

Connectivity Is All You Need: Inferring Neuronal Types with NTAC

Gregory Schwartzman, Ben Jourdan, David García-Soriano and Arie Matsliah

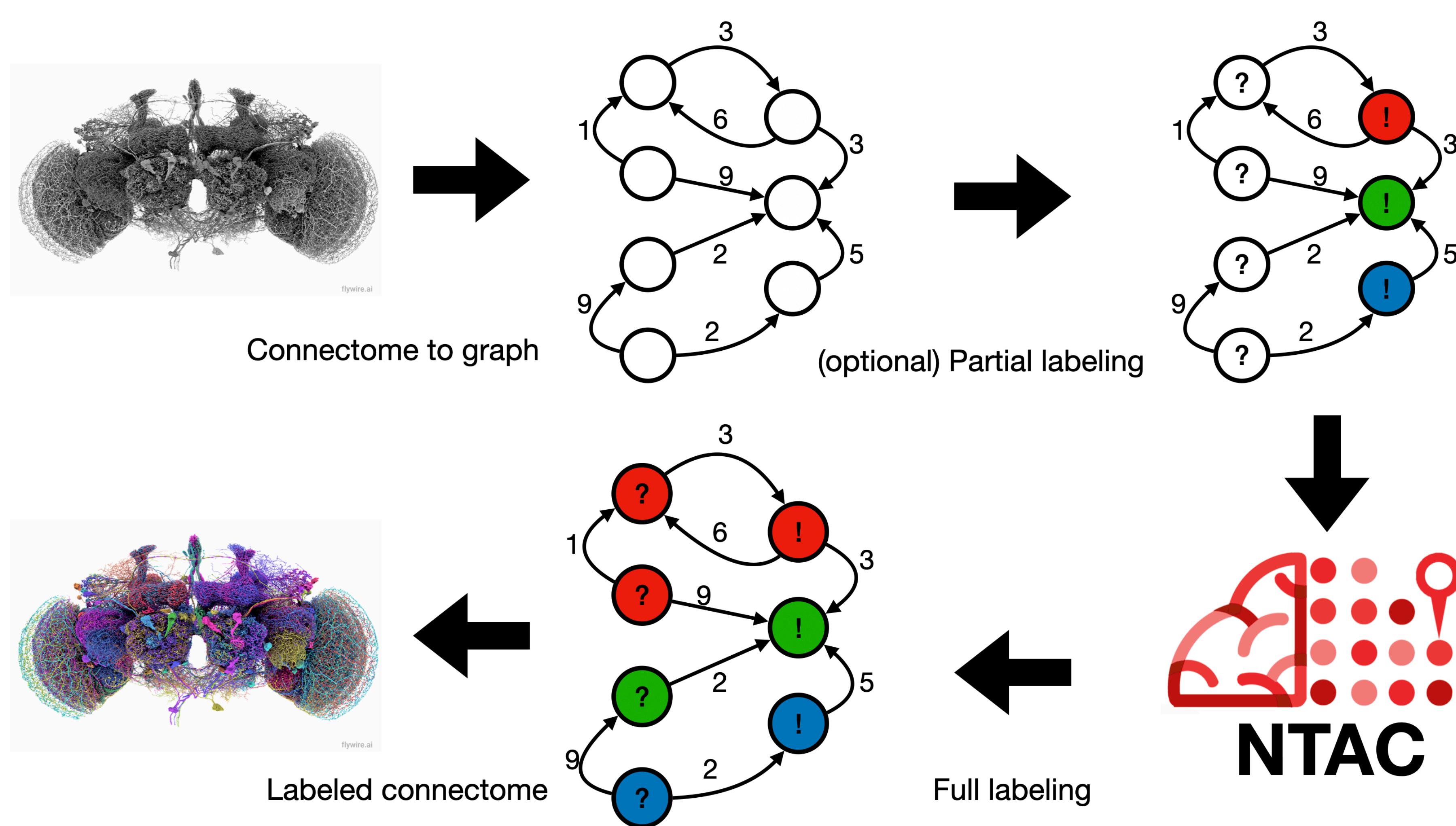
Speaker order:

Gregory Schwartzman

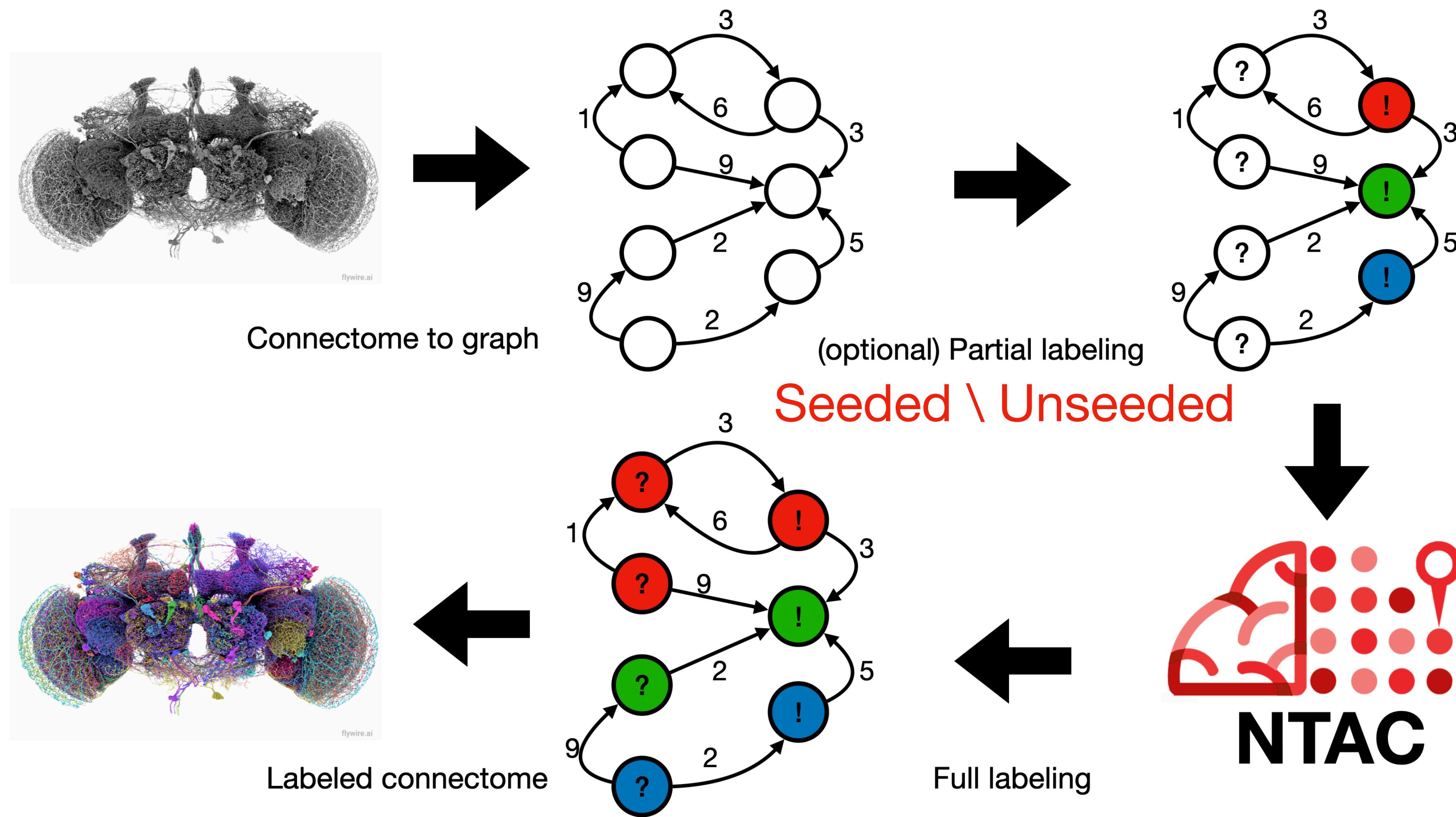
Ben Jourdan

David García-Soriano

NTAC - Neuronal Type Assignment from Connectivity

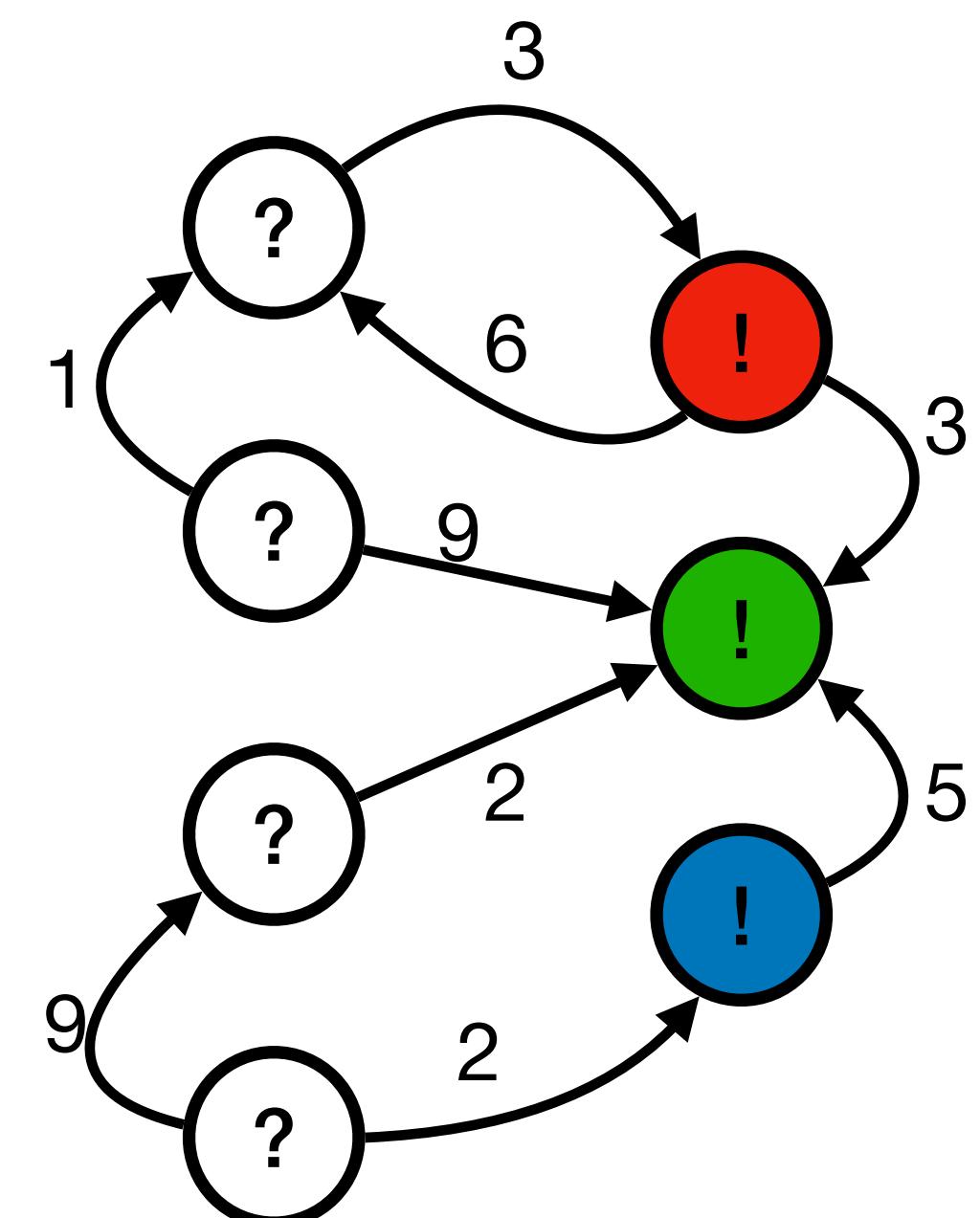


NTAC - Neuronal Type Assignment from Connectivity



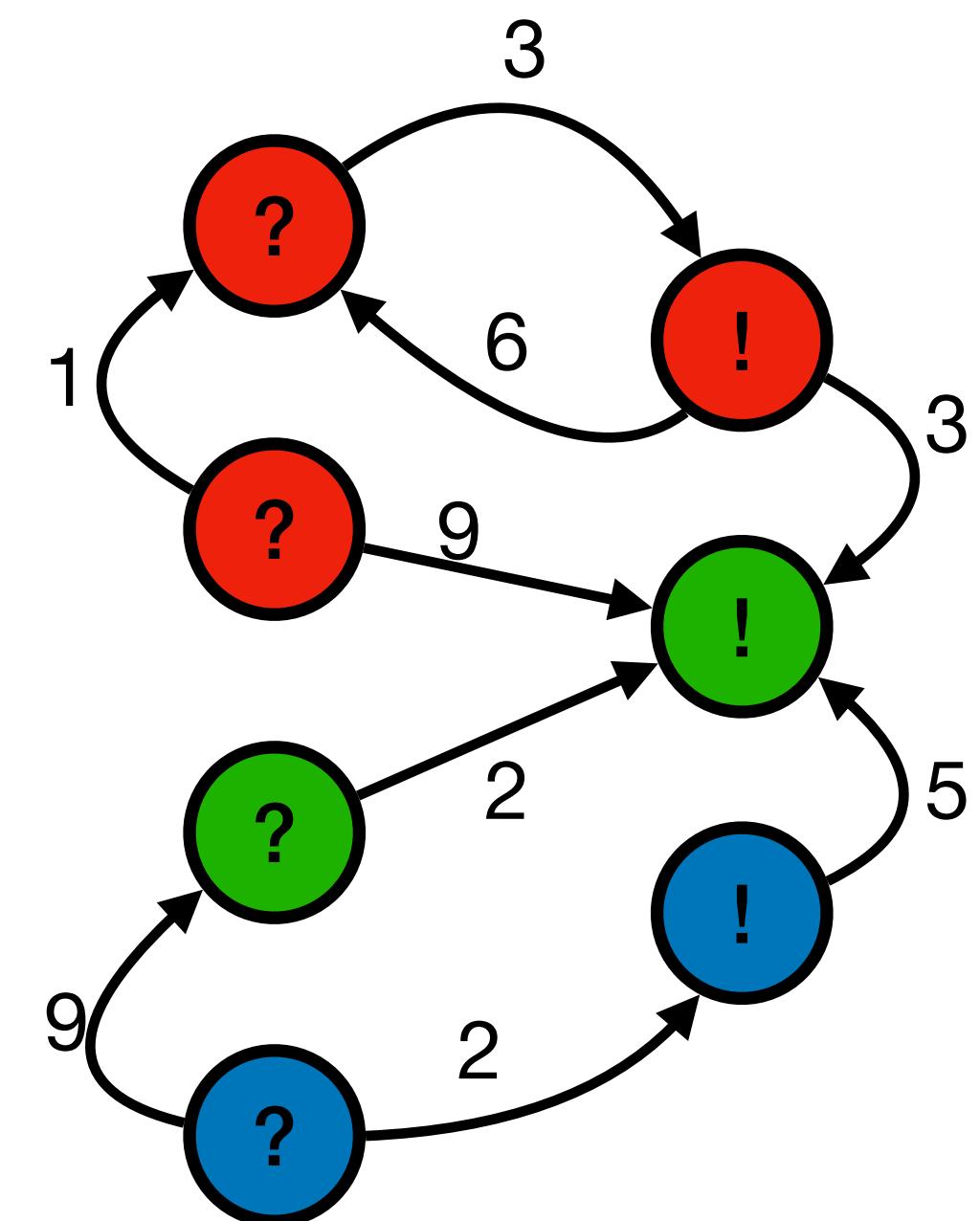
Seeded NTAC - Problem statement

- **Input:** edge weighted directed graph with partial labels
- **Output:** labels for all unlabeled nodes
- **Goal:** maximize accuracy



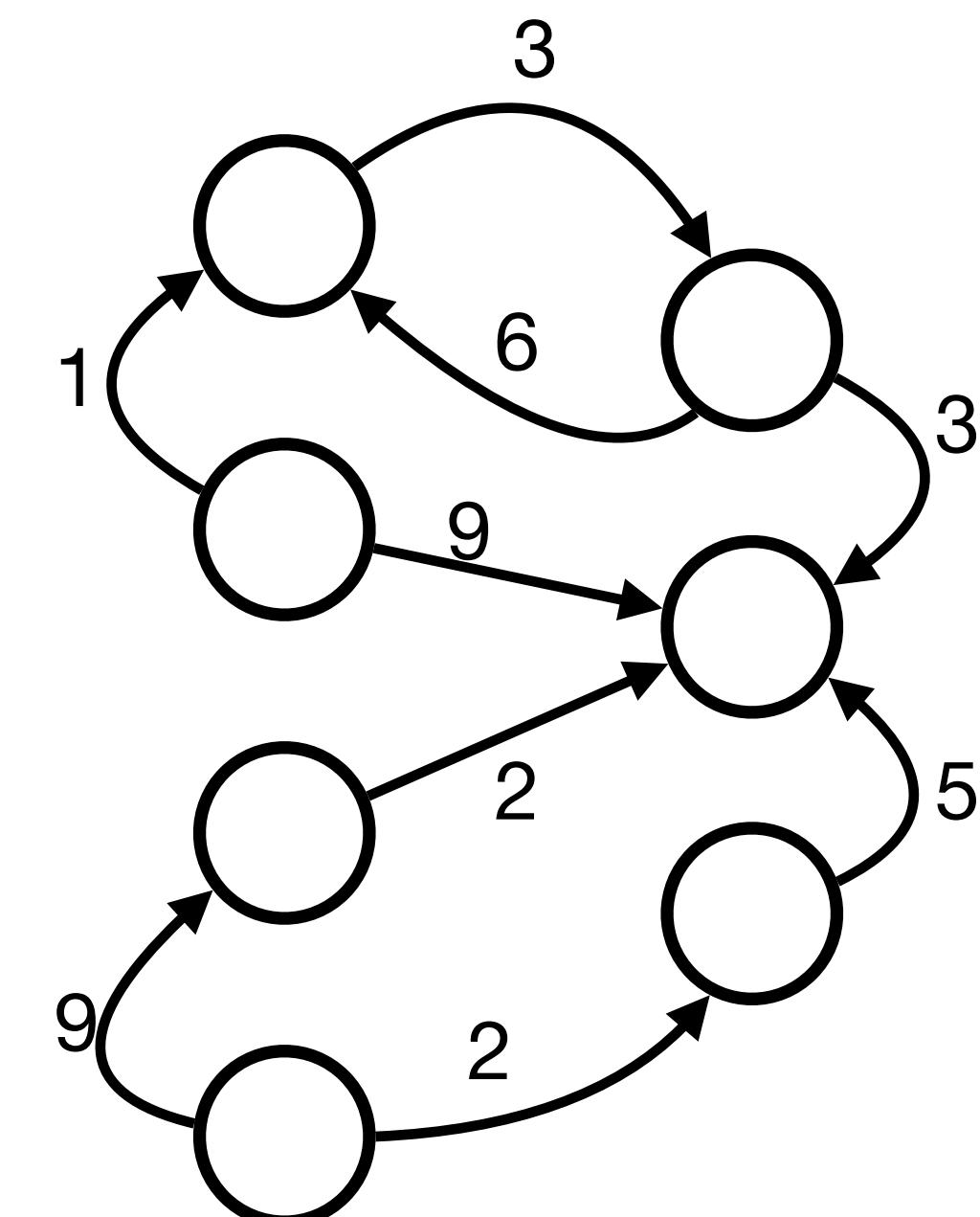
Problem statement

- **Input:** edge weighted directed graph with partial labels
- **Output:** labels for all unlabeled nodes
- **Goal:** maximize accuracy



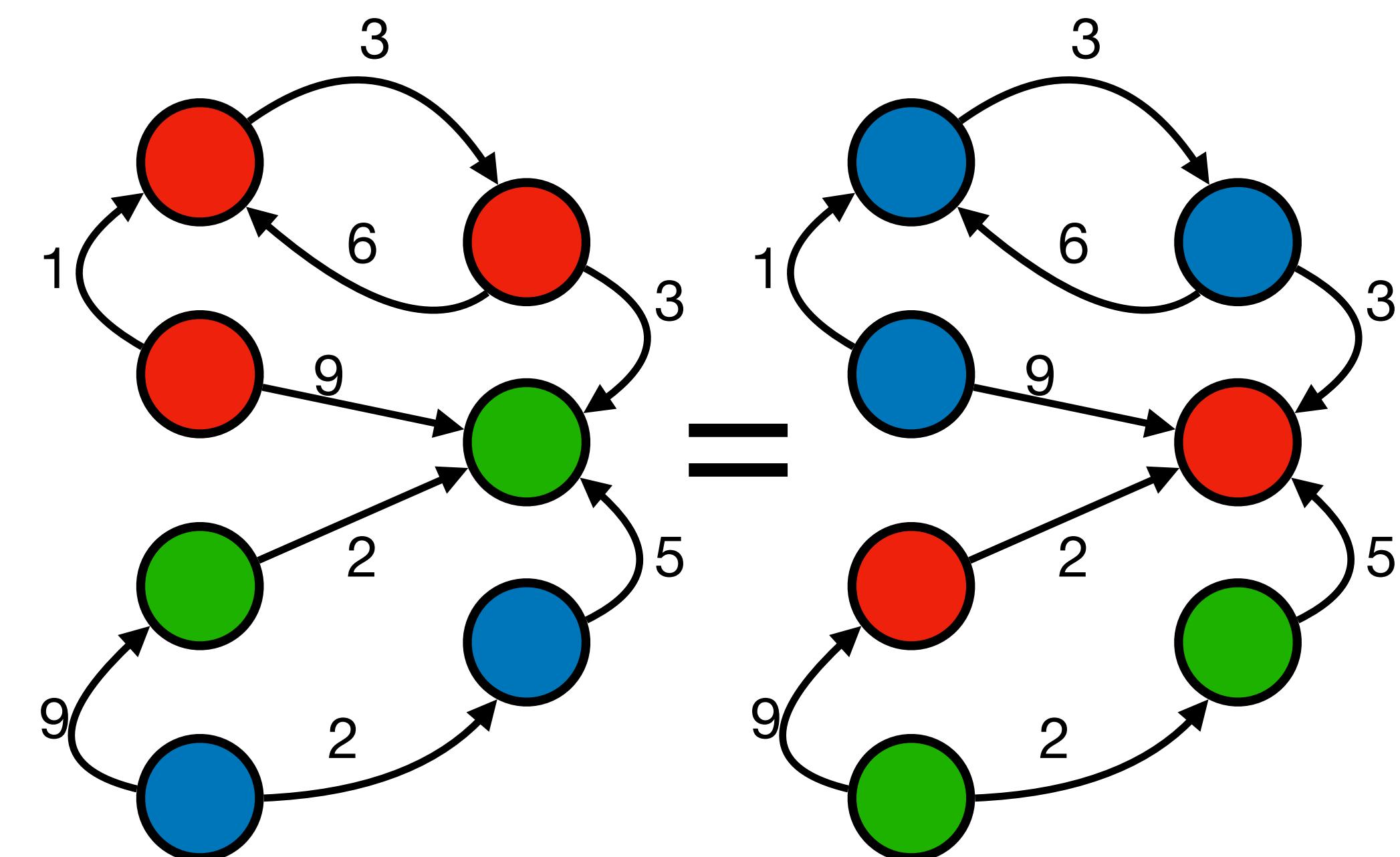
Unseeded NTAC - Problem statement

- **Input:** edge weighted directed graph
- **Output:** labels for all nodes
- **Goal:** maximize accuracy (via Hungarian alg)



