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NTAC - Neuronal Type Assignment from Connectivity
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NTAC - Neuronal Type Assignment from Connectivity
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Seeded NTAC - Problem statement

* Input: edge weighted directed graph with partial labels
e Output: [abels for all unlabeled nodes

* Goal: maximize accuracy
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Unseeded NTAC - Problem statement

* Input: edge weighted directed graph
 Output: labels for all nodes

* Goal: maximize accuracy (via Hungarian alg)




Unseeded NTAC - Problem statement

* Input: edge weighted directed graph
 Output: labels for all nodes

* Goal: maximize accuracy (via Hungarian alg

*Hungarian algorithm: computes clustering accuracy by optimally matching predicted
cluster labels to true labels to maximize correct assignments
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Prior research

* NBLAST (Costa et al. 2016)
* Use morphological data to calculate neuron similarity

* Deep learning approaches (Troidel et al. 2025, Liao et al. 2024, Chen et al.
2022, Jiang et al. 2023) 3

* Use morphological data 1 G 3
» Small datasets \ exclude rare types \ consider meta-types Q 9

e NTAC: iterative classification without node features e 2
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Accuracy comparison (Flywire)
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Accuracy comparison
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Accuracy comparison

Accuracy (%)

100 A

80 -

o))
o

NN
o

20 -

NTAC Seeded vs Unseeded vs NBLAST Accuracy

% labeled used
94.7% NTAC seeded
B NBLAST

92.2%

I NTAC unseeded

0% 75.4%

68.9%

48.4%

20.0% 20.7% 21.7%

8.4% 2.1%

Full érain Visual System Centrall Brain

11

Optic Lobe

NBLAST + knn classifier

Central Brain

Optic Lobe



Accuracy comparison
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Accuracy comparison

NTAC Seeded vs Unseeded vs NBLAST Accuracy
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NTAC is much better on visual system



Accuracy comparison
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Seeded algorithm outline

e Compute initial node partition
» Repeatt times
 Compute node embedding using node partition

 Compute node partition using node embedding

e QOutput partition
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Partition —» embedding

Focus on a single color for now
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Partition —» embedding

Node’s color doesn’t matter

(Ignoring self loops for simplicity)

17



Partition —» embedding
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Partition —» embedding
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Embedding — partition




Embedding — partition

Assign color according to closest labeled node

(or weighted k-neighbor majority)
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Embedding — partition

2. min(v;, u;)

Zi maX(Vi, l/ll')

e

Jaccard similarity

<= Jaccard distance

o




Jaccard similarity
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Embedding — partition
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Embedding — partition




Embedding — partition




Embedding — partition




Embedding — partition




Embedding — partition




Runtime

» Algorithm can be parallelized
 Only a few (~10) iterations are sufficient

e Entire brain can be classified in ~10 minutes on a mac
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Region Accuracy

Experimental results
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Incomplete data?

* BANC - brain and nerve cord
e Adult female fruit fly

 ~100k neurons / ~2.5 million synaptic connections
* |ncomplete topology

 ~0k cell types
* Missing types

 ~45% labeled cells

e Labeling is not uniform

39



Unseeded version
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Unseeded version

® Input: weighted graph,
desired # of clusters




Unseeded version: setting
® Input: graph G,
desired # of clusters k

® Qutput: a clustering (= partition = coloring) of G

® Goal: nodes of the same color should have

the same embedding




Exact Equitable partitioning

Recall: embedding of v = degree counts between v and each of the clusters in C

If nodes of the same color have exactly the same embedding

===l partition is called equitable

Classic problem studied since the 70s (Schenk 1974).

An iterative algorithm finds the coarsest equitable partition

Problem: exact equality requires too many clusters!



Approximate equitable partitioning
® |Input: graph G,
desired # of clusters k

® Qutput: a clustering (= partition = coloring) of G

® Goal: nodes of the same color should have

almost the same embedding




Approximate equitable partitioning
® Input: graph G,

desired # of clusters k
® Qutput: a clustering (= partition = coloring) of G

® Goal: nodes of the same color should have

almost the same embedding

f

Jaccard distance between the embedding of v and the median
embedding of v’s cluster




Approximate equitable partitioning
® |Input: graph G,
desired # of clusters k

® Qutput: a clustering (= partition = coloring) of G

® Goal: minimize the sum of Jaccard distances between

the embedding of each vertex and the median

embedding of its cluster



Algorithm: main idea

Recall that the embedding of a vertex depends on the clustering C

clustering embedding

<

Circular dependency: classical clustering algorithms do not work.
But if we could identify a good set of seeds, we could use the seeded algo!

Idea: grow a set of seeds iteratively



Algorithm outline

® |nitially all nodes are in the same cluster
® For each number of clusters from 1 to k

® Assign a score to every node

Score: How much the goal improves by making a new cluster with v
and moving nodes that “prefer” to go with v, using current embedding




Algorithm outline

® |nitially all nodes are in the same cluster
® For each number of clusters from 1 to k

® Assign a score to every node

Scores may be negative
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Algorithm outline

® |nitially all nodes are in the same cluster
® For each number of clusters from 1 to k
® Assign a score to every node

® Pick the highest-score node as a new seed
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Algorithm outline (final)

® |nitially all nodes are in the same cluster
® For each number of clusters from 1 to k
® Assign a score to every node
® Pick the highest-score node as a new seed

® Run seeded algorithm to find clustering C_k

® Update seeds:
let them be the closest nodes to each cluster median
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Unseeded baseline - experimental results
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Unseeded NTAC - experimental results
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Future work

® Unseeded algo:
® |mprove accuracy and/or speed
® |s it possible to detect the best k automatically?
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® Study approximation guarantees / hardness results for E"- X oy E
approximate equitable partitioning rwh ili'"-'.'_ul
® Seeded algo: improve accuracy using ML r _:!- l||!!;'
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https://github.com/BenJourdan/ntac

® Other applications for NTAC

15



