chen et al. 
2022, Jiang et al. 2023)


• Use morphological data


• Small datasets \ exclude rare types \ consider meta-types 


• NTAC: iterative classification without node features
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Accuracy comparison (Flywire)

Many types, few neurons per type
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Accuracy comparison

Fewer types, many neurons per type
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Accuracy comparison
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NBLAST + knn classifier



Accuracy comparison

Accuracy

% labeled used

We assume at least one labelled

node from each type is given

No labels required
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Accuracy comparison

NTAC is much better on visual system

About the same on the central brain

NTAC is much faster (minutes vs hours)
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Accuracy comparison

Unseeded NTAC is very slow

when there are many types
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Seeded algorithm outline

• Compute initial node partition


• Repeat t times


• Compute node embedding using node partition


• Compute node partition using node embedding


• Output partition
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Partition  embedding→
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Focus on a single color for now
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Partition  embedding→
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Node’s color doesn’t matter


(Ignoring self loops for simplicity)
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Partition  embedding→
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Consider both labelled and unlabeled neighbors
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Partition  embedding→
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Partition  embedding→
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Partition  embedding→
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Embedding  partition→
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Embedding  partition→
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Assign color according to closest labeled node


(or weighted k-neighbor majority)
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Embedding  partition→
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Jaccard distance

DJ( ⃗v, ⃗u) = 1 −
∑i min(vi, ui)

∑i max(vi, ui){

Jaccard similarity
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Jaccard similarity

∑

∑
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Embedding  partition→
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Runtime

• Algorithm can be parallelized


• Only a few (~10) iterations are sufficient


• Entire brain can be classified in ~10 minutes on a mac
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Experimental results
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Experimental results

We assume at least one labelled node from each type is given37



Experimental results

Male entire visual system right Female entire visual system right
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Incomplete data?

• BANC - brain and nerve cord


• Adult female fruit fly


• ~100k neurons / ~2.5 million synaptic connections 


• Incomplete topology


• ~6k cell types 


• Missing types


• ~45% labeled cells


• Labeling is not uniform
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Unseeded version
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• Input: weighted graph, 
desired # of clusters

Unseeded version
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• Input: graph G,
 desired # of clusters k

• Output: a clustering (= partition = coloring) of G

• Goal: nodes of the same color should have

              the same embedding 

Unseeded version: setting
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Exact Equitable partitioning
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• Recall: embedding of v = degree counts between v and each of the clusters in C

• If nodes of the same color have exactly the same embedding

partition is called equitable

• Classic problem studied since the 70s (Schenk 1974).

• An iterative algorithm finds the coarsest equitable partition 

Problem: exact equality requires too many clusters!



• Input: graph G,
 desired # of clusters k

• Output: a clustering (= partition = coloring) of G

• Goal: nodes of the same color should have

              almost the same embedding 

Approximate equitable partitioning
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• Input: graph G,
 desired # of clusters k

• Output: a clustering (= partition = coloring) of G

• Goal: nodes of the same color should have

              almost the same embedding 

Jaccard distance between the embedding of v and the median 
embedding of v’s cluster

Approximate equitable partitioning
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• Input: graph G,
 desired # of clusters k

• Output: a clustering (= partition = coloring) of G

• Goal: minimize the sum of Jaccard distances between

  the embedding of each vertex and the median

       embedding of its cluster

Approximate equitable partitioning
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Algorithm: main idea
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• Recall that the embedding of a vertex depends on the clustering C

clustering   embedding

• Circular dependency: classical clustering algorithms do not work.

• But if we could identify a good set of seeds, we could use the seeded algo!

• Idea: grow a set of seeds iteratively
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Algorithm outline

• Initially all nodes are in the same cluster

• For each number of clusters from 1 to k

• Assign a score to every node
Score: How much the goal improves by making a new cluster with v 
and moving nodes that “prefer” to go with v, using current embedding
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Algorithm outline

• Initially all nodes are in the same cluster

• For each number of clusters from 1 to k

• Assign a score to every node

Scores may be negative
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• Initially all nodes are in the same cluster

• For each number of clusters from 1 to k

• Assign a score to every node

• Pick the highest-score node as a new seed
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• Initially all nodes are in the same cluster

• For each number of clusters from 1 to k

• Assign a score to every node

• Pick the highest-score node as a new seed

• Run seeded algorithm to find clustering C_k

• Update seeds:                                                                                                           
let them be the closest nodes to each cluster median
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Algorithm outline (final)
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Unseeded baseline - experimental results
Kernel k-means + NBLAST similarity matrix

Inertia - kernel k-means goal function

Accuracy goes down the more we optimize

1
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Unseeded NTAC - experimental results

T=10%: Only consider 10% of candidates per cluster (speed optimization)
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• Unseeded algo:
• Improve accuracy and/or speed
• Is it possible to detect the best k automatically?
• Study approximation guarantees / hardness results for 

approximate equitable partitioning

• Seeded algo: improve accuracy using ML

• Other applications for NTAC

Future work

https://github.com/BenJourdan/ntac
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