Unseeded NTAC - Problem statement

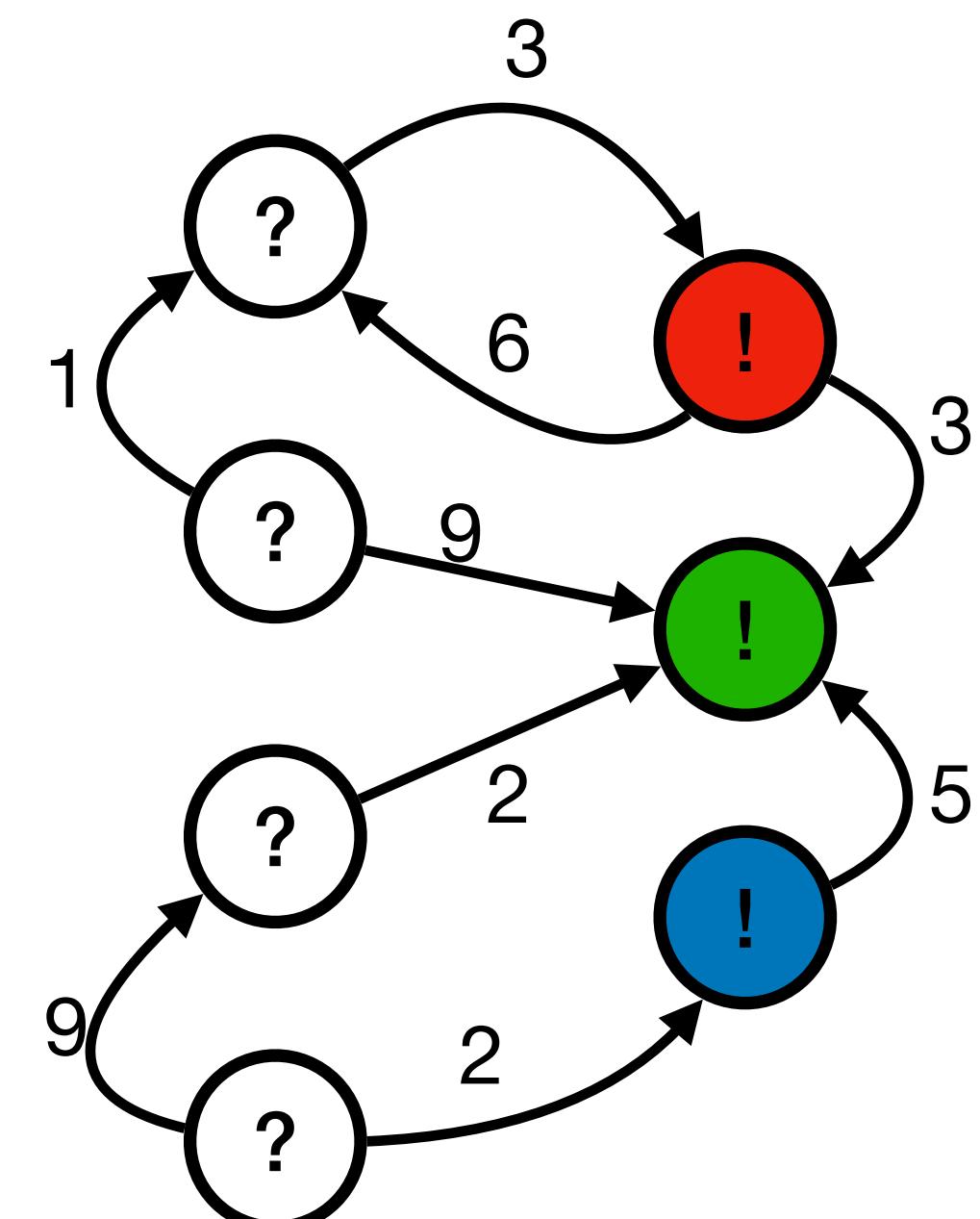
- **Input:** edge weighted directed graph
- **Output:** labels for all nodes
- **Goal:** maximize accuracy (via Hungarian alg)



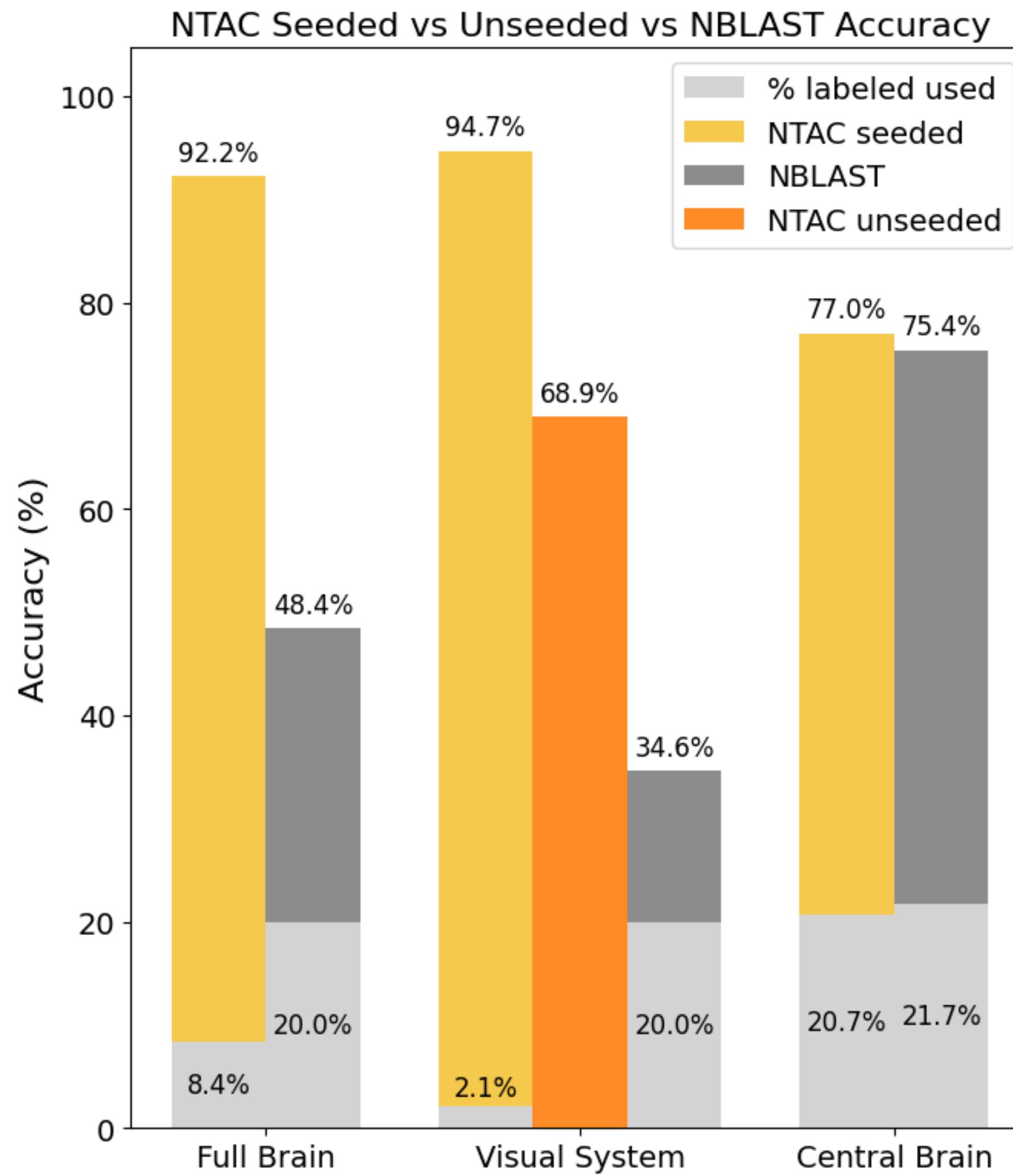
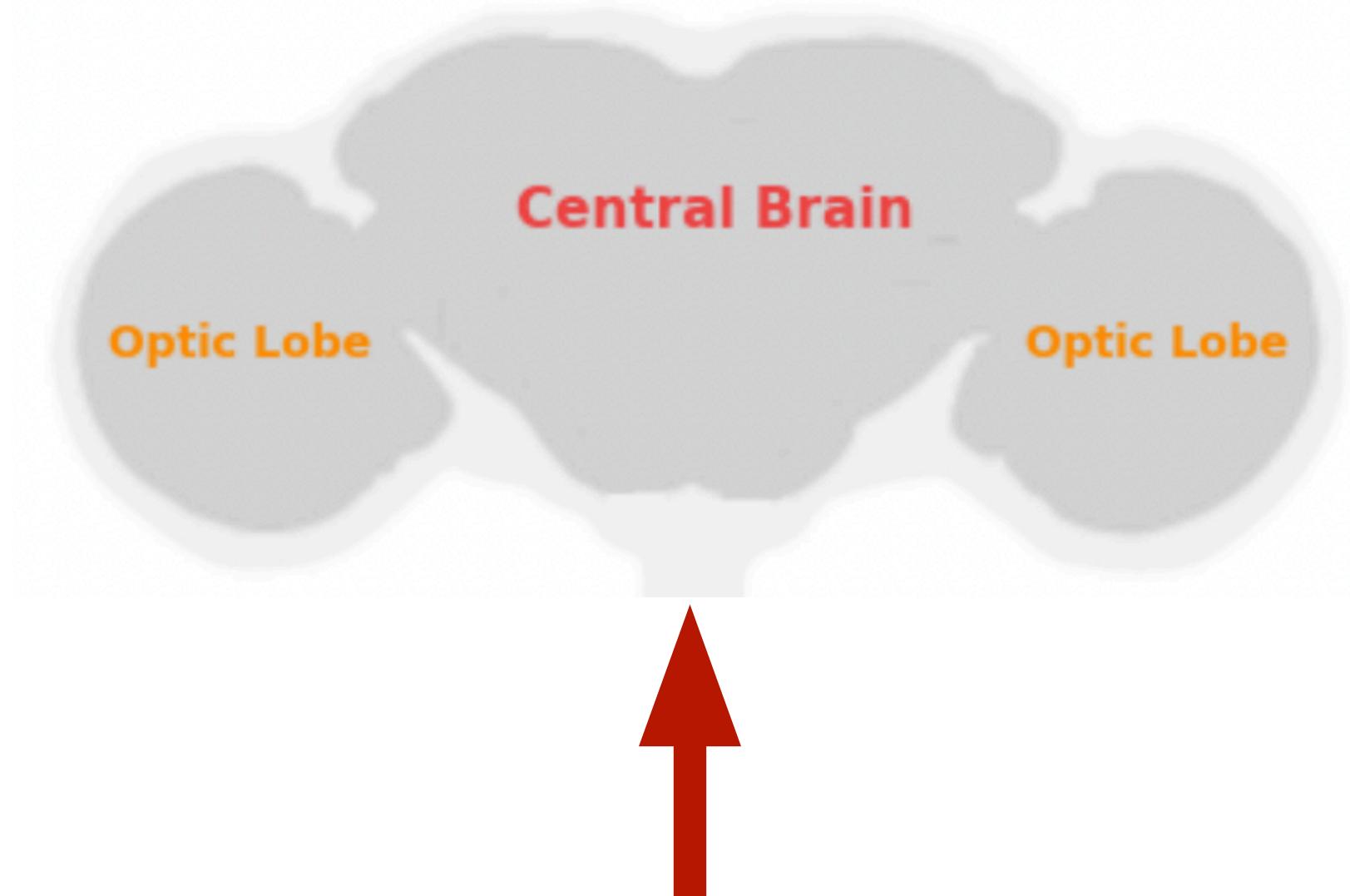
*Hungarian algorithm: computes clustering accuracy by optimally matching predicted cluster labels to true labels to maximize correct assignments

Prior research

- NBLAST (Costa et al. 2016)
 - Use morphological data to calculate neuron similarity
- Deep learning approaches (Troidel et al. 2025, Liao et al. 2024, Chen et al. 2022, Jiang et al. 2023)
 - Use morphological data
 - Small datasets \ exclude rare types \ consider meta-types
- **NTAC**: iterative classification without node features

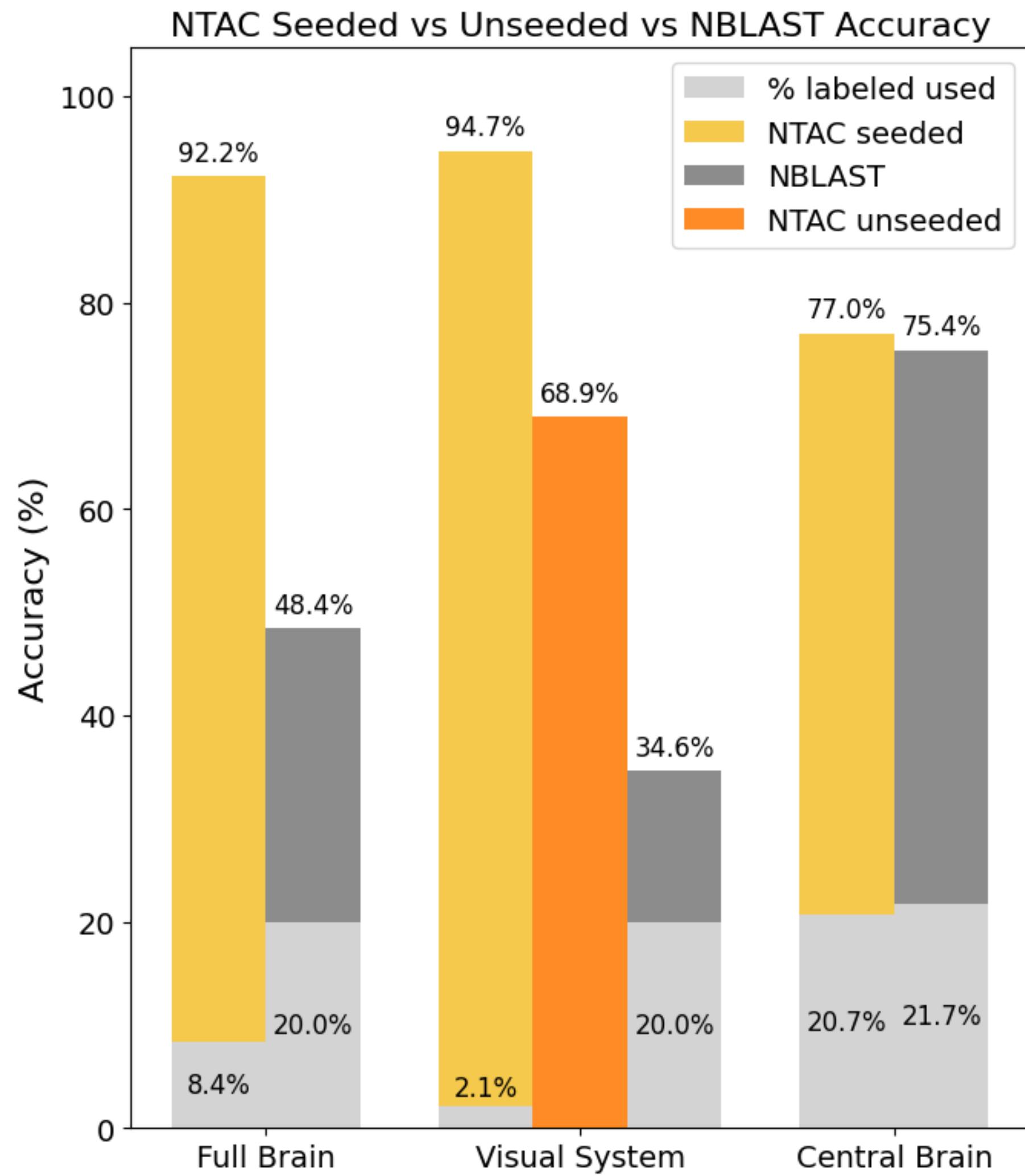
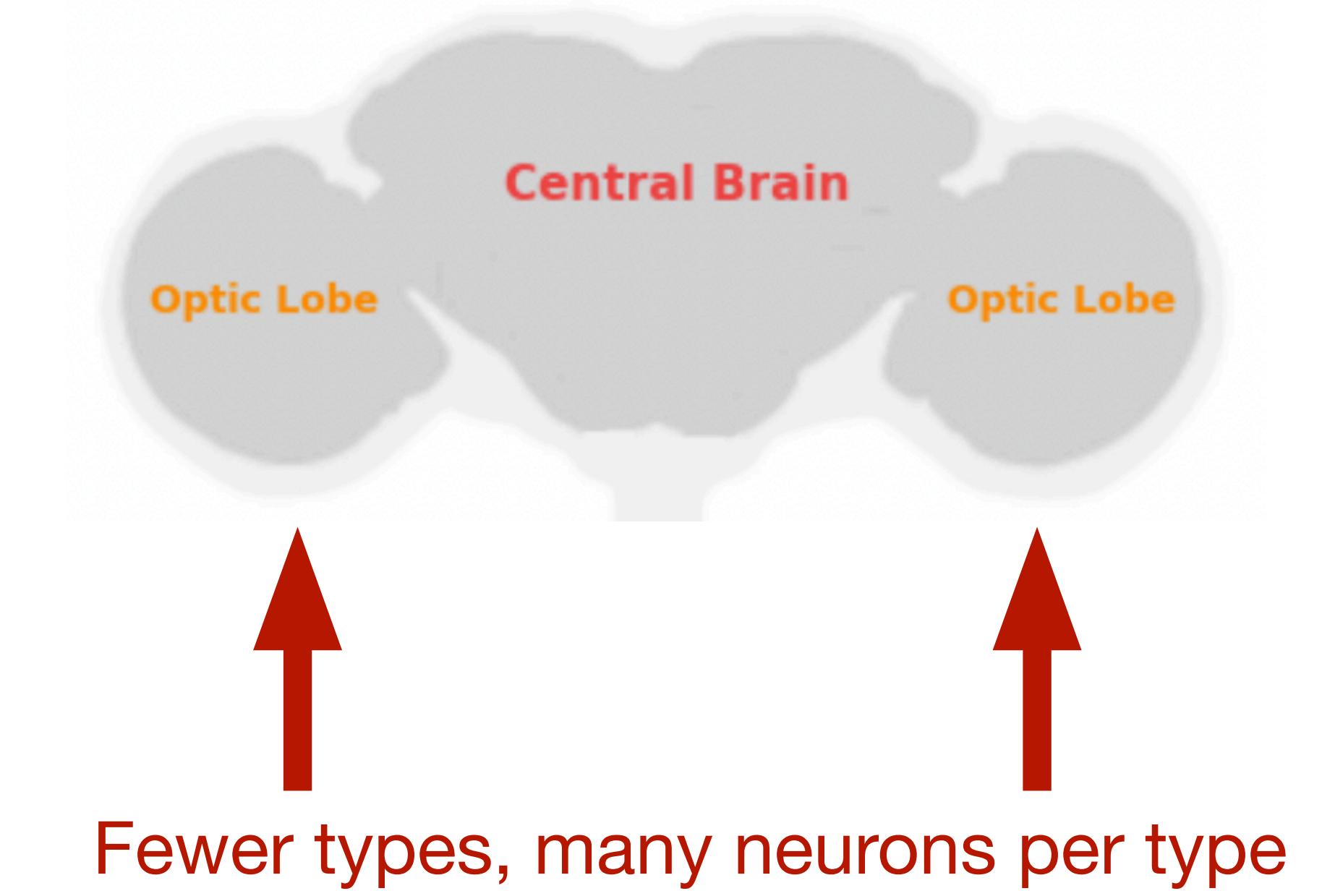


Accuracy comparison (Flywire)

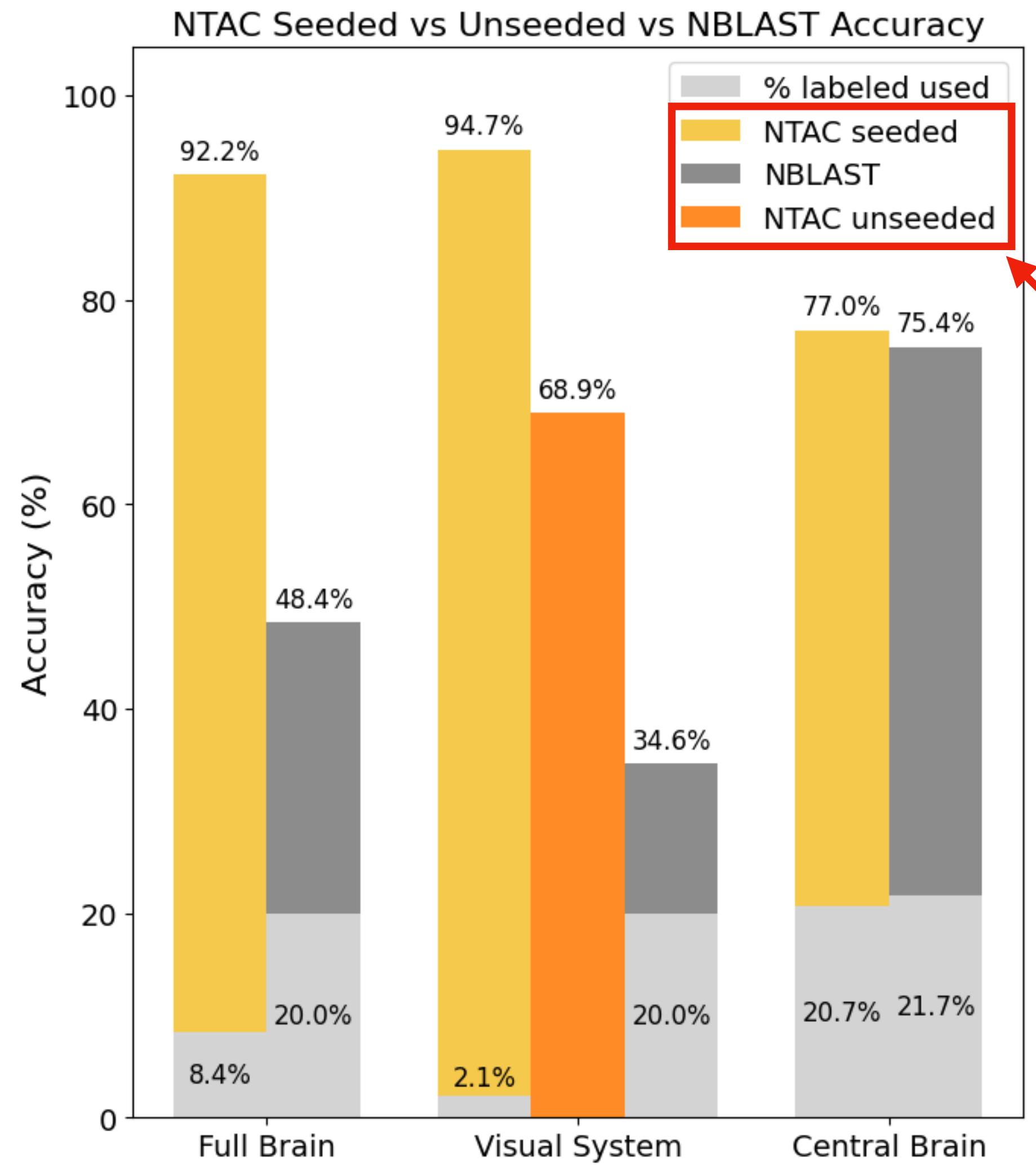
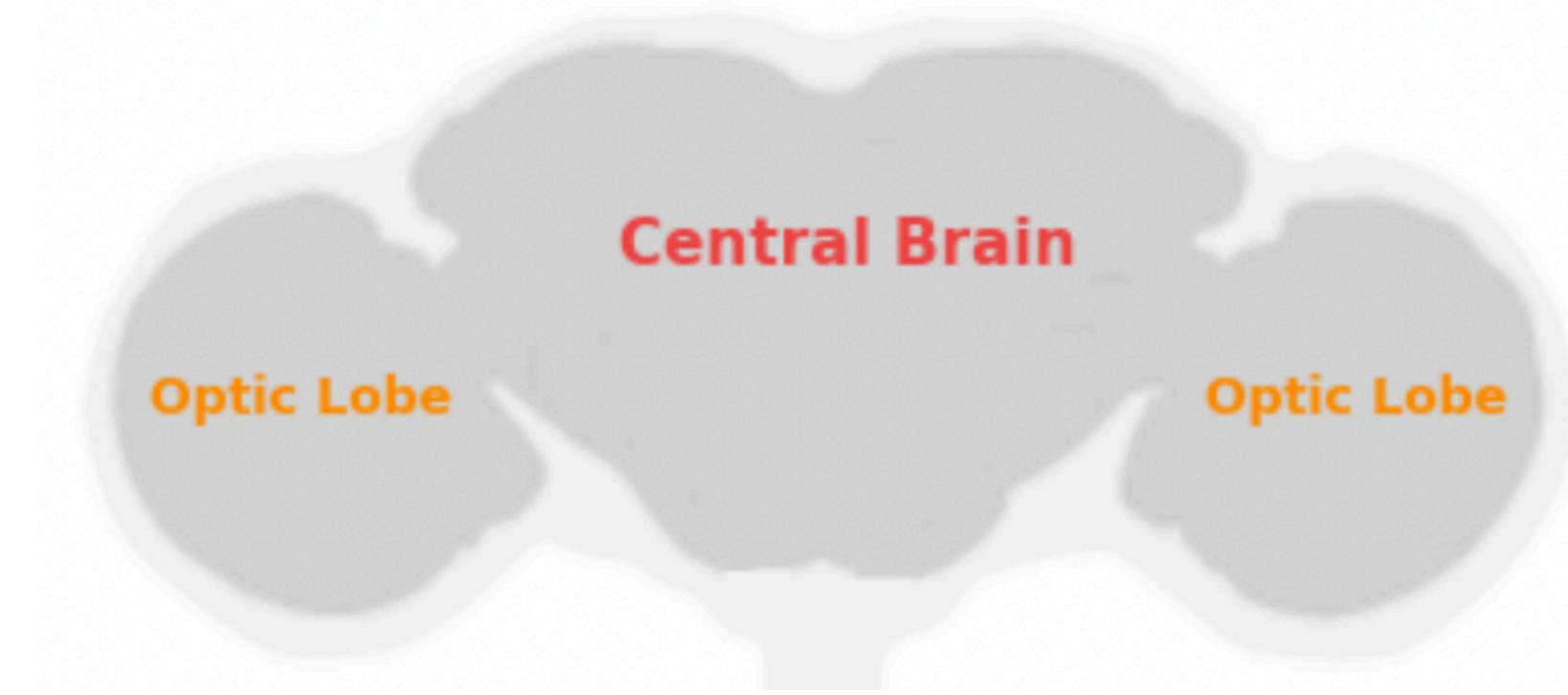


Many types, few neurons per type

Accuracy comparison

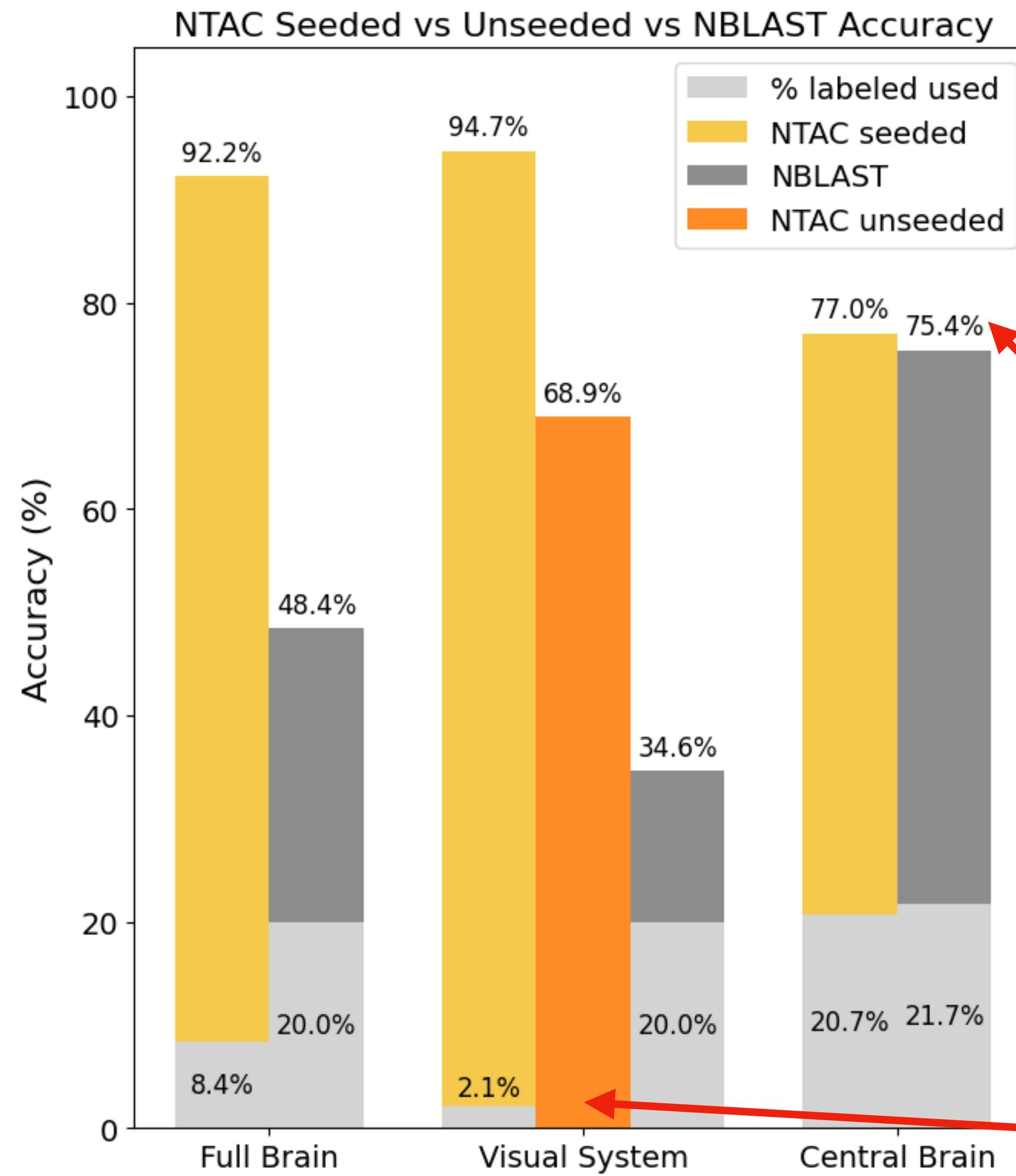


Accuracy comparison



NBLAST + knn classifier

Accuracy comparison

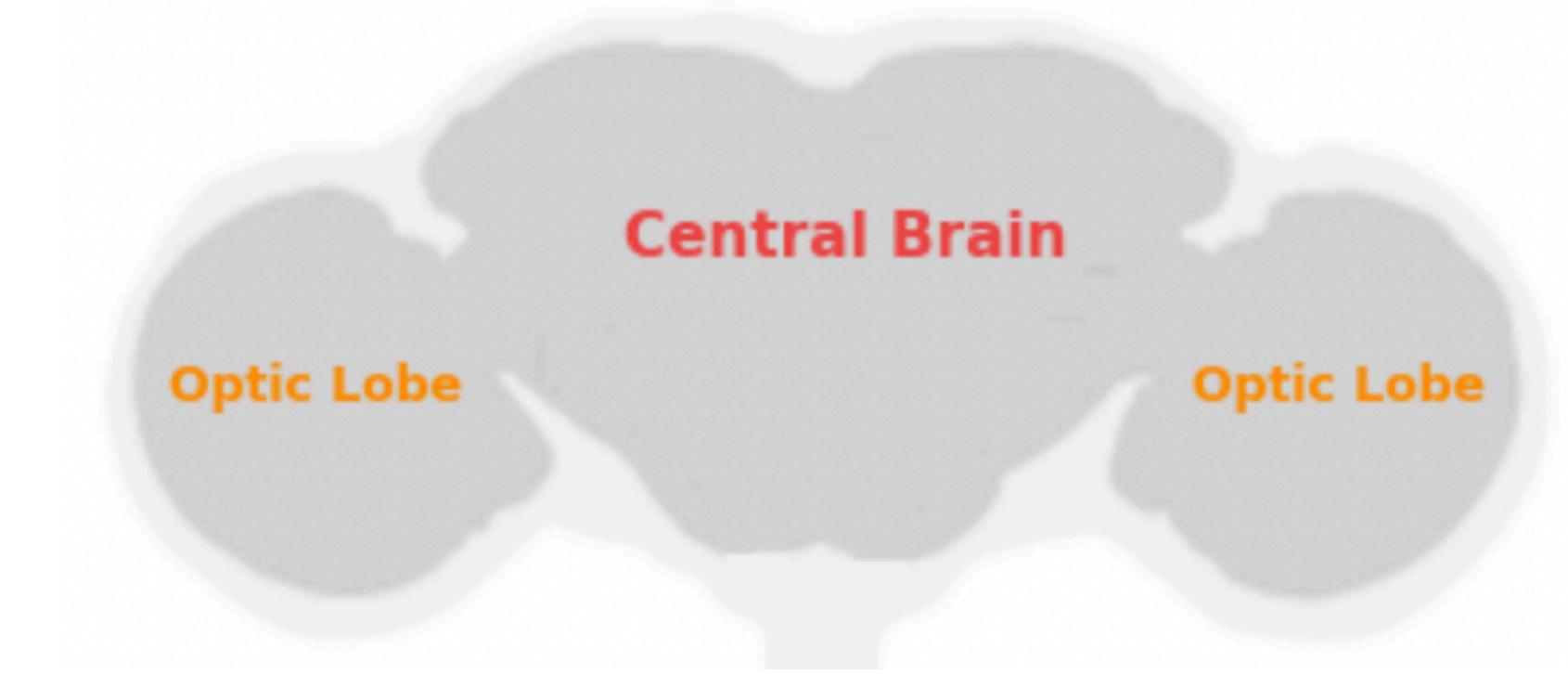


Accuracy

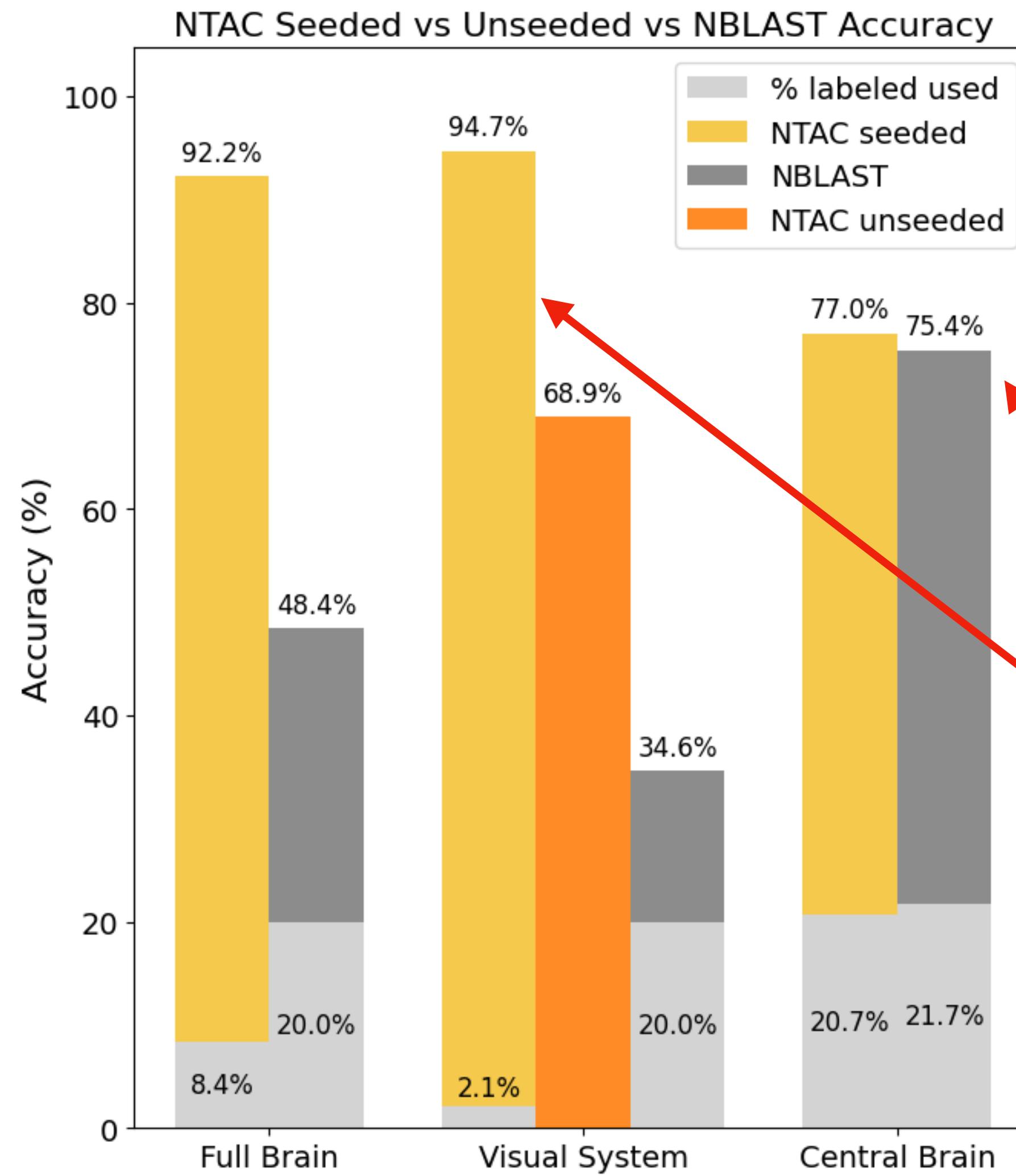
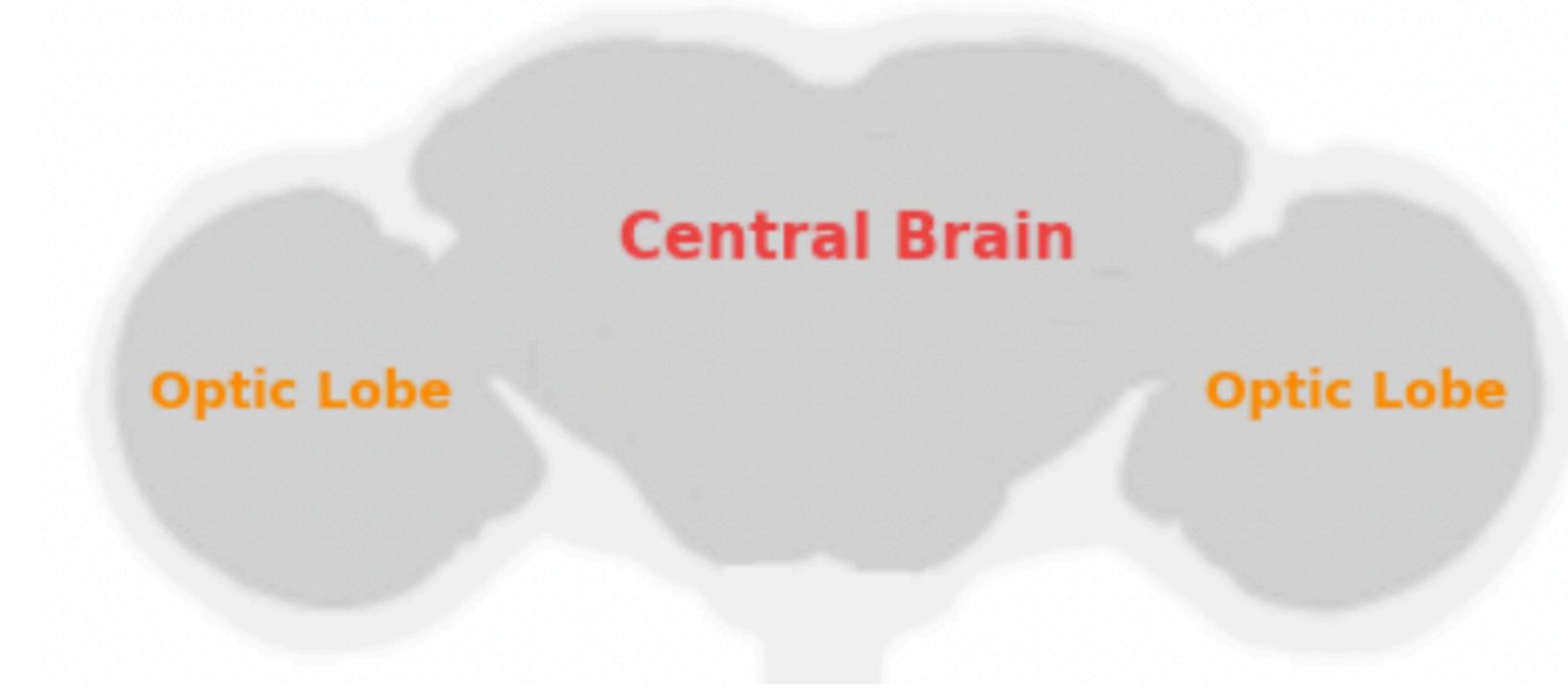
% labeled used

We assume at least one labelled
node from each type is given

No labels required

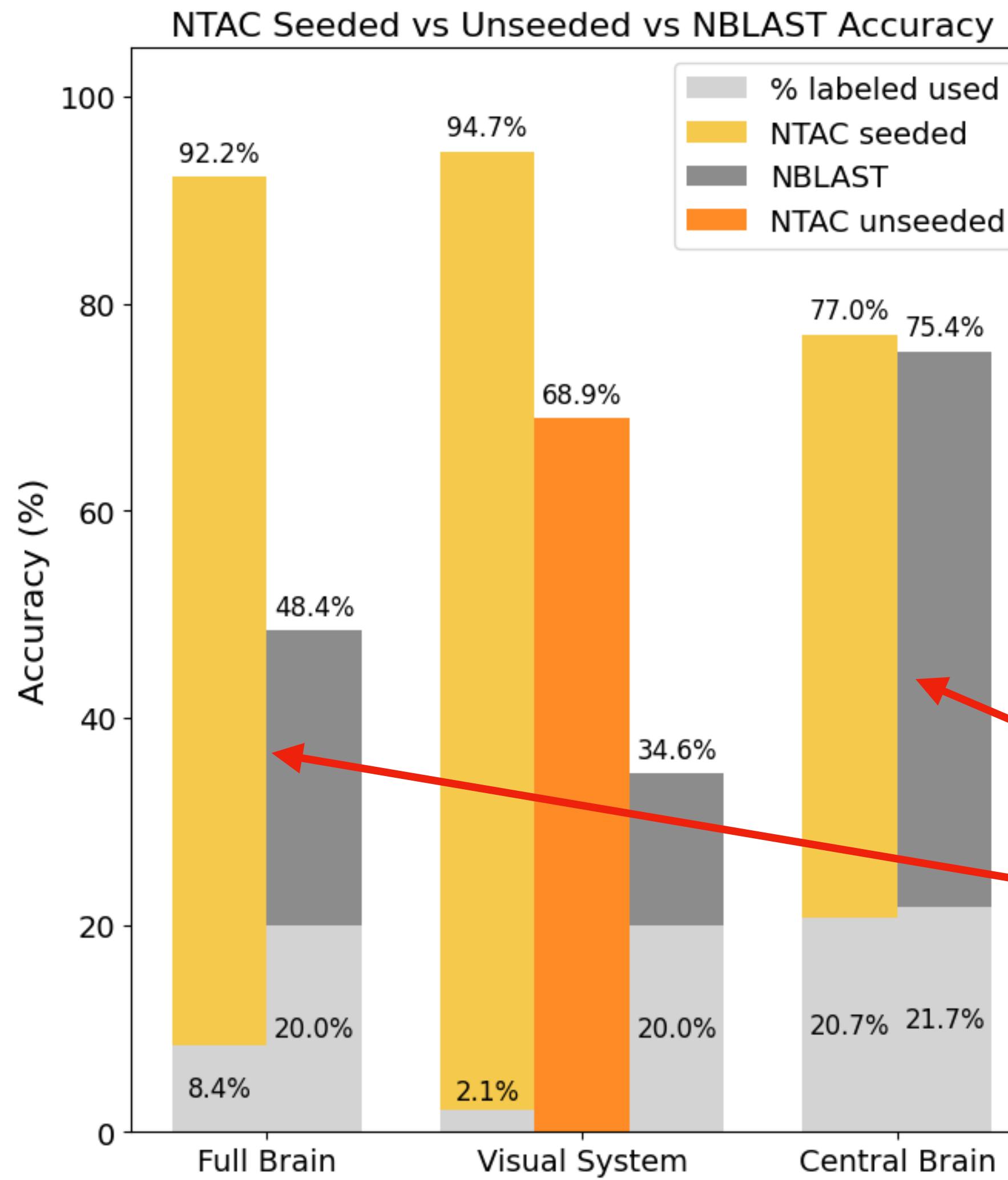


Accuracy comparison

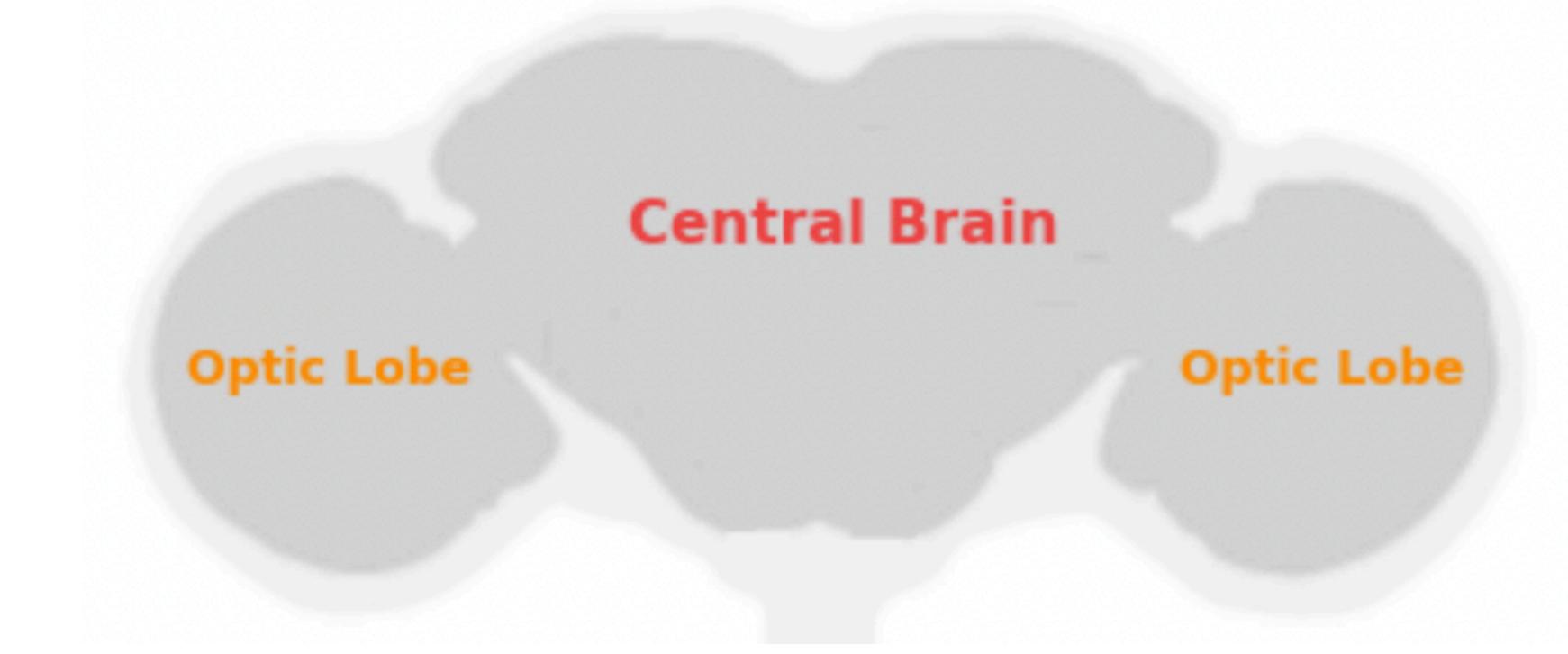


About the same on the central brain
NTAC is much faster (minutes vs hours)
NTAC is much better on visual system

Accuracy comparison

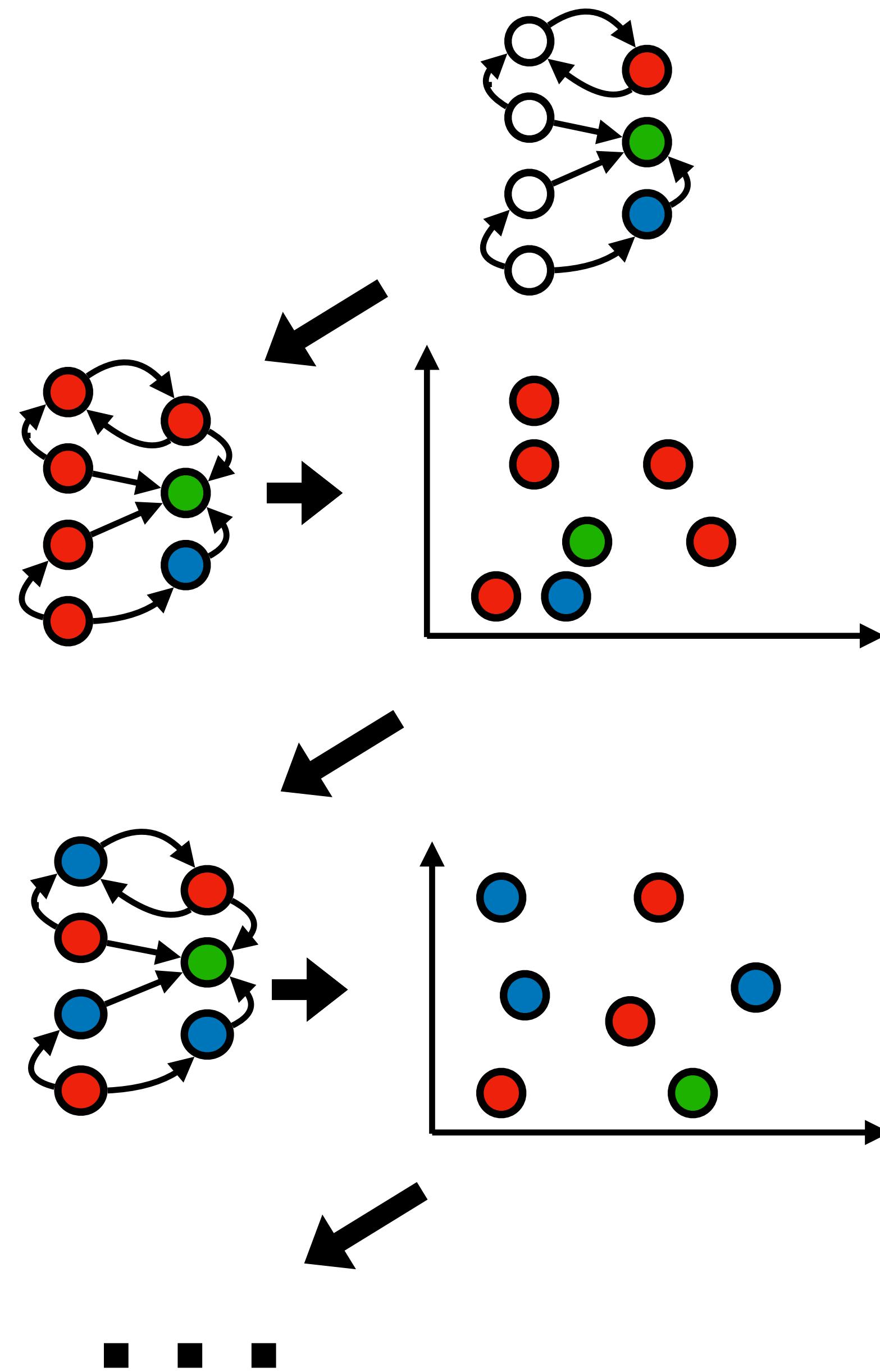


Unseeded NTAC is very slow
when there are many types



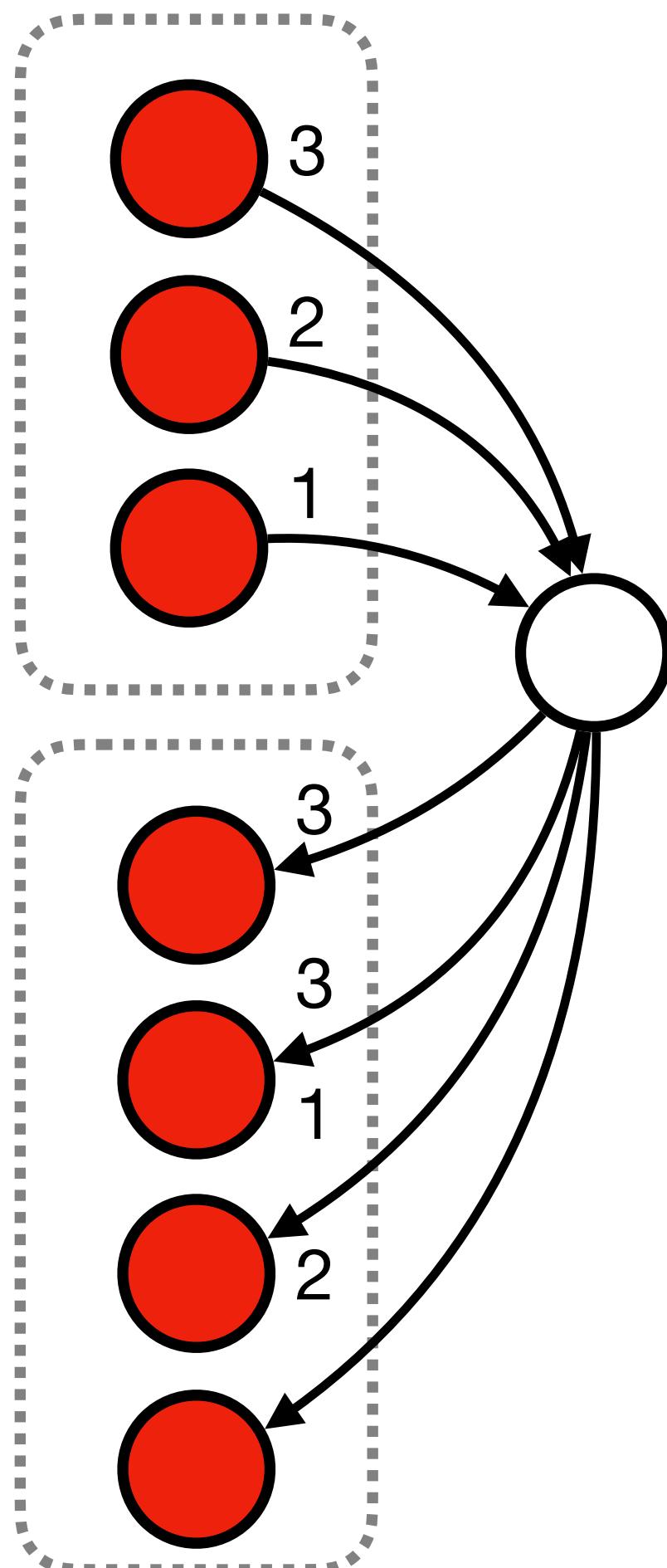
Seeded algorithm outline

- Compute initial node partition
- Repeat t times
 - Compute node **embedding** using node **partition**
 - Compute node **partition** using node **embedding**
- Output **partition**

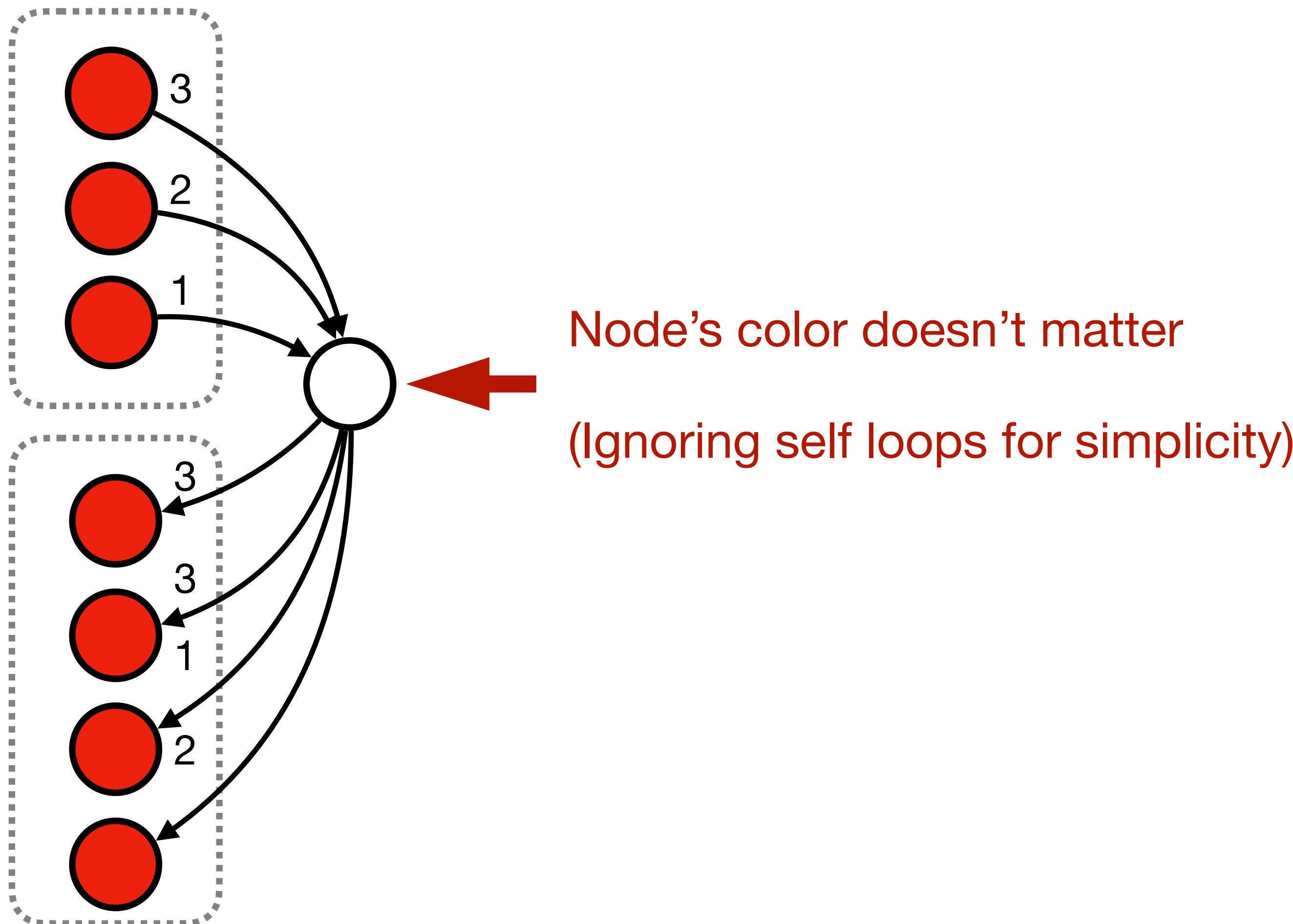


Partition → embedding

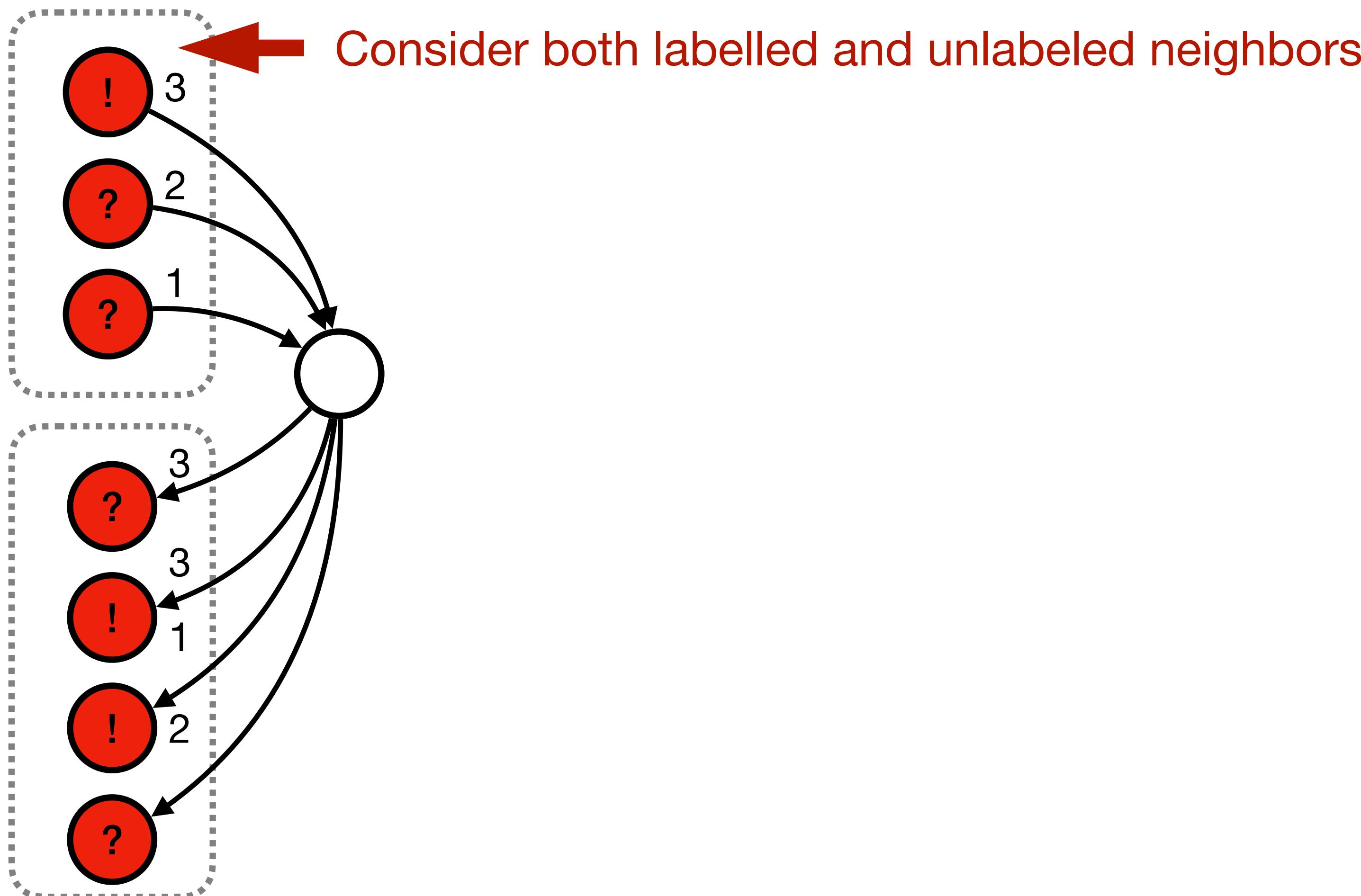
Focus on a single color for now



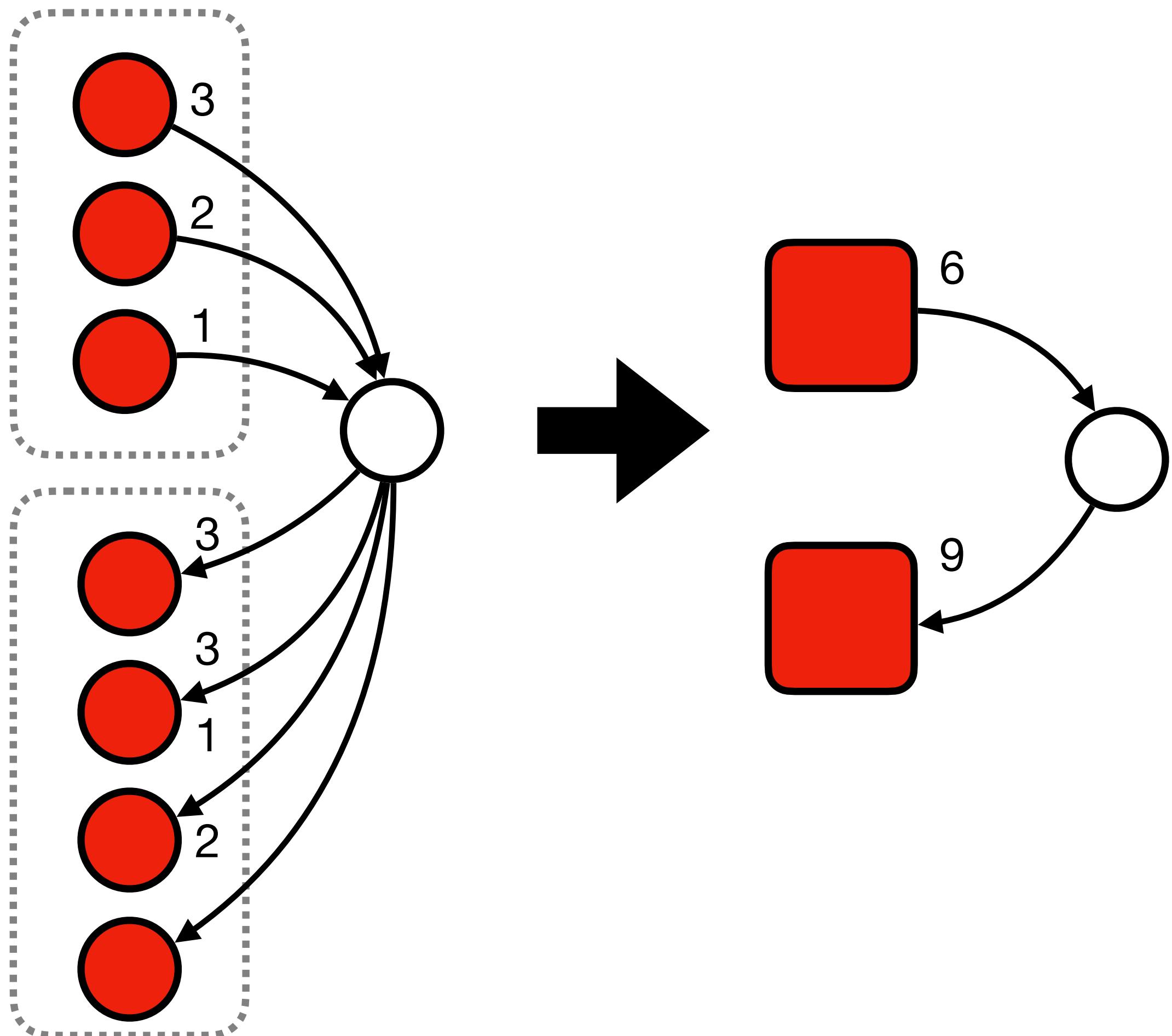
Partition → embedding



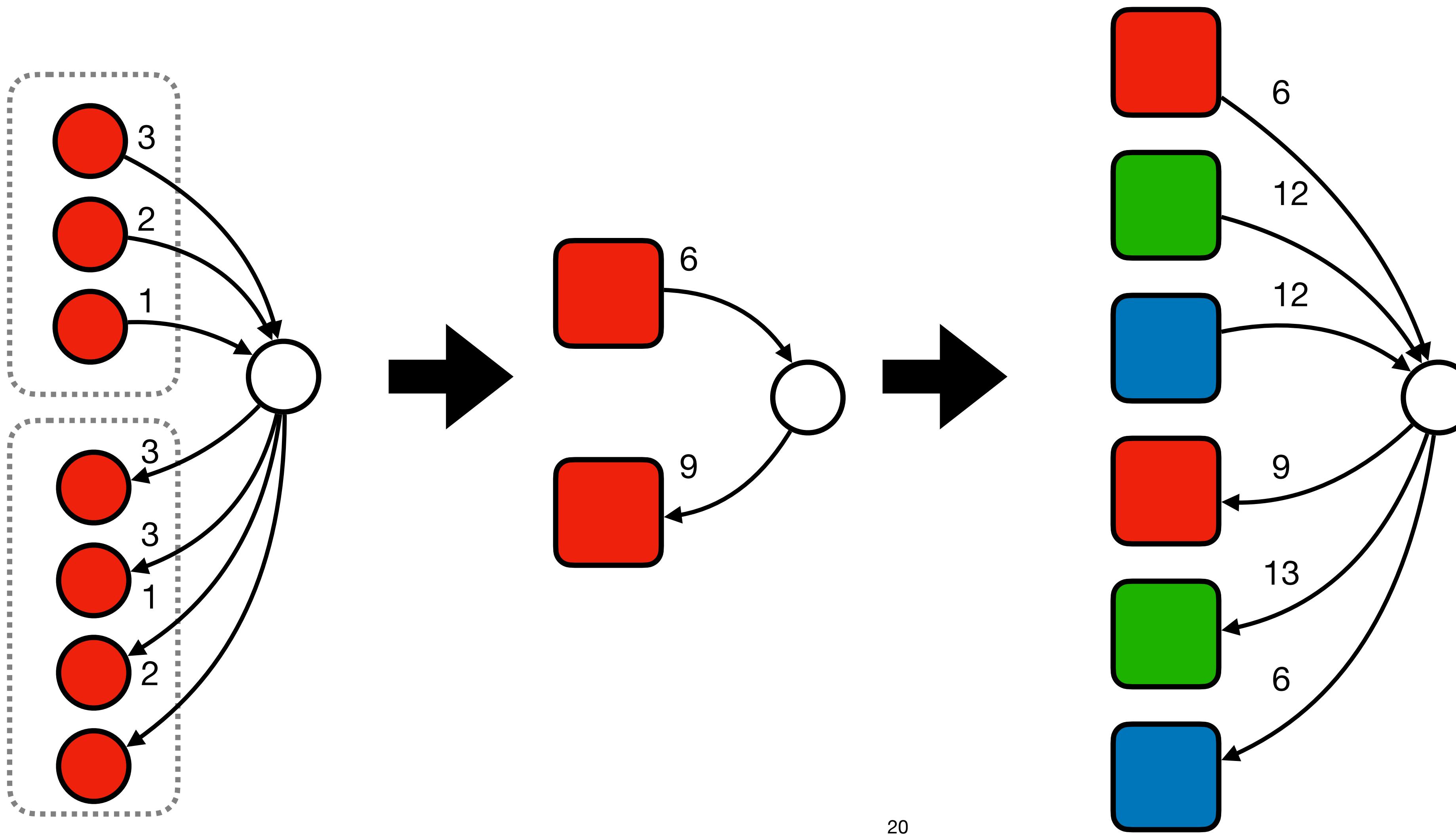
Partition → embedding



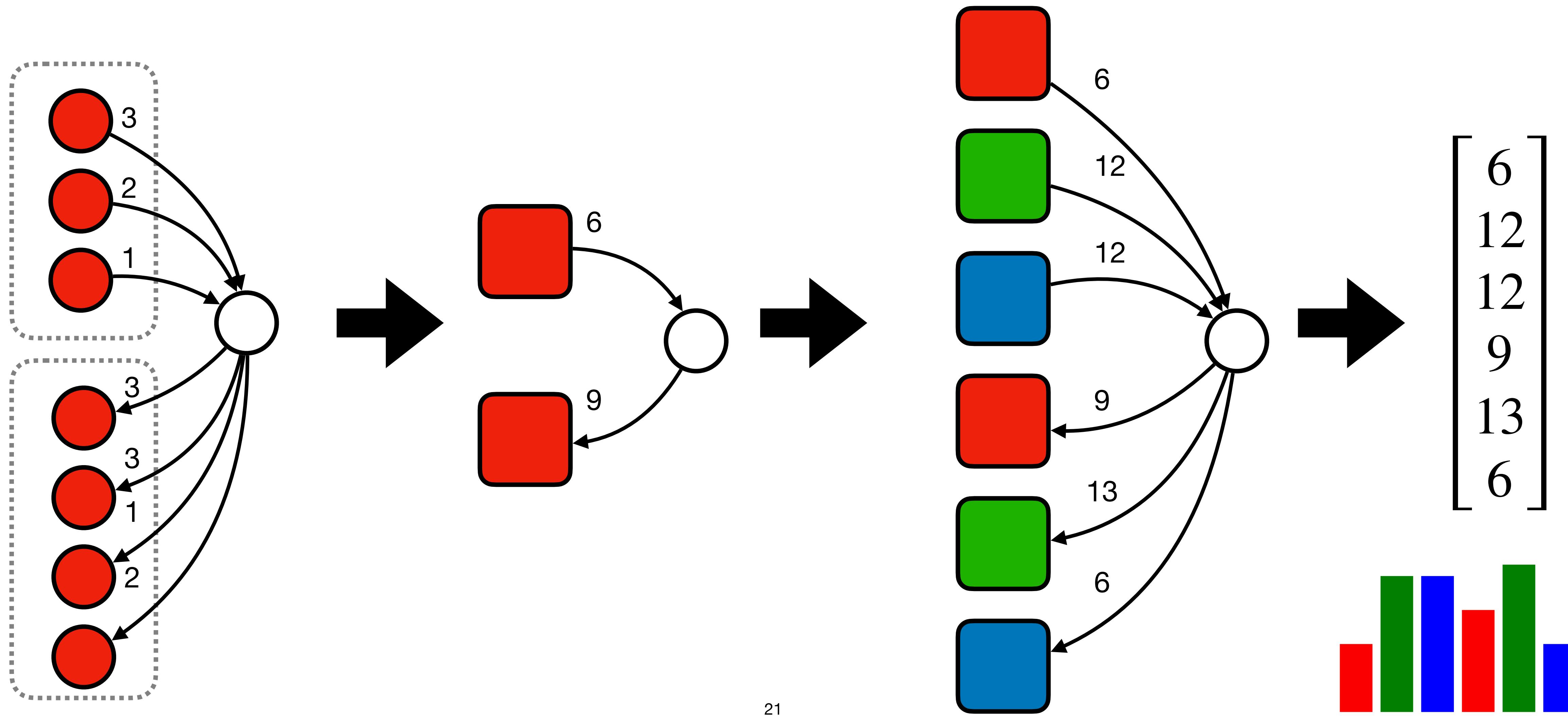
Partition → embedding



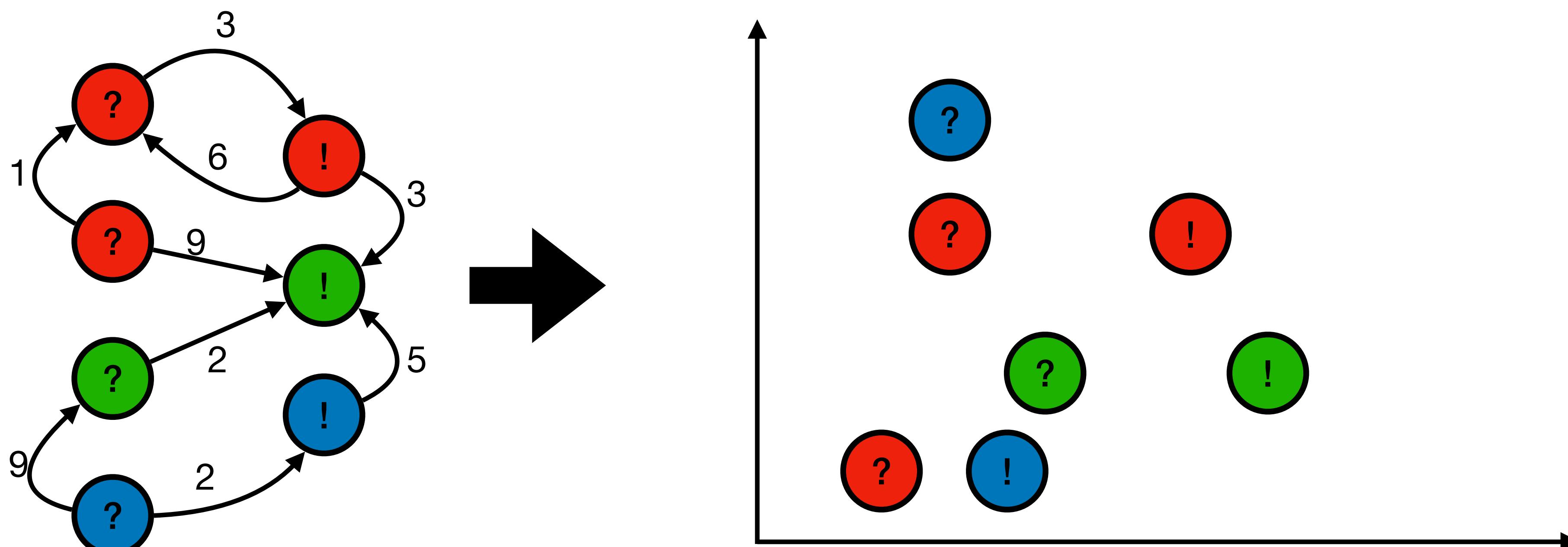
Partition → embedding



Partition → embedding

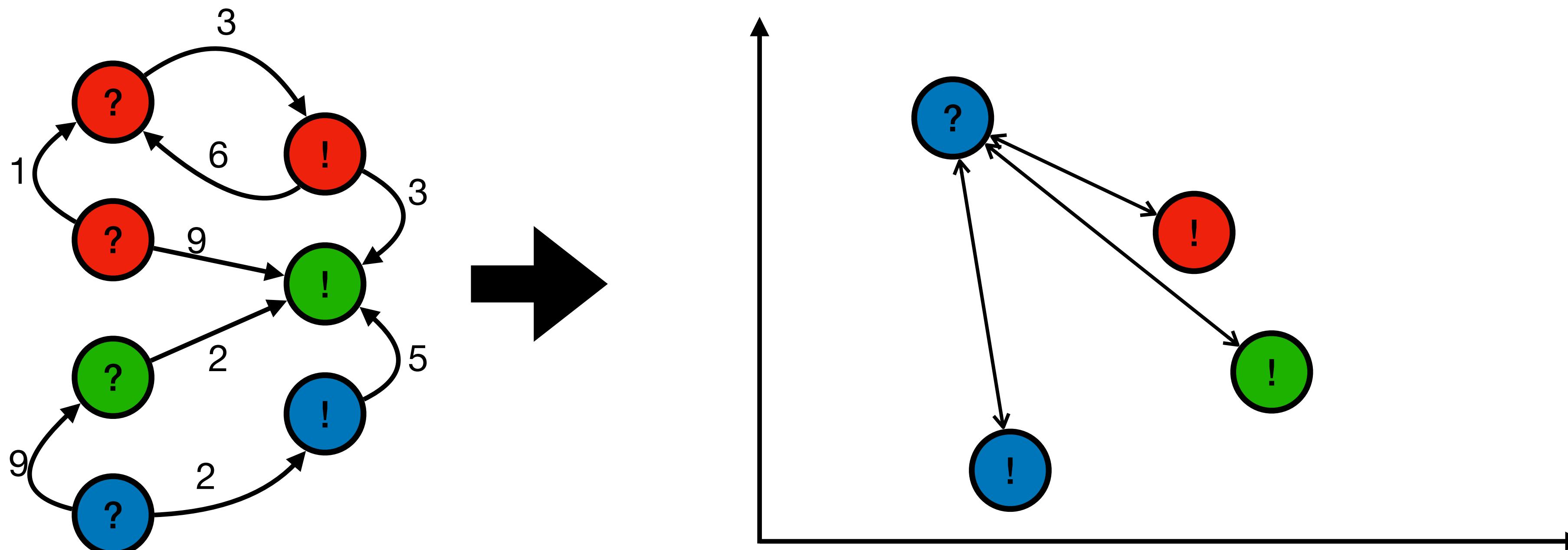


Embedding → partition

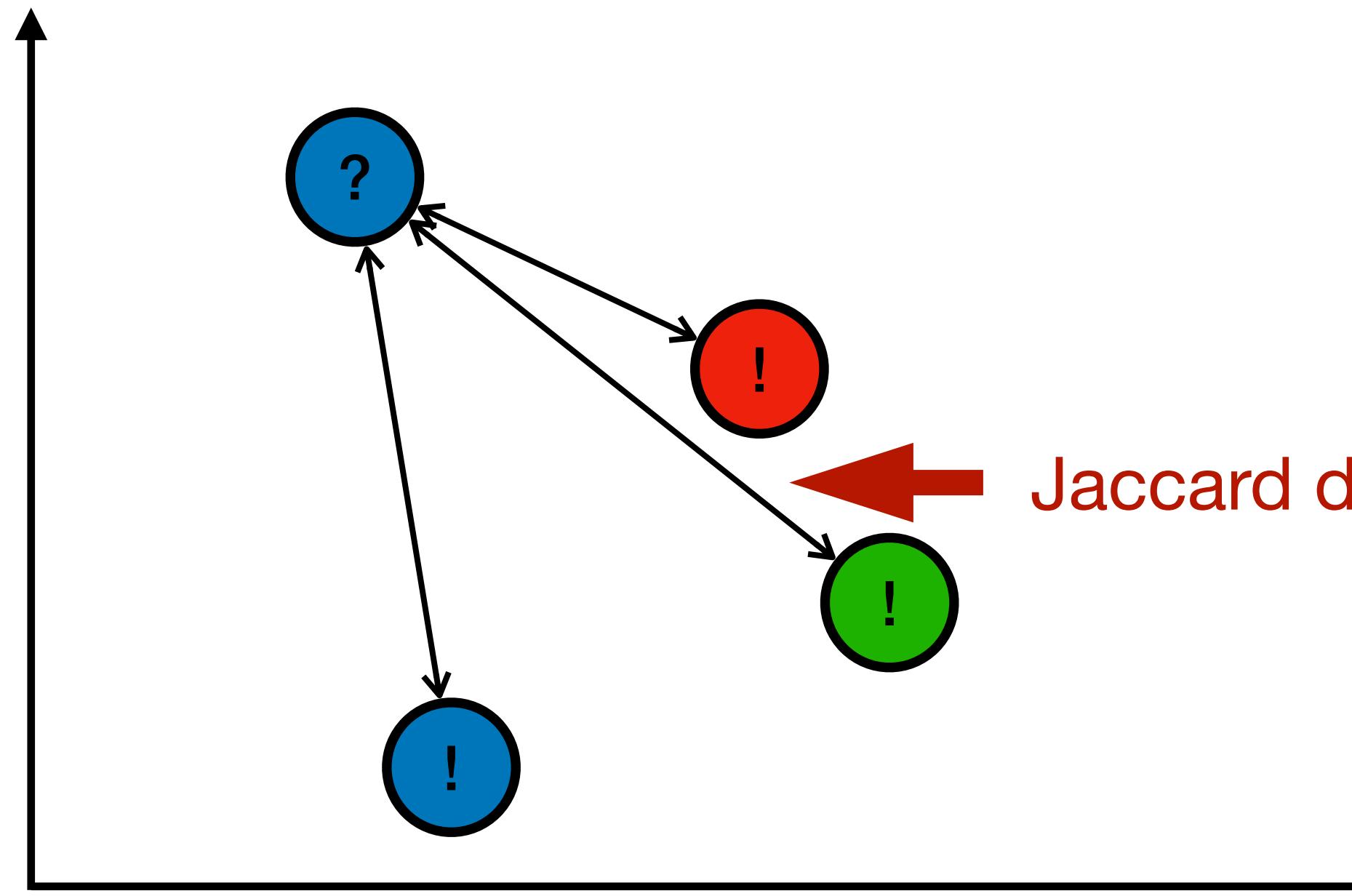


Embedding → partition

Assign color according to closest **labeled** node
(or weighted k-neighbor majority)



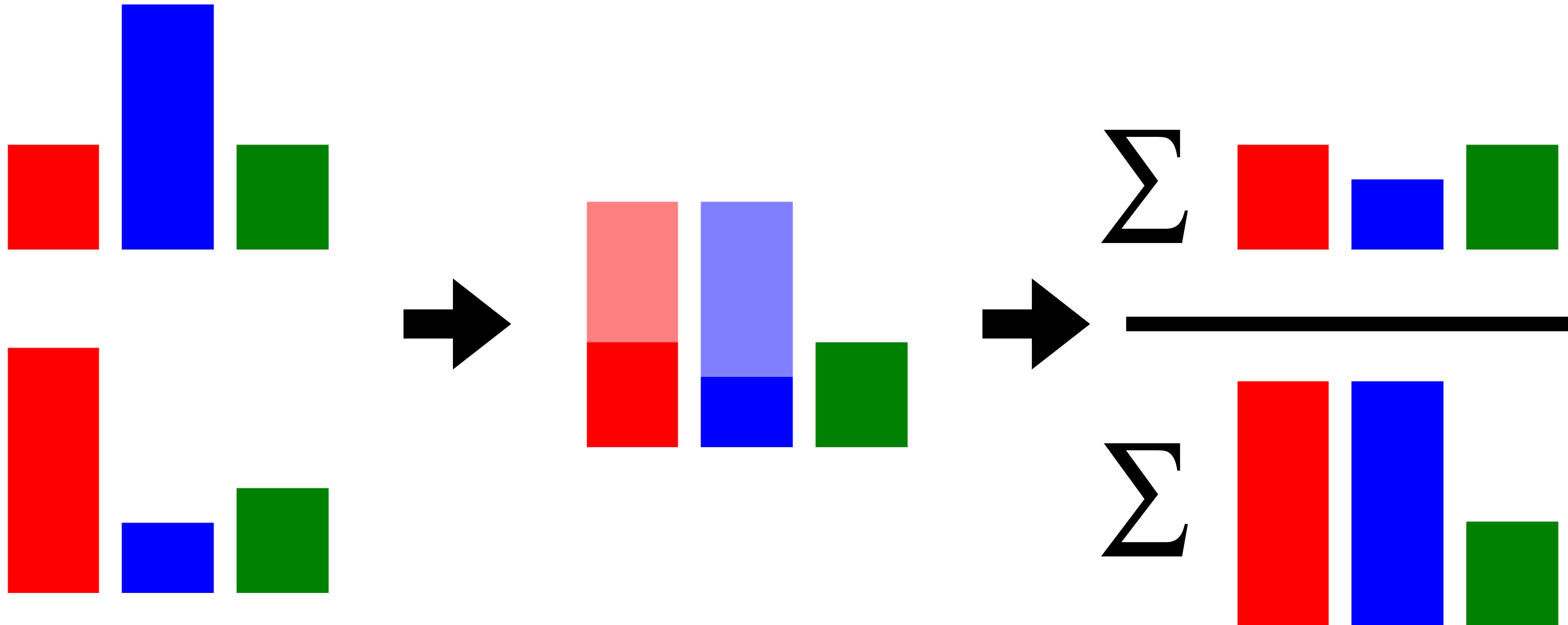
Embedding → partition



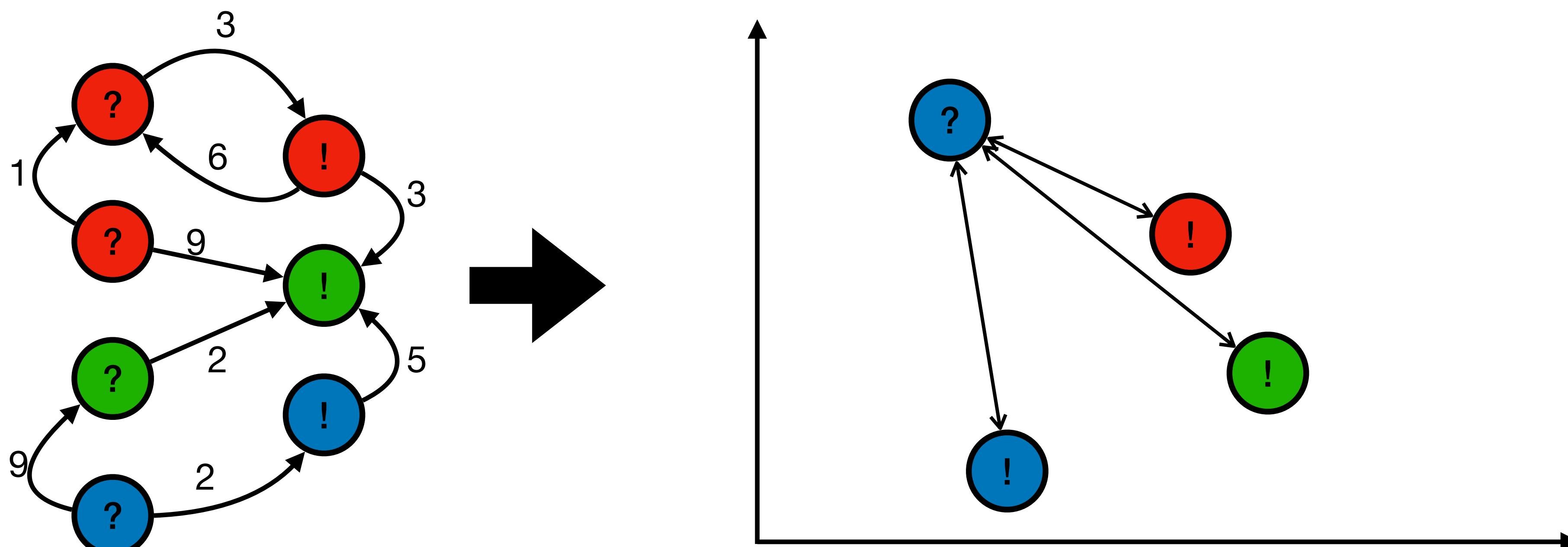
$$D_J(\vec{v}, \vec{u}) = 1 - \frac{\sum_i \min(v_i, u_i)}{\sum_i \max(v_i, u_i)}$$

Jaccard similarity

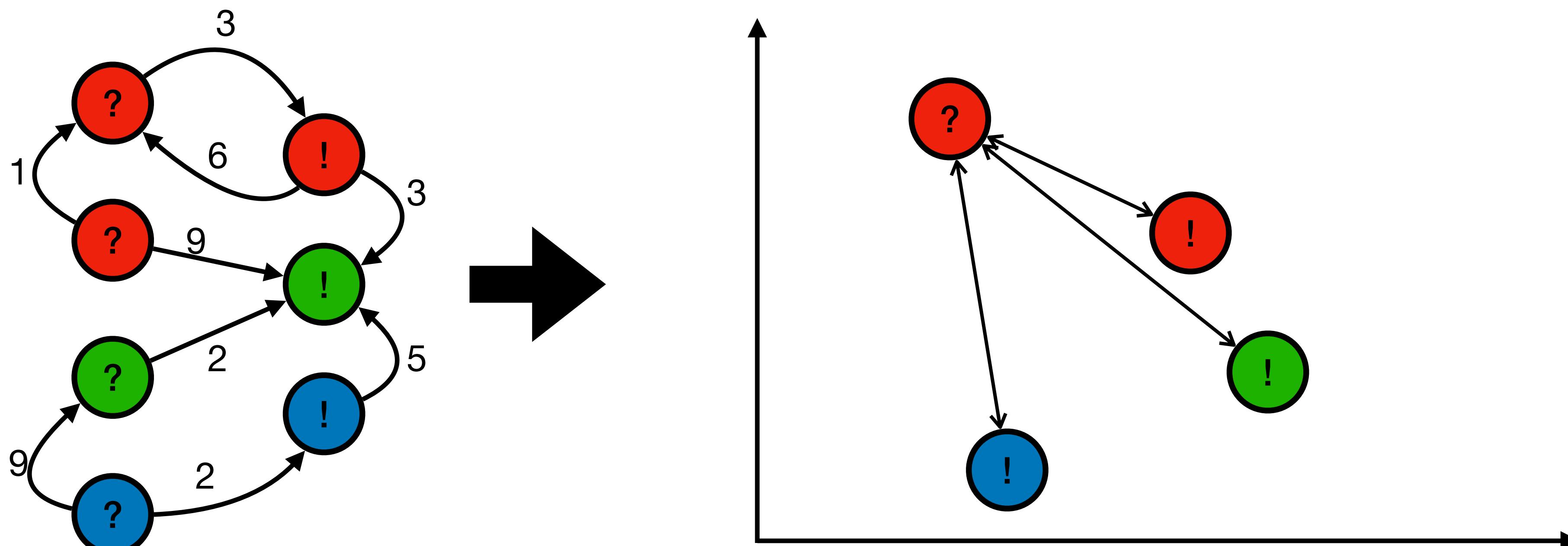
Jaccard similarity



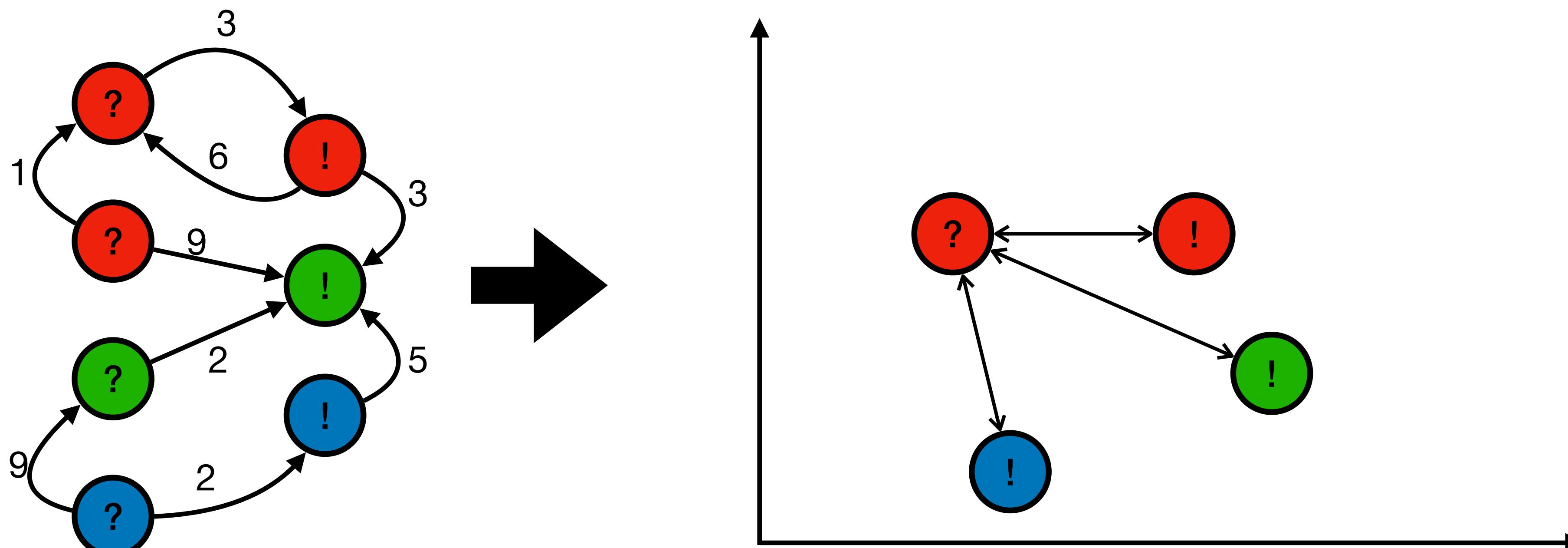
Embedding → partition



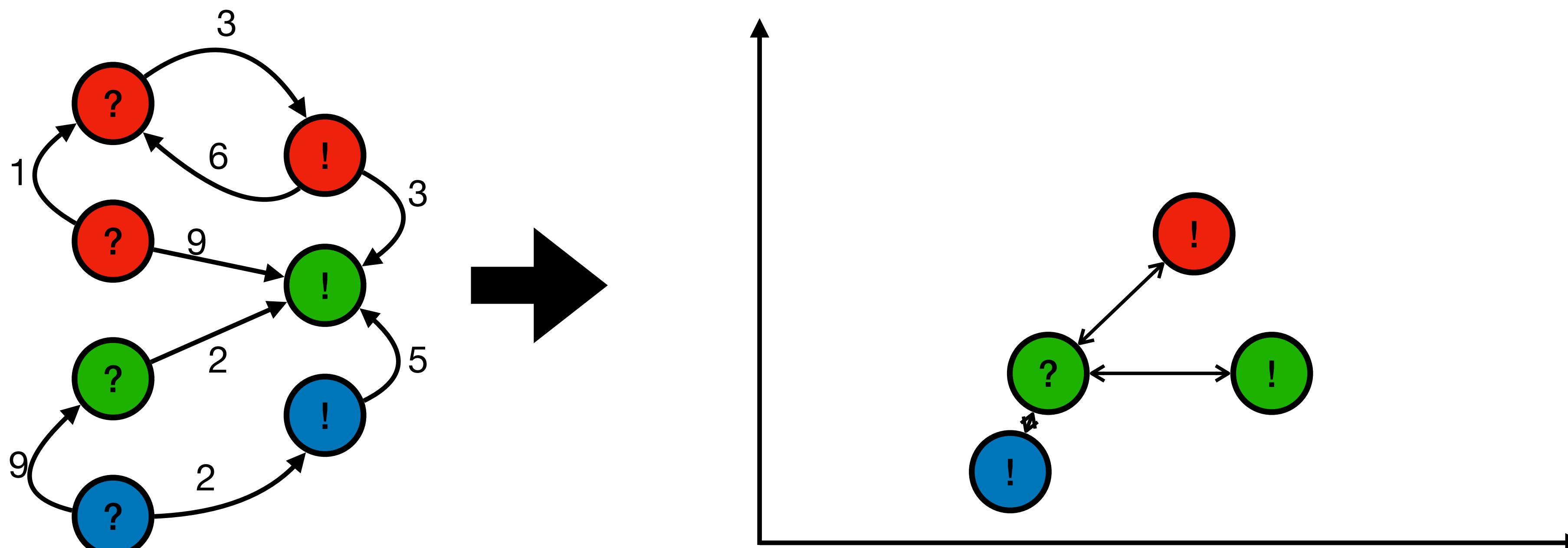
Embedding → partition



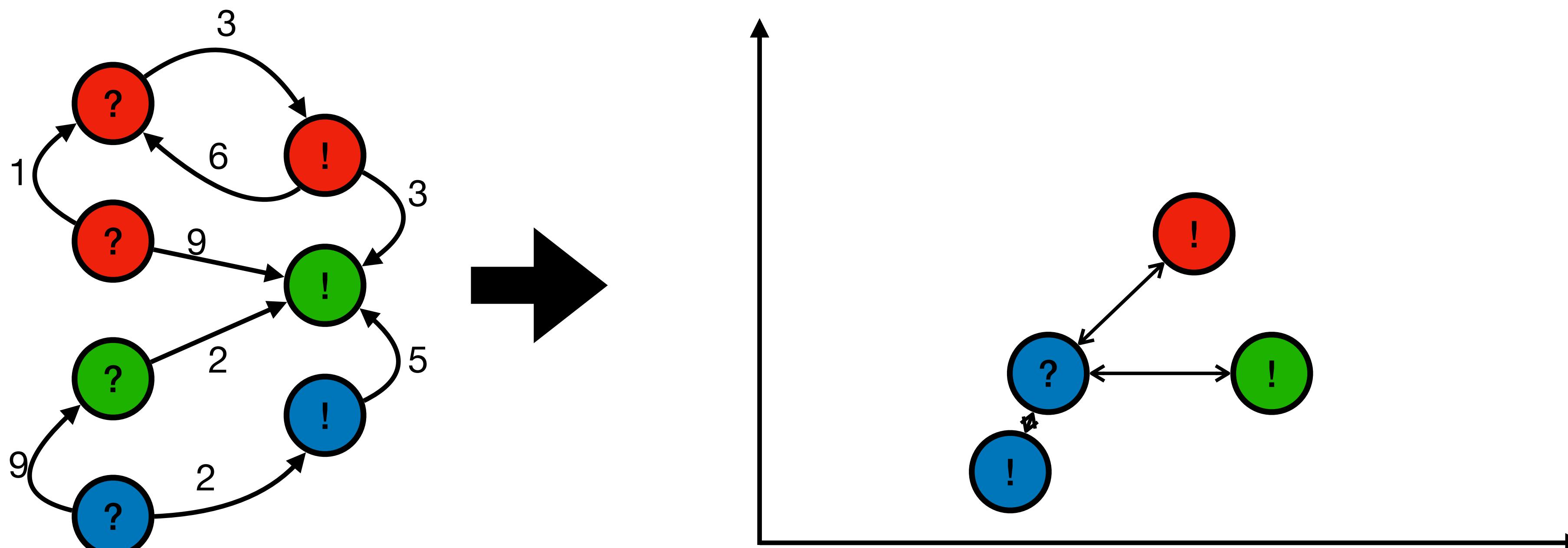
Embedding → partition



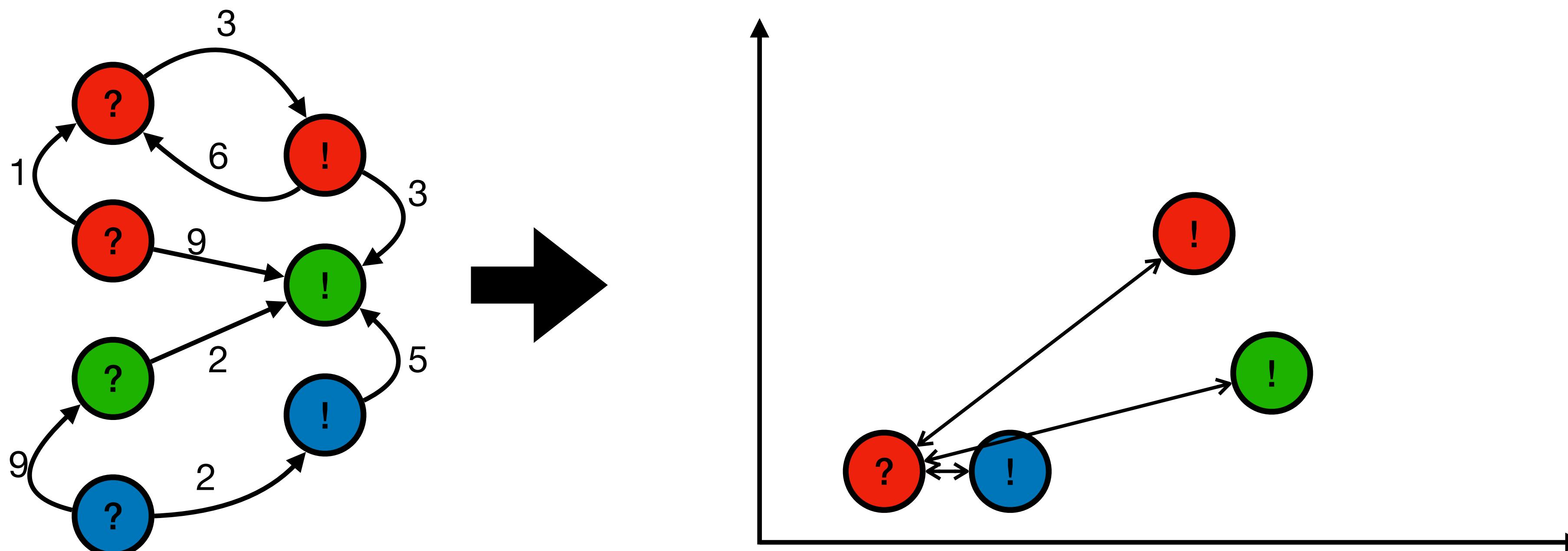
Embedding → partition



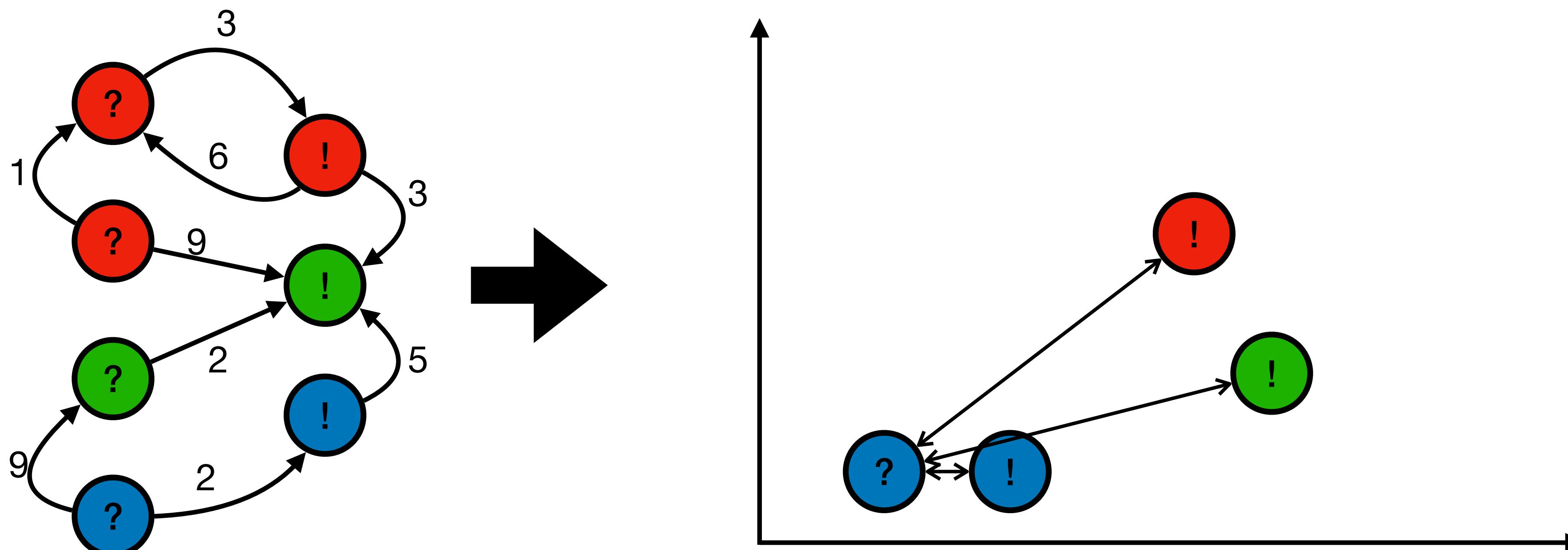
Embedding → partition



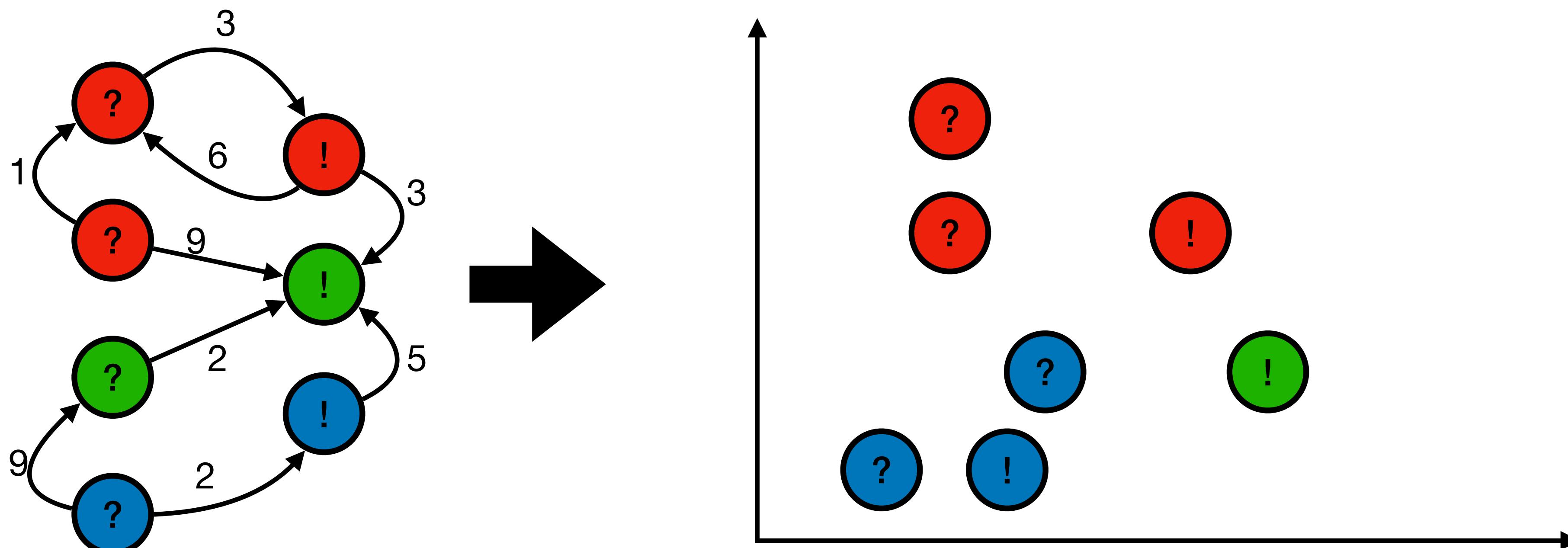
Embedding → partition



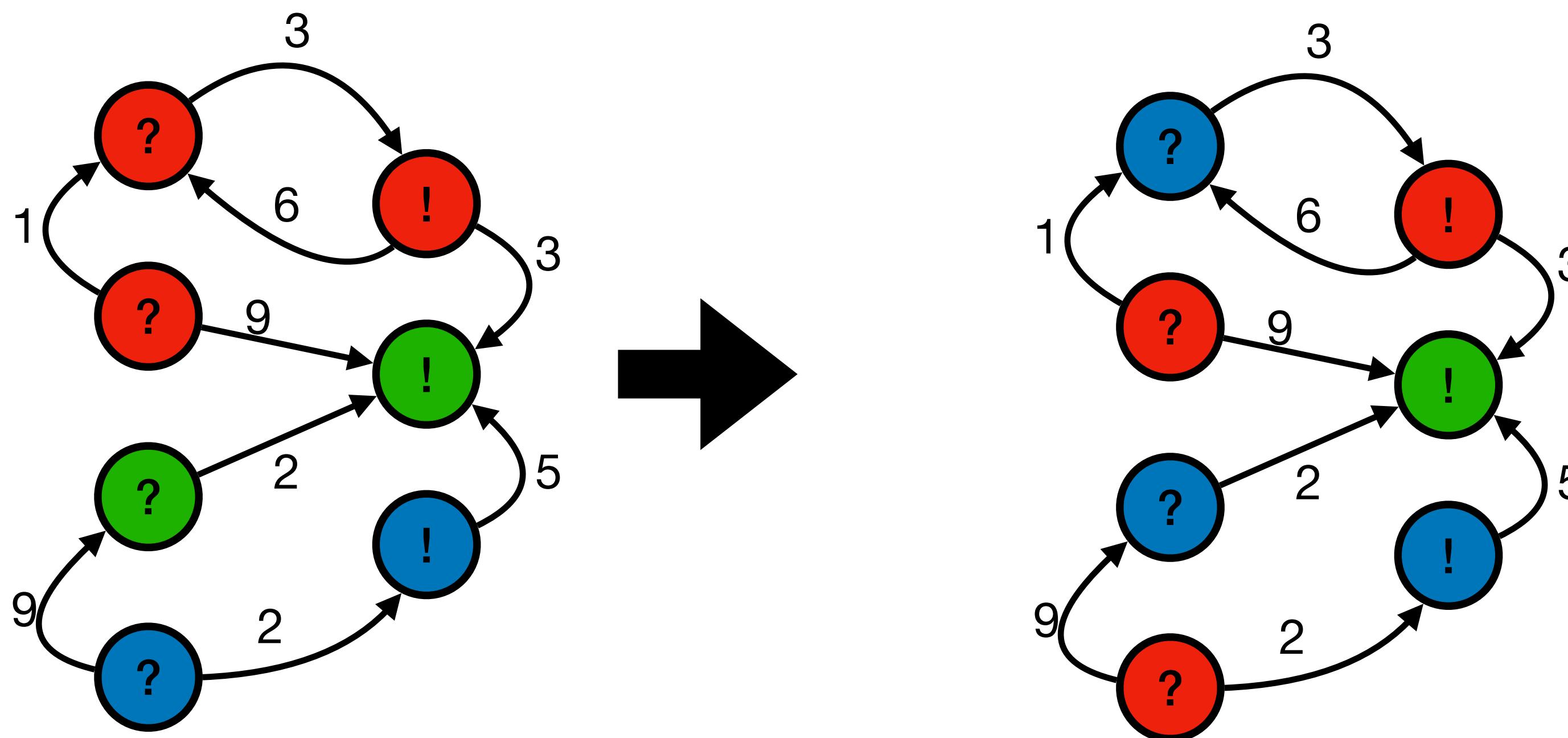
Embedding → partition



Embedding → partition



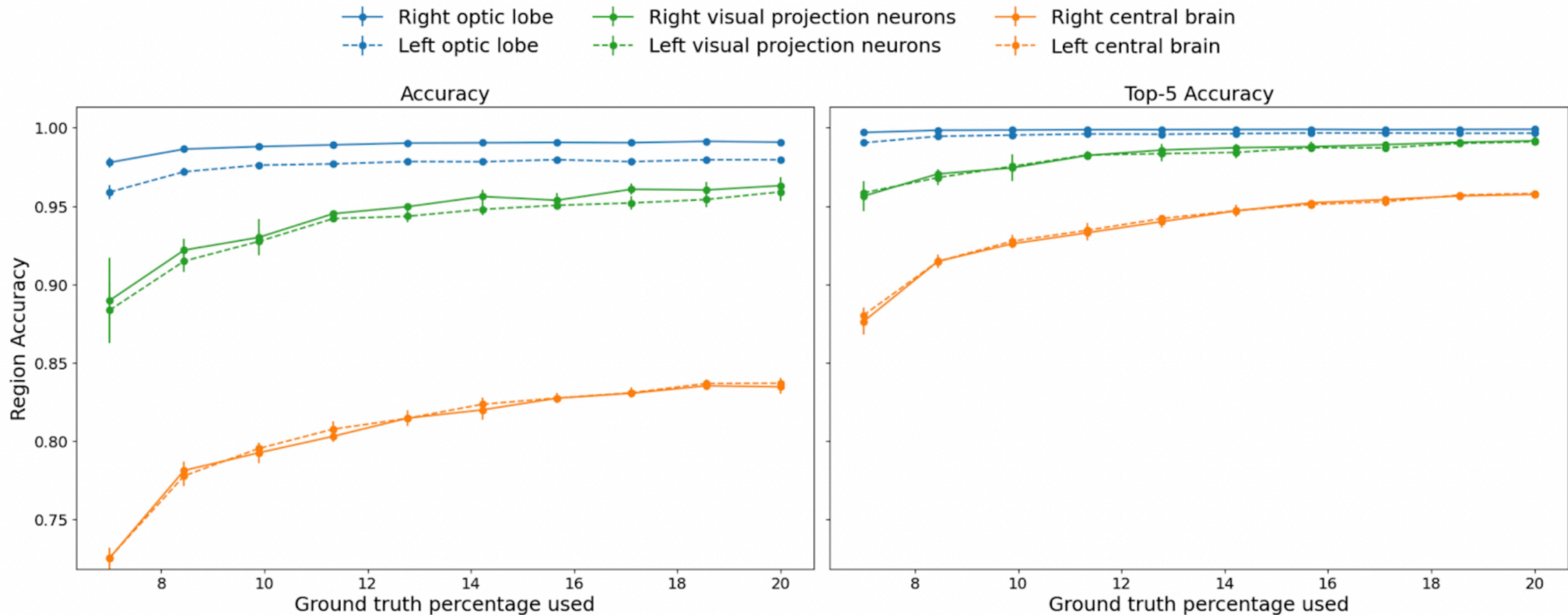
Embedding → partition



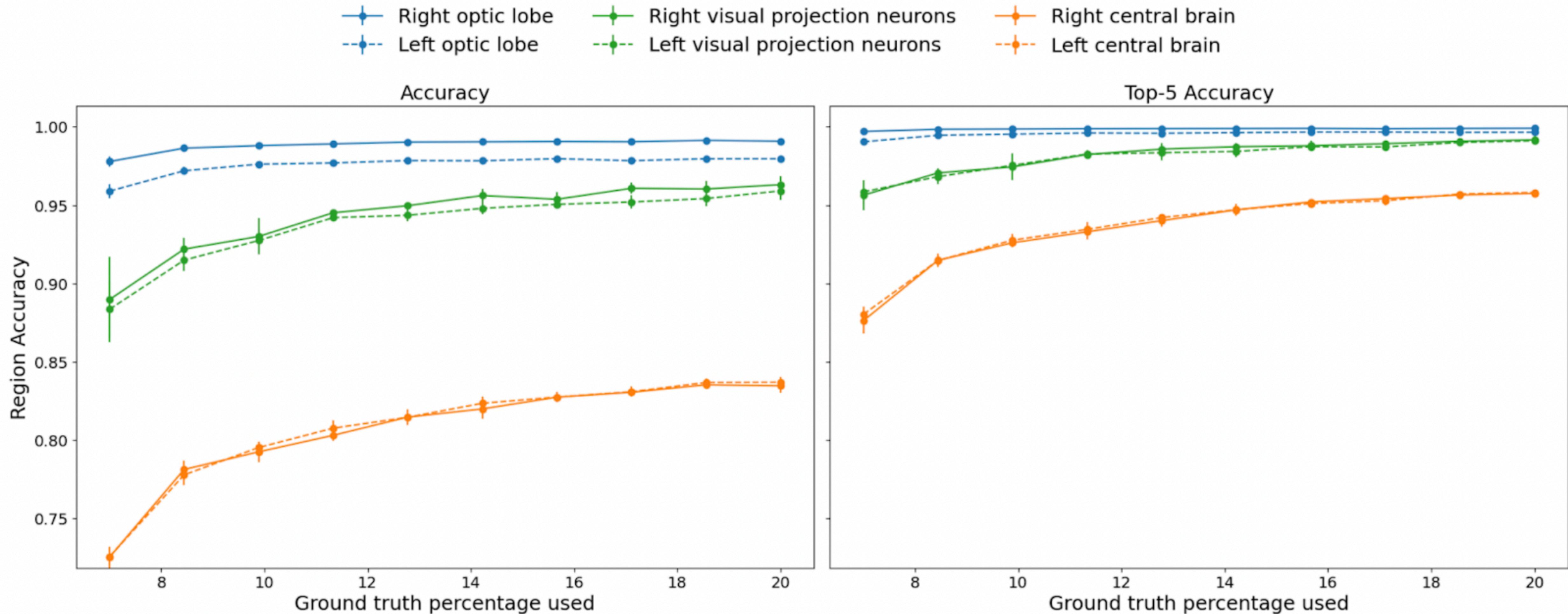
Runtime

- Algorithm can be parallelized
- Only a few (~10) iterations are sufficient
- Entire brain can be classified in ~10 minutes on a mac

Experimental results



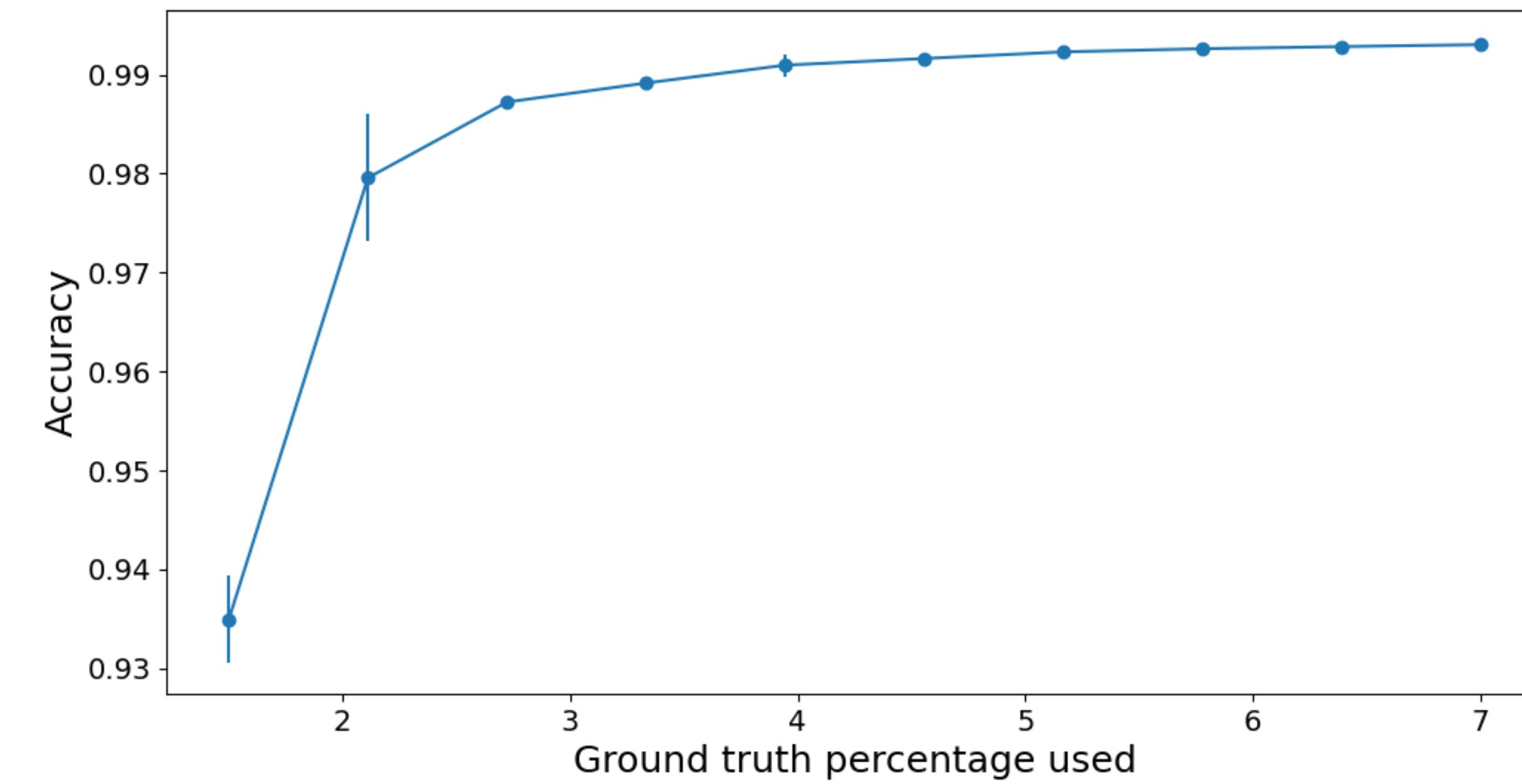
Experimental results



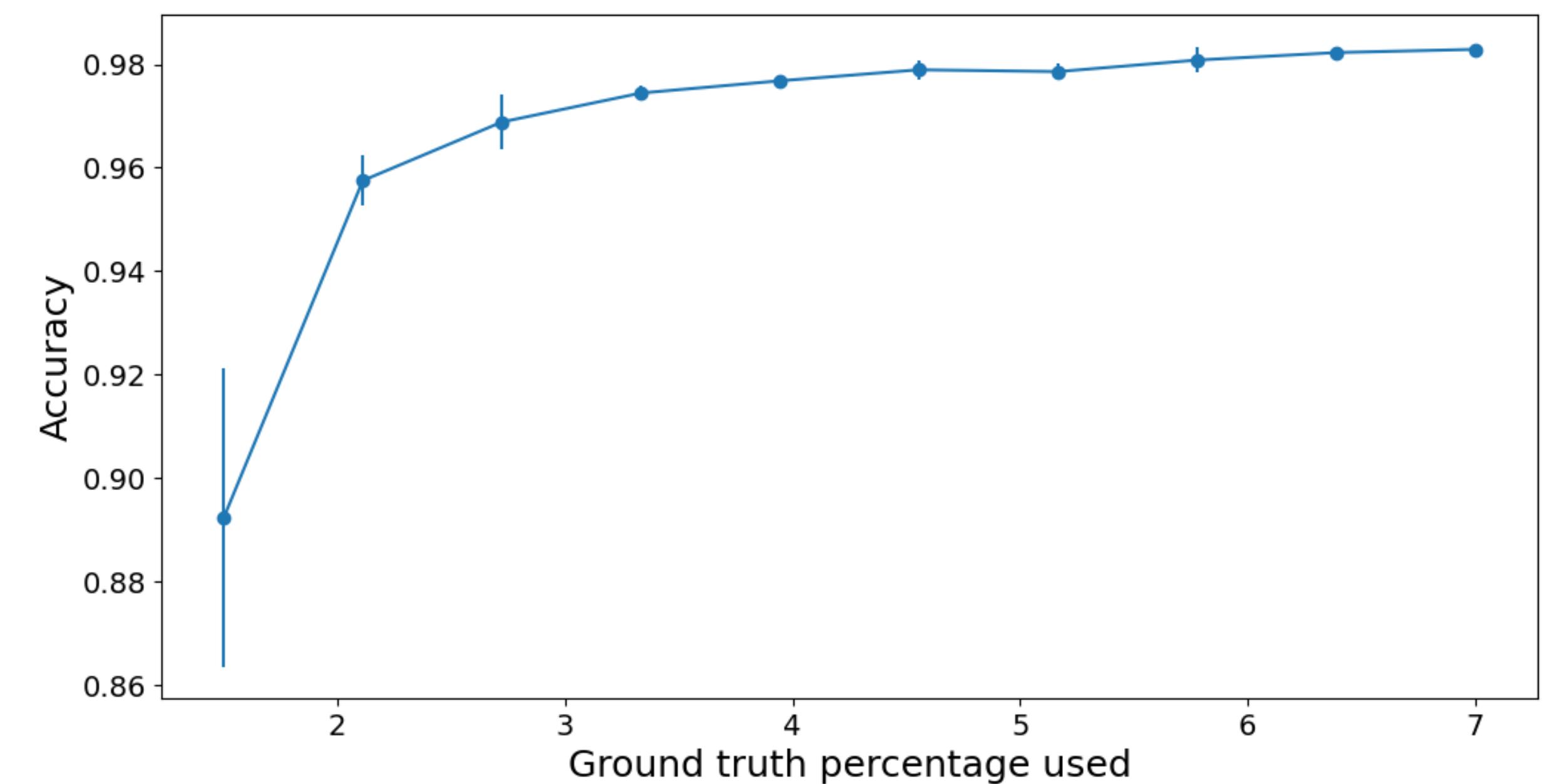
We assume at least one labelled node from each type is given

Experimental results

Male entire visual system right

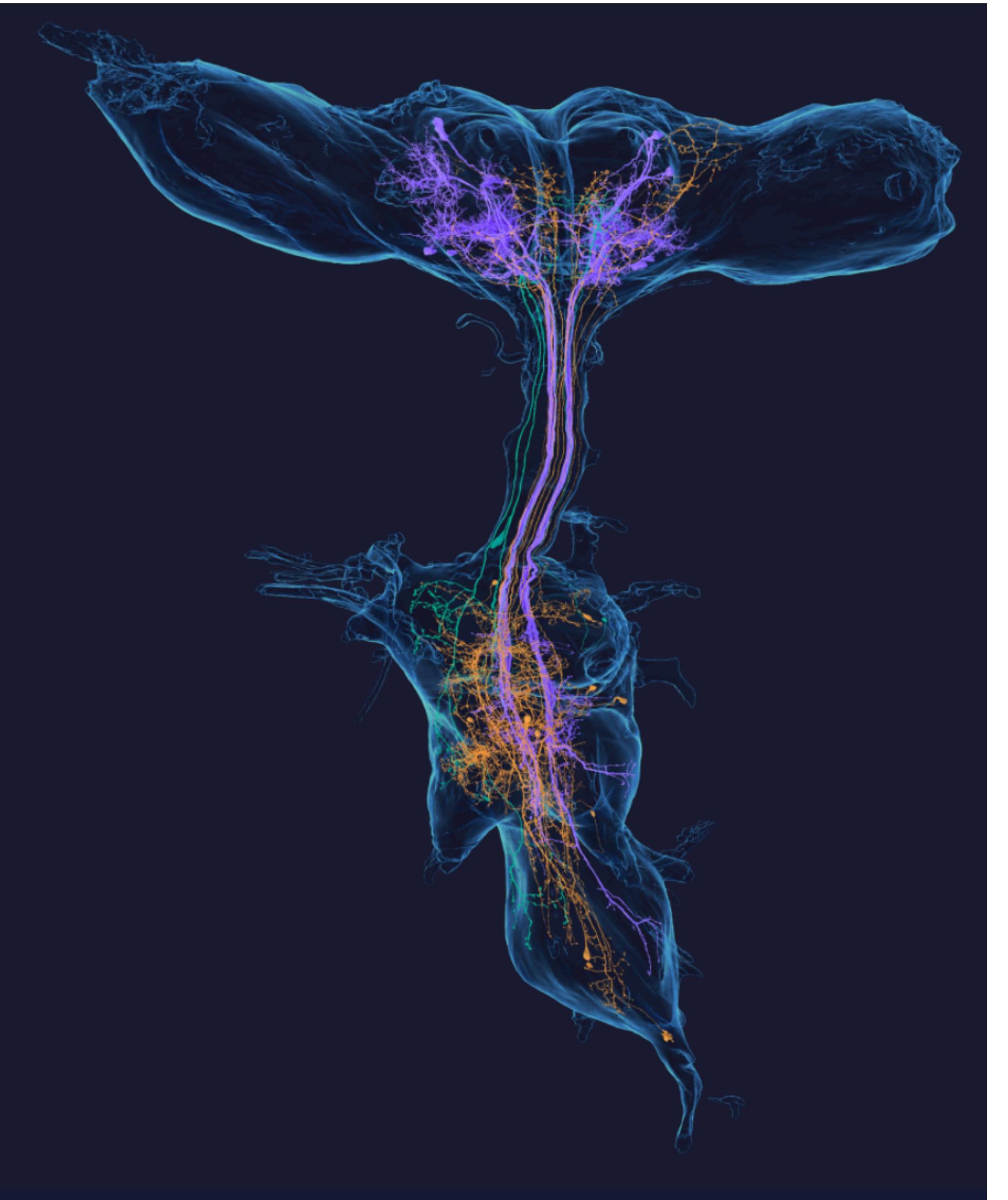


Female entire visual system right

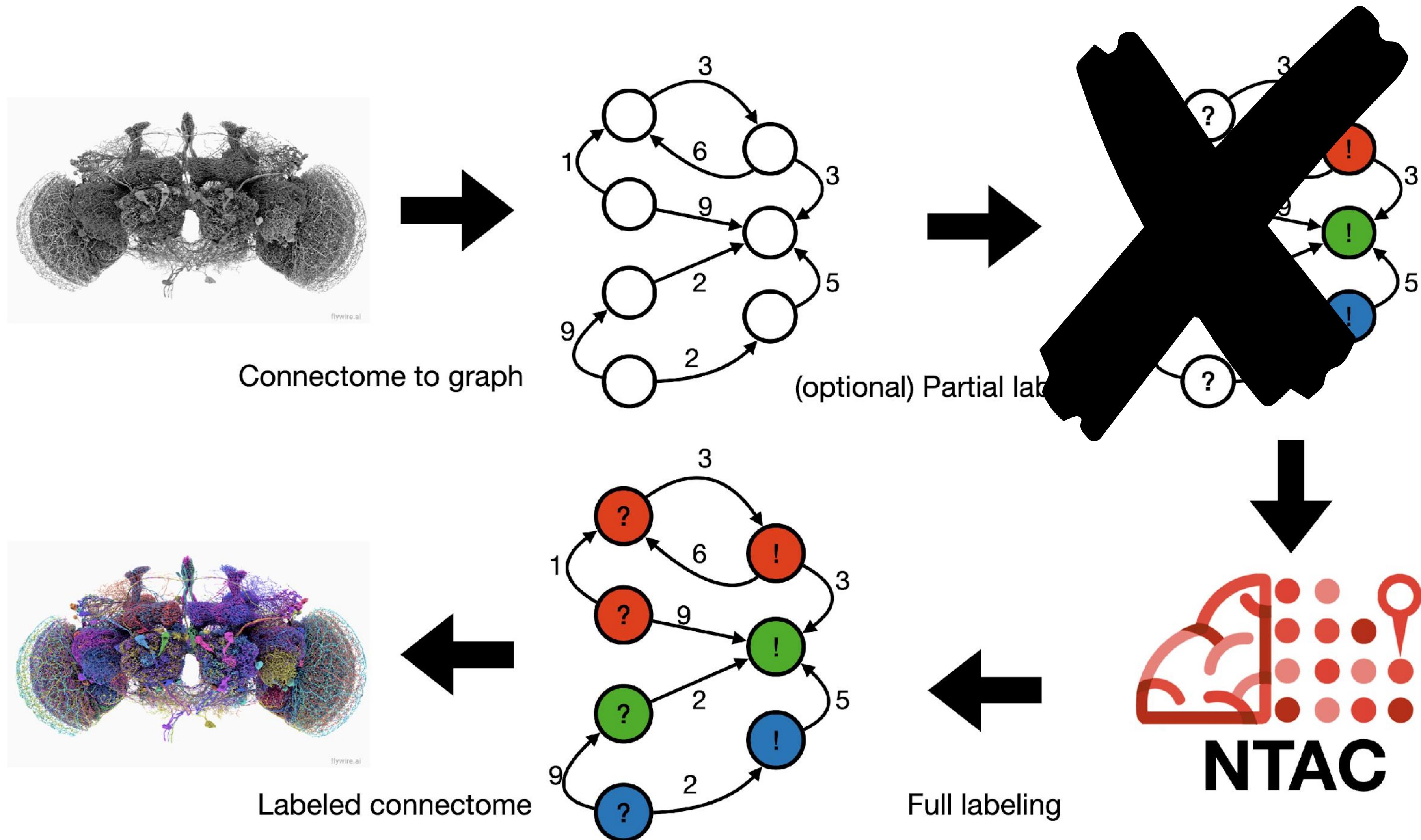


Incomplete data?

- **BANC** - brain and nerve cord
 - Adult female fruit fly
- ~100k neurons / ~2.5 million synaptic connections
 - Incomplete topology
- ~6k cell types
 - Missing types
- ~45% labeled cells
 - Labeling is not uniform

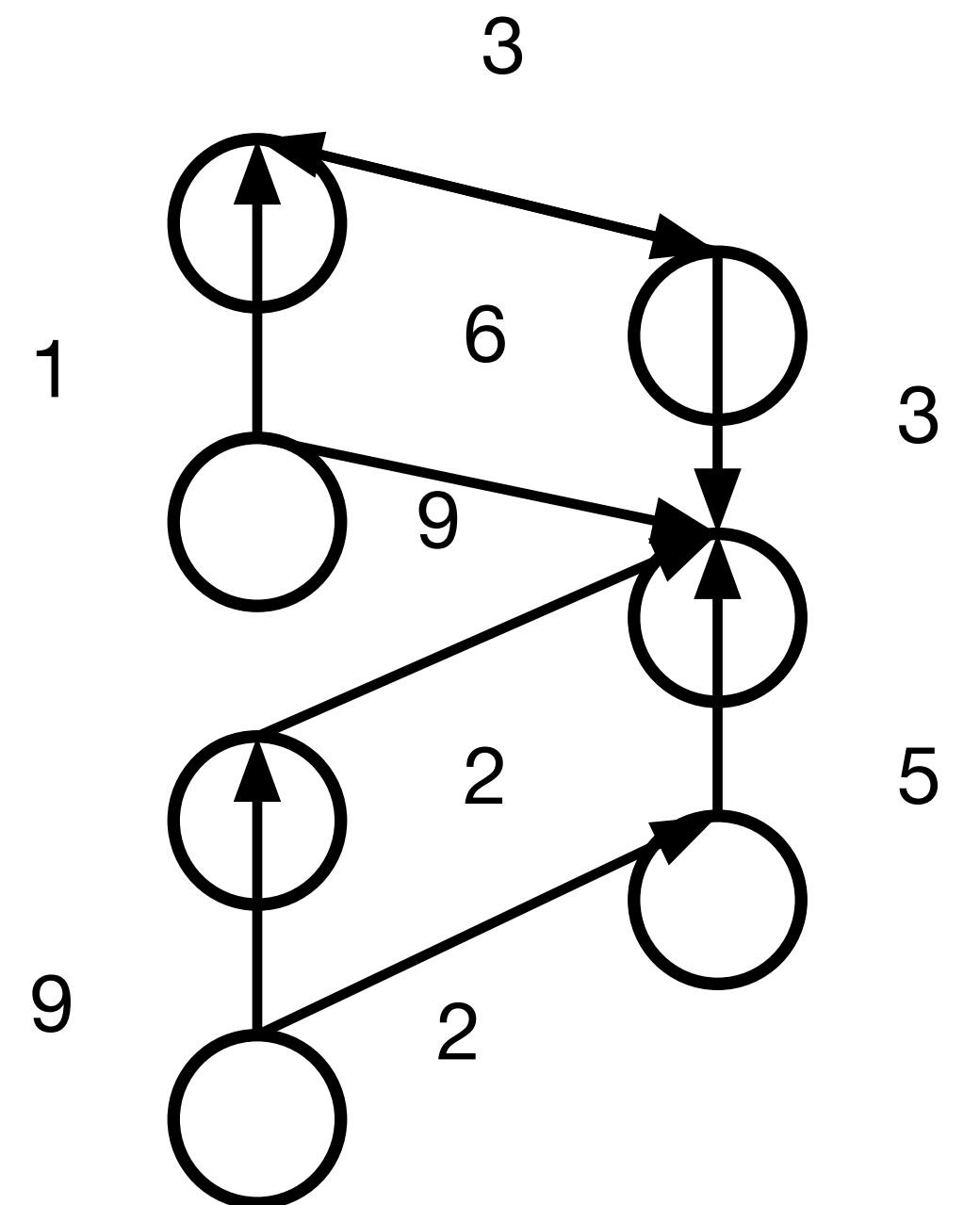


Unseeded version



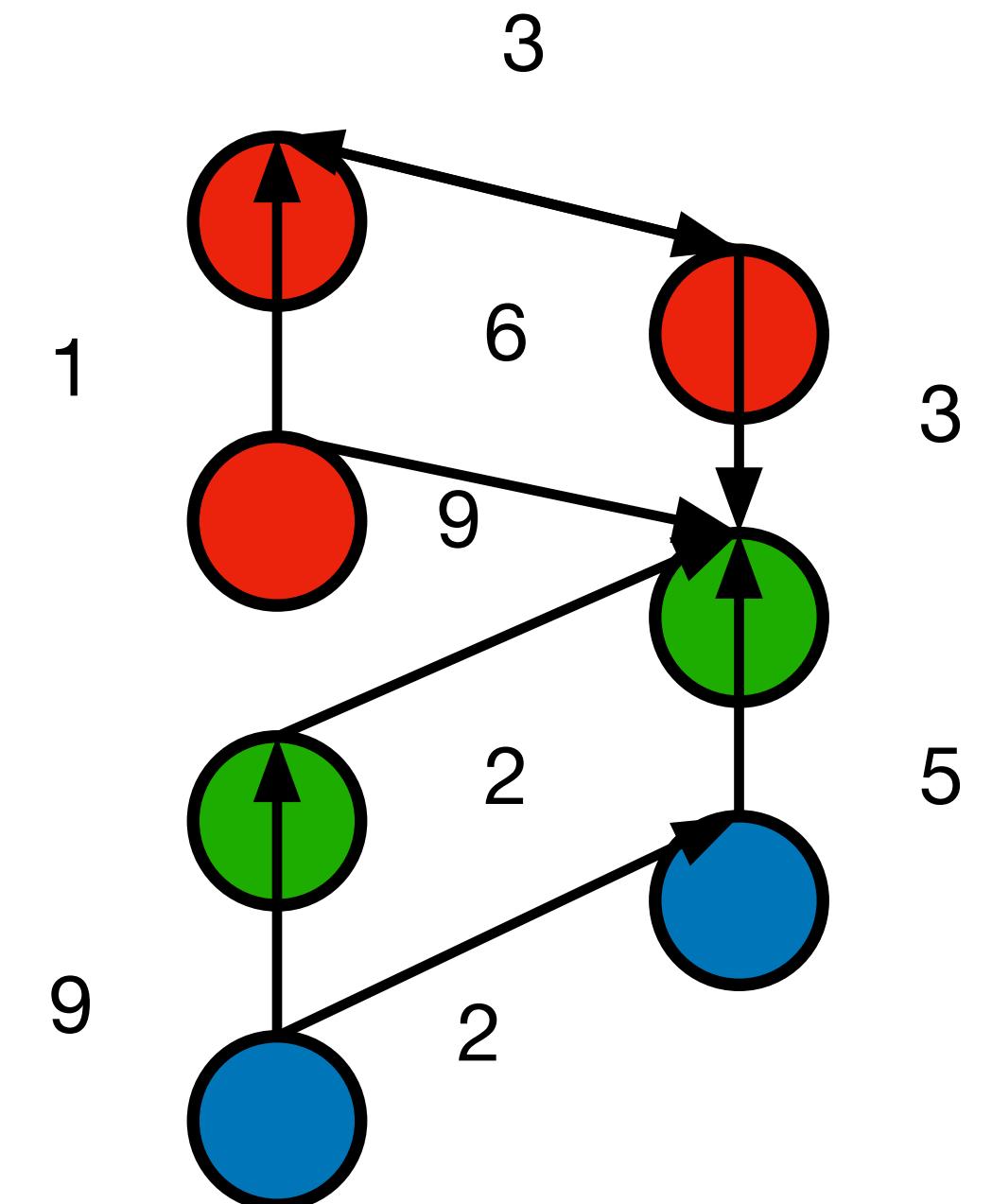
Unseeded version

- **Input:** weighted graph,
desired # of clusters



Unseeded version: setting

- **Input:** graph G ,
desired # of clusters k
- **Output:** a clustering (= partition = coloring) of G
- **Goal:** nodes of the same color should have
the same embedding



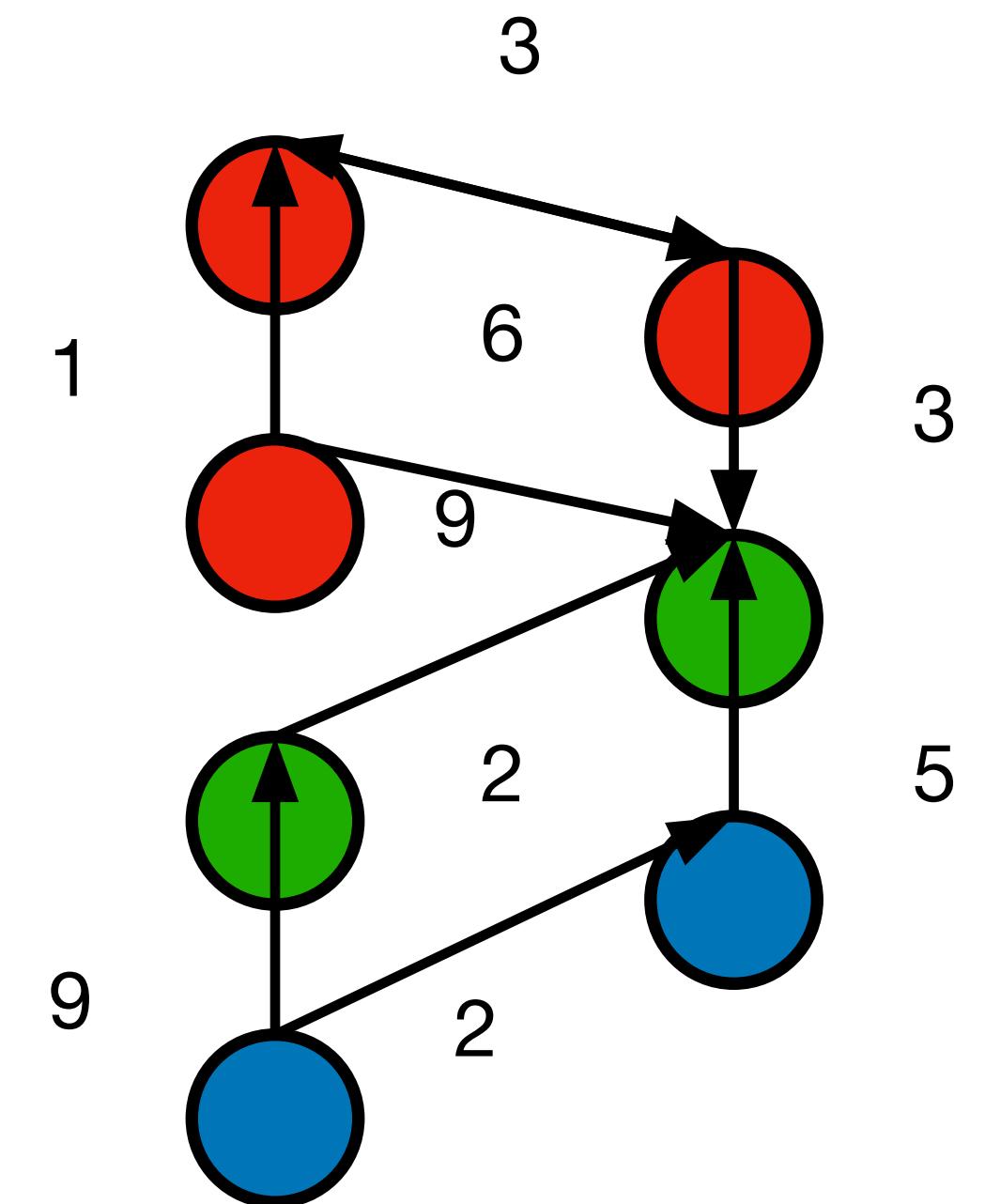
Exact Equitable partitioning

- Recall: embedding of v = degree counts between v and each of the clusters in C
- If nodes of the same color have **exactly** the same embedding
 - partition is called *equitable*
- Classic problem studied since the 70s (Schenk 1974).
- An iterative algorithm finds the coarsest equitable partition

Problem: exact equality requires too many clusters!

Approximate equitable partitioning

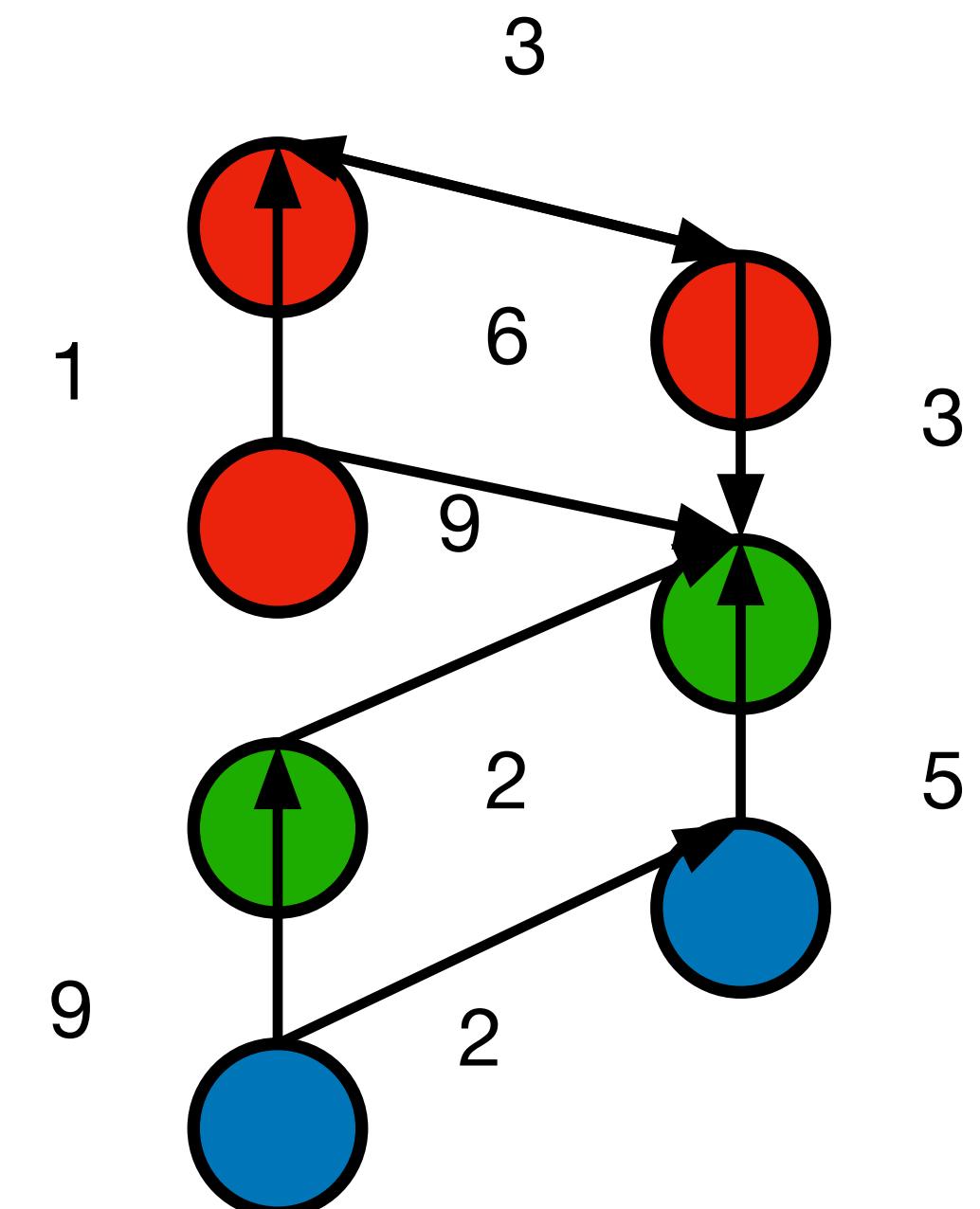
- **Input:** graph G ,
desired # of clusters k
- **Output:** a clustering (= partition = coloring) of G
- **Goal:** nodes of the same color should have
almost the same embedding



Approximate equitable partitioning

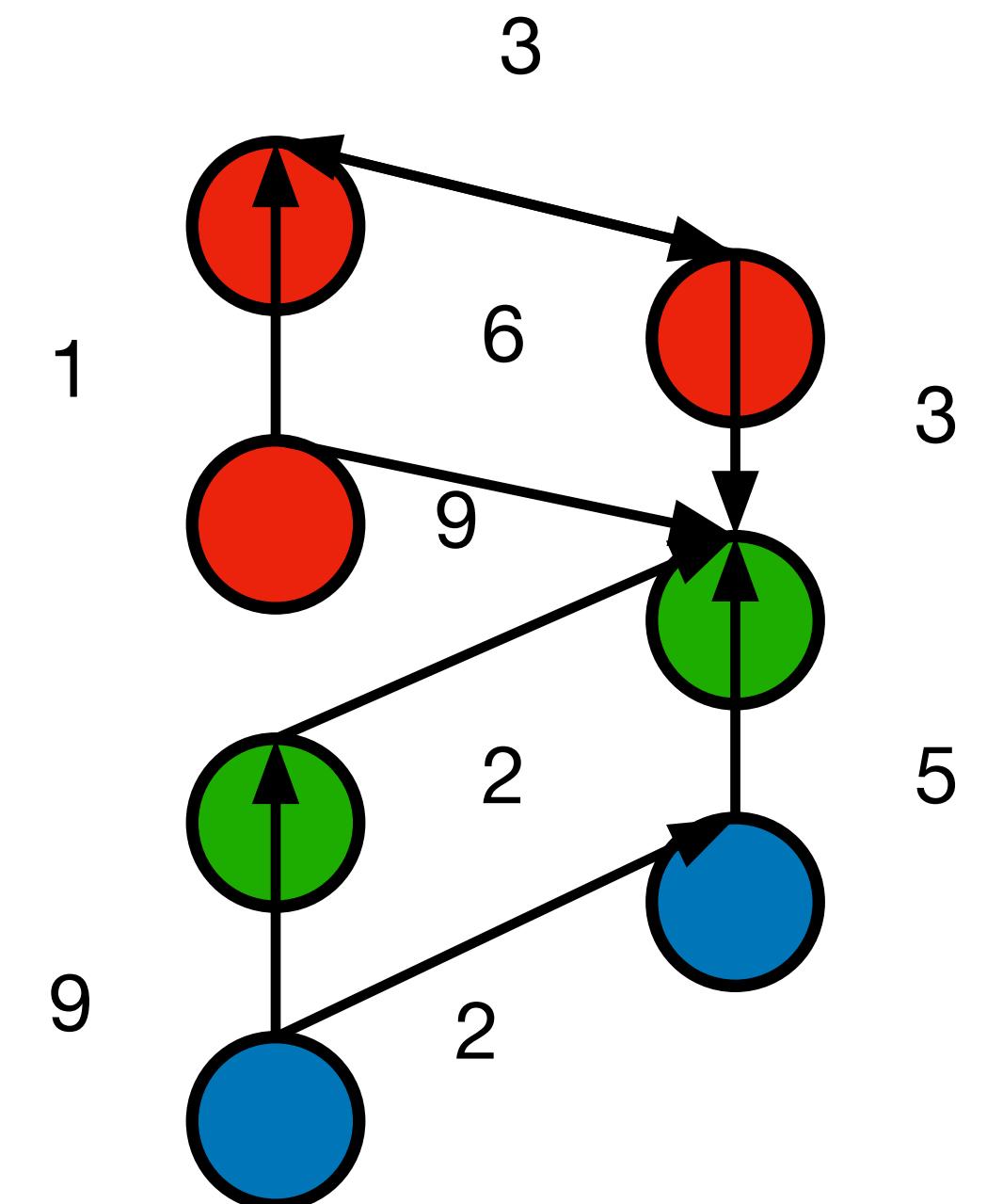
- **Input:** graph G ,
desired # of clusters k
- **Output:** a clustering (= partition = coloring) of G
- **Goal:** nodes of the same color should have
almost the same embedding

 Jaccard distance between the embedding of v and the median
embedding of v 's cluster

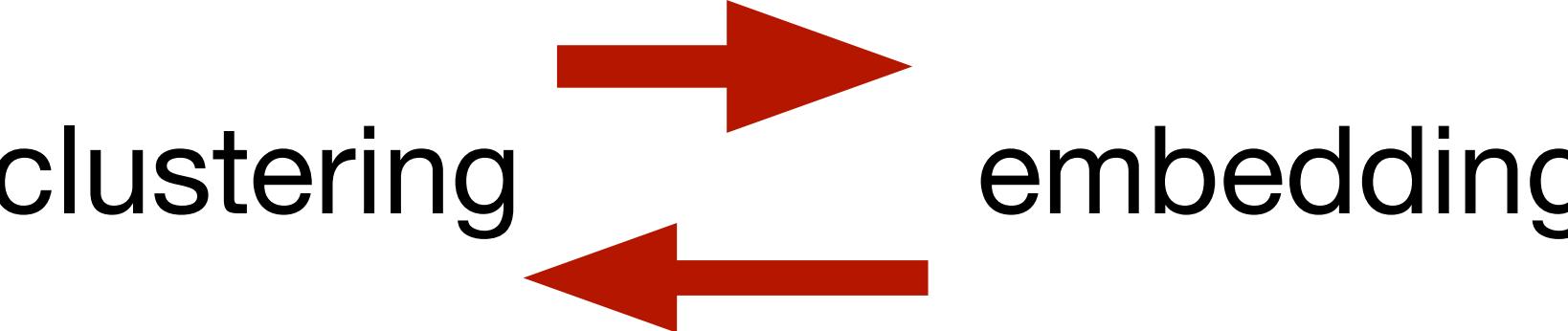


Approximate equitable partitioning

- **Input:** graph G ,
desired # of clusters k
- **Output:** a clustering (= partition = coloring) of G
- **Goal:** minimize the sum of Jaccard distances between
the embedding of each vertex and the median
embedding of its cluster



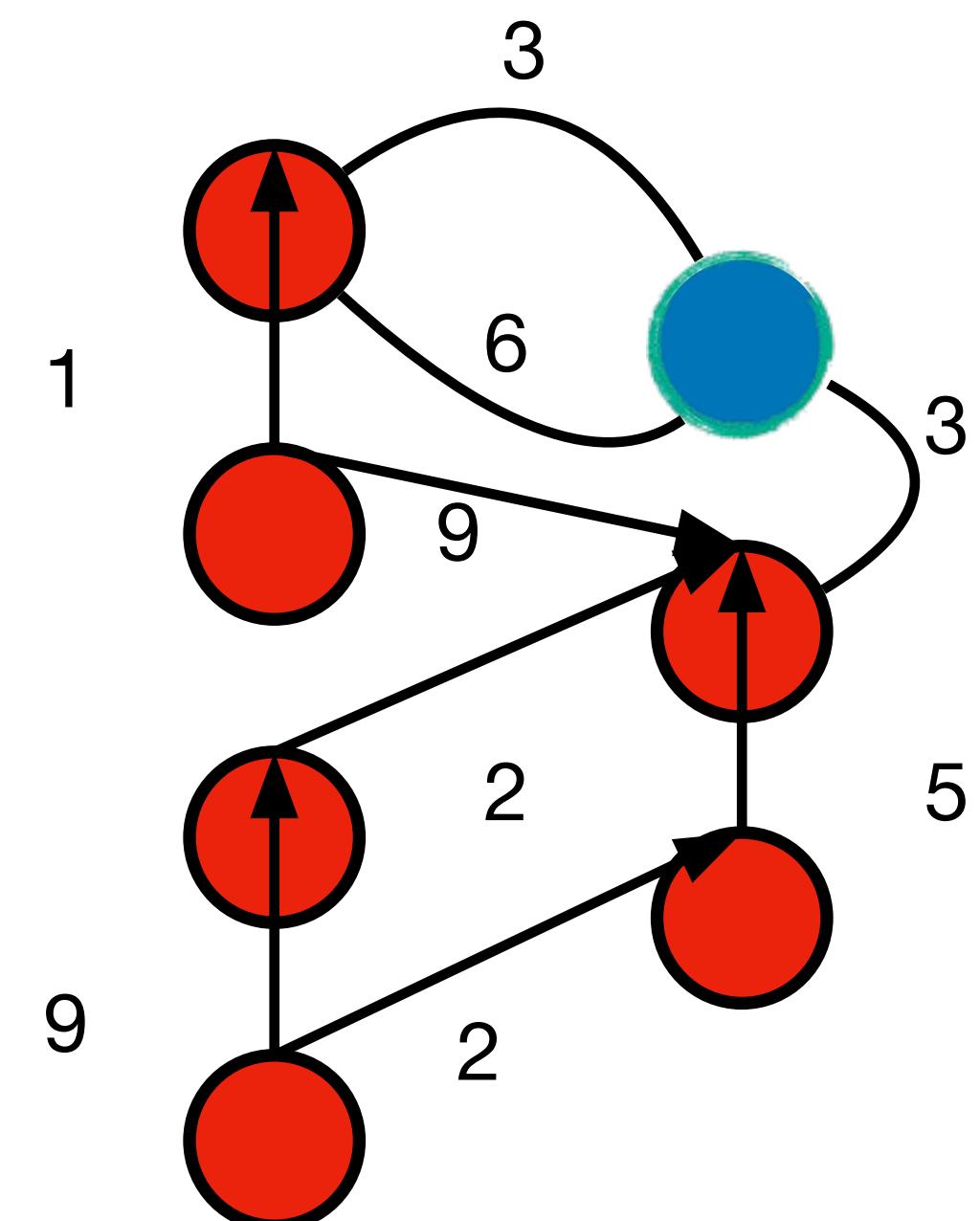
Algorithm: main idea

- Recall that the embedding of a vertex depends on the clustering C

- Circular dependency: classical clustering algorithms do not work.
- But if we could identify a good set of seeds, we could use the **seeded** algo!
- **Idea:** grow a set of seeds iteratively

Algorithm outline

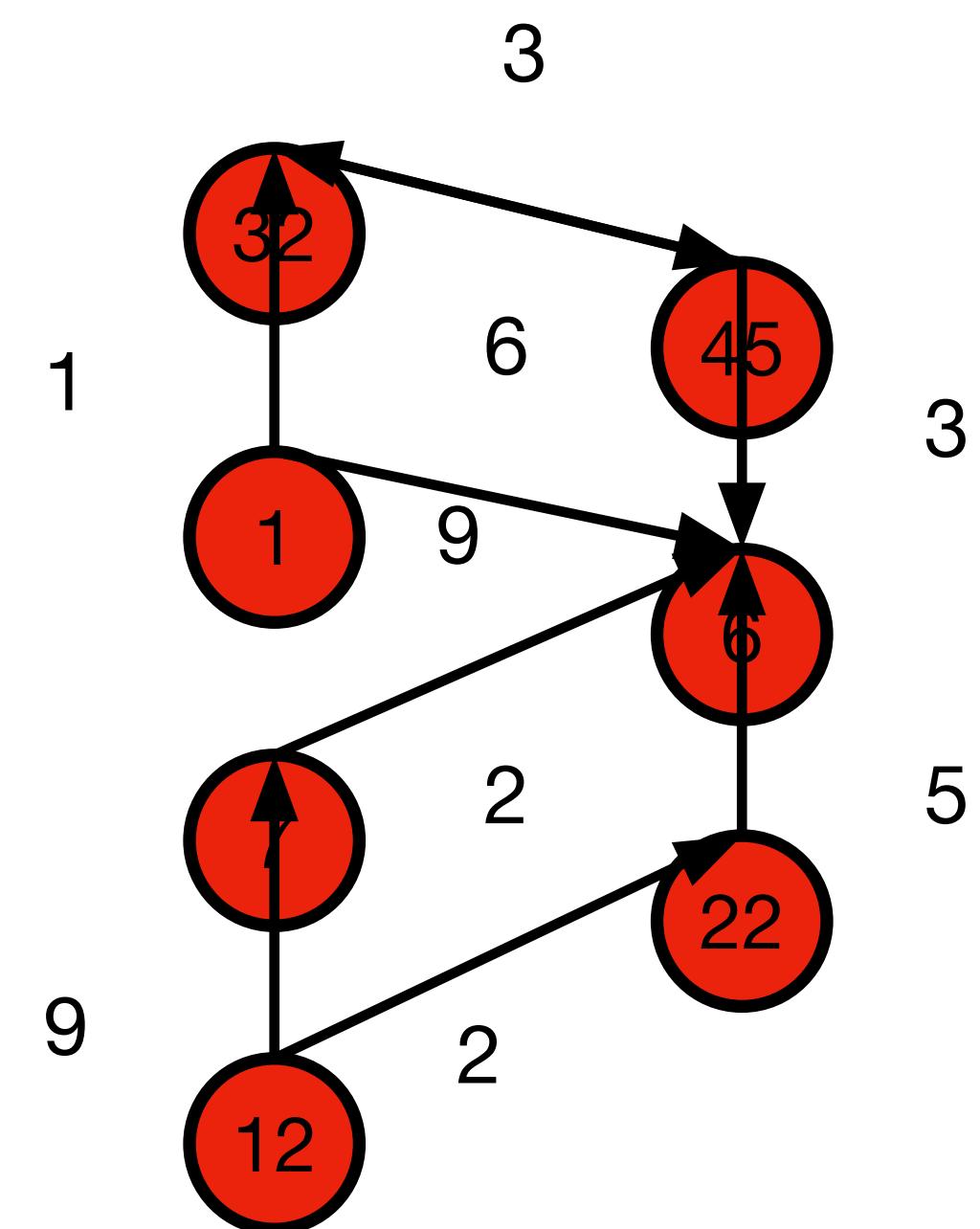
- Initially all nodes are in the same cluster
- For each number of clusters from 1 to k
 - Assign a score to every node

Score: How much the goal improves by making a new cluster with v and moving nodes that “prefer” to go with v , using current embedding



Algorithm outline

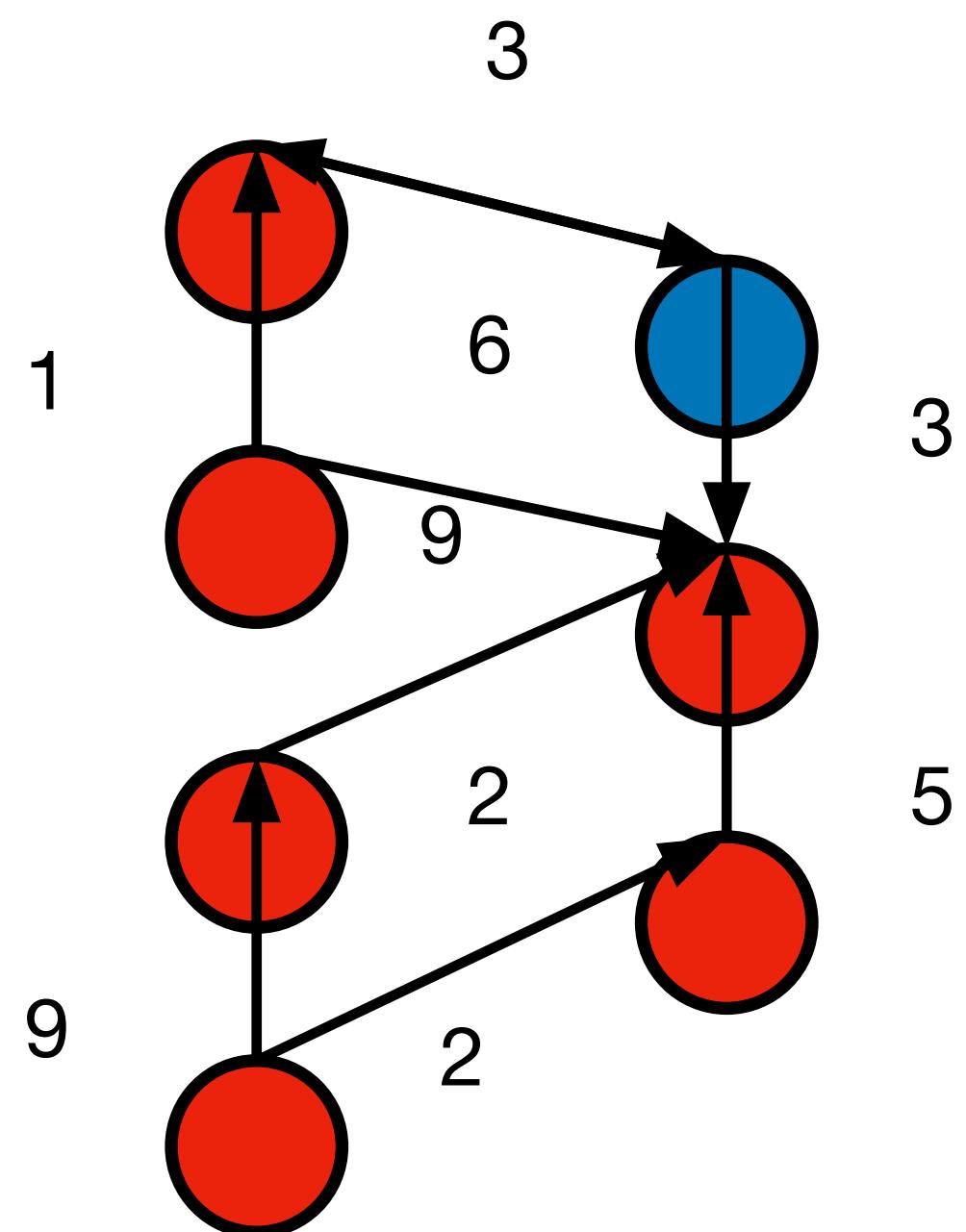
- Initially all nodes are in the same cluster
- For each number of clusters from 1 to k
 - Assign a score to every node



Scores may be negative

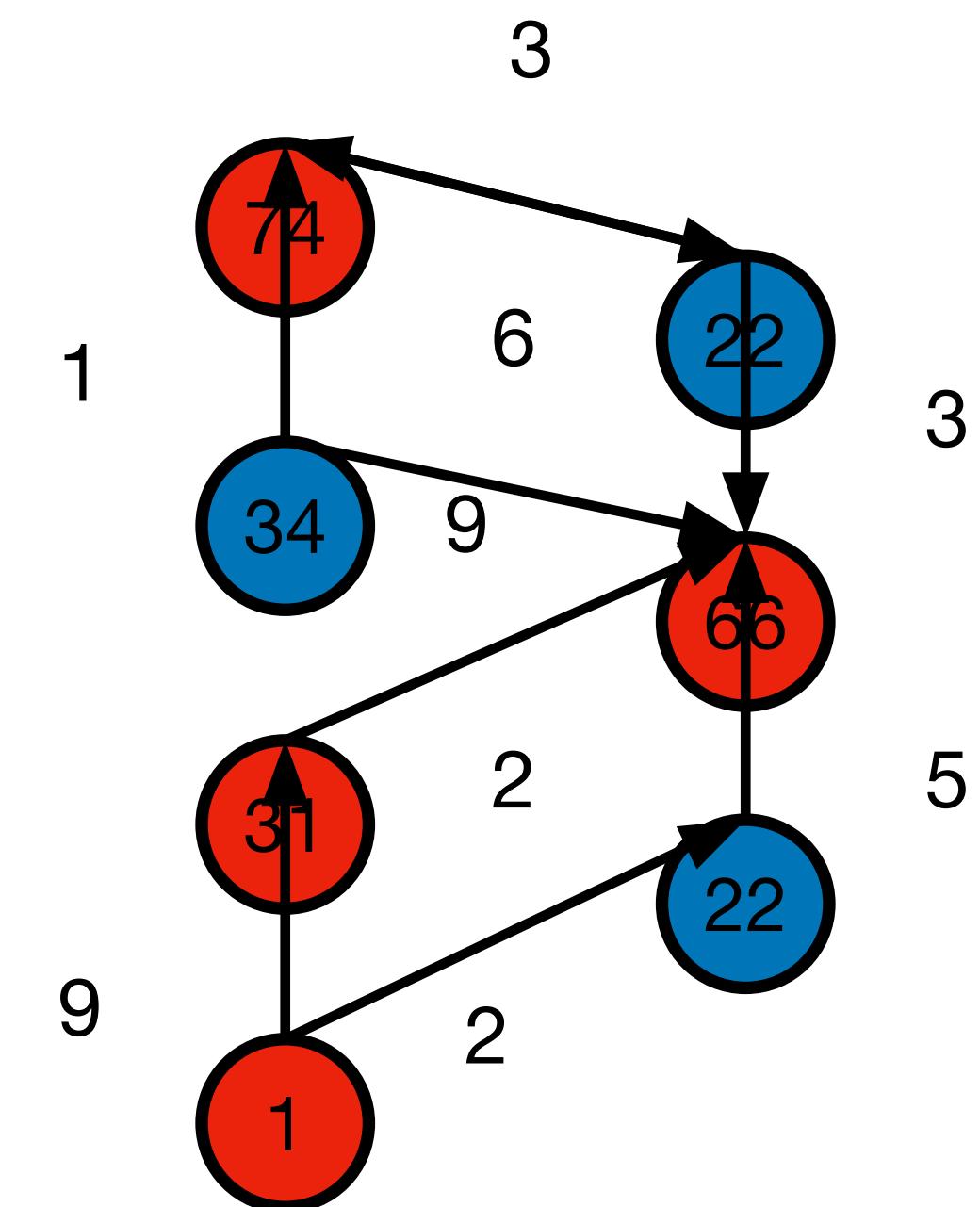
Algorithm outline

- Initially all nodes are in the same cluster
- For each number of clusters from 1 to k
 - Assign a score to every node
 - Pick the highest-score node as a new seed

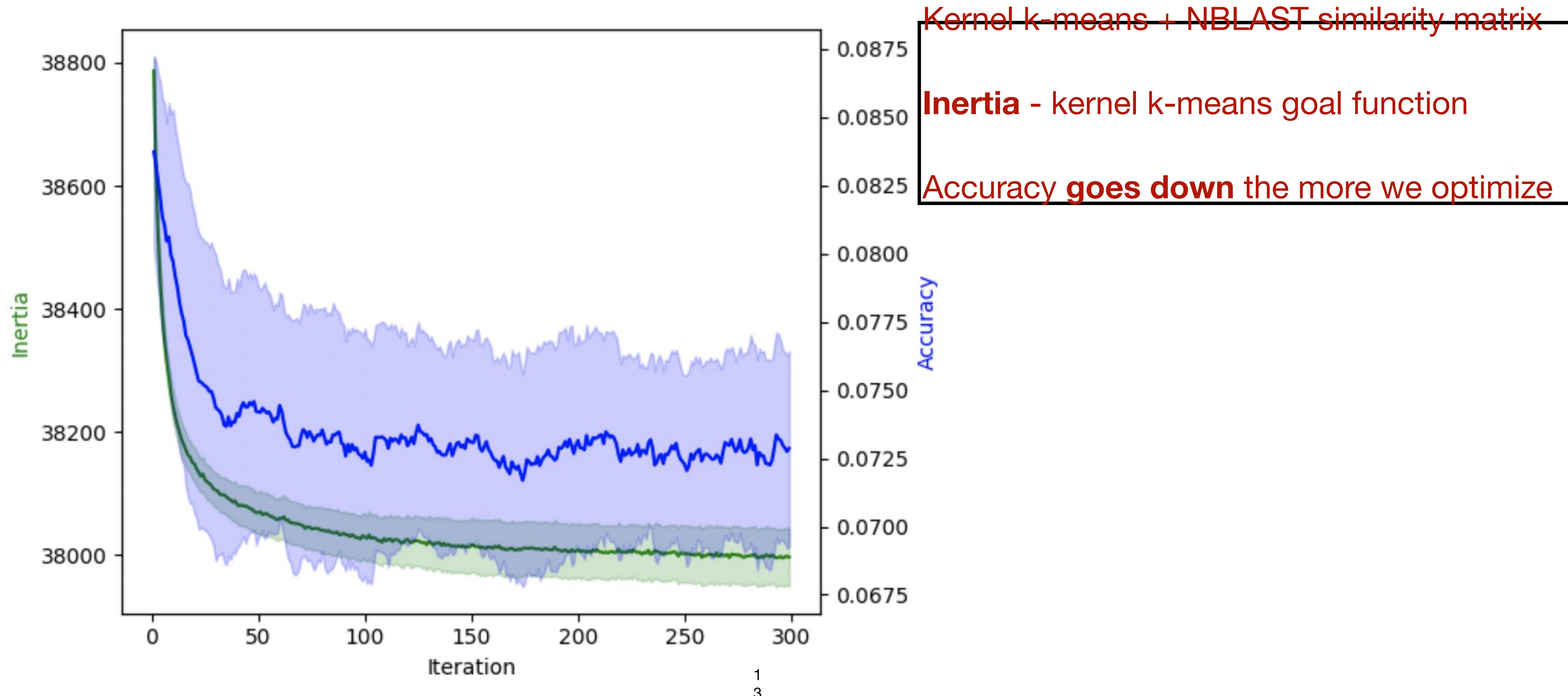


Algorithm outline (final)

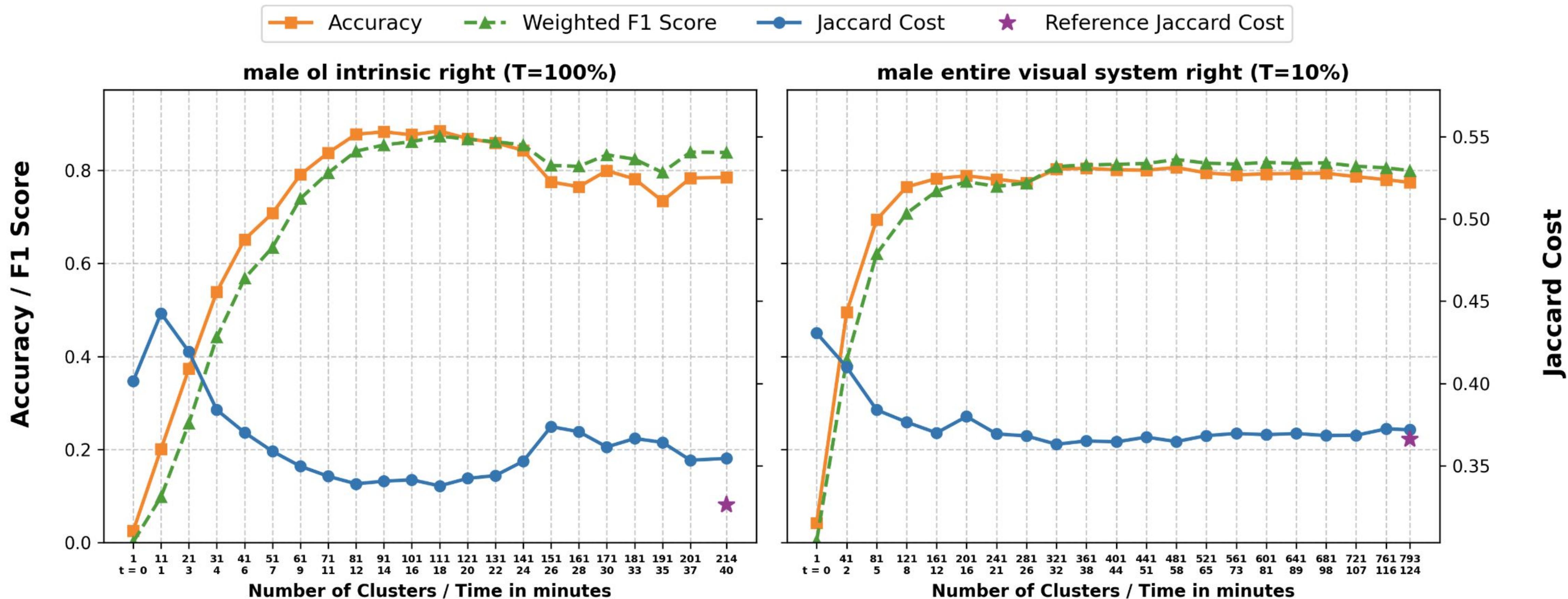
- Initially all nodes are in the same cluster
- For each number of clusters from 1 to k
 - Assign a score to every node
 - Pick the highest-score node as a new seed
 - Run seeded algorithm to find clustering C_k
 - Update seeds:
let them be the closest nodes to each cluster median



Unseeded baseline - experimental results



Unseeded NTAC - experimental results



T=10%: Only consider 10% of candidates per cluster (speed optimization)

Future work

- Unseeded algo:
 - Improve accuracy and/or speed
 - Is it possible to detect the best k automatically?
 - Study approximation guarantees / hardness results for approximate equitable partitioning
- Seeded algo: improve accuracy using ML
- Other applications for NTAC

<https://github.com/BenJourdan/ntac>