Network dynamics: advanced models

Marta Arias, Ramon Ferrer-i-Cancho, Argimiro Arratia

Universitat Politècnica de Catalunya

Complex and Social Networks (2022-2023)
Master in Innovation and Research in Informatics (MIRI)

Instructors

- Ramon Ferrer-i-Cancho, rferrericancho@cs.upc.edu, http://www.cs.upc.edu/~rferrericancho/
- Argimiro Arratia, argimiro@cs.upc.edu, http://www.cs.upc.edu/~argimiro/

Please go to http://www.cs.upc.edu/~csn for all course's material, schedule, lab work, etc.

Introduction

Liu et al's hybrid model

Bianconi-Barabási hybrid model

Dorogovtsev-Mendes model

More models

Advanced models

Modifications of the Barabasi-Albert model

- Liu et al's hybrid model.
- Bianconi-Barabási hybrid model.
- Dorogovtsev-Mendes model (accelerated growth).

Liu et al's hybrid model

- Motivation: modelling the mixture of power-law and exponential behavior of real degree distributions.
- A hybrid attachment rule: preferential + (degree-independent) random attachment.

$$
\pi\left(k_{i}\right)=\frac{(1-p) k_{i}+p}{\sum_{j}\left[(1-p) k_{j}+p\right]}
$$

- The model is reminiscent of the mean field approach adopted for $\partial k_{i} / \partial t$ in the copying model (previous session).
- $0 \leq p \leq 1$

Degree distribution for $p=0$ and for $p=1$?

The degree distribution of Liu et al's model I

$$
p(k) \sim\left(\frac{\frac{k}{m_{0}}+b}{1+b}\right)^{-\gamma}
$$

where
-

$$
\gamma=3+b
$$

$$
b=\frac{p}{m_{0}(1-p)}
$$

A mean-field proof as that of the Barabási-Albert model is not difficult [Liu et al., 2002].

The degree distribution of Liu et al's model II

Limit distributions

- If $p=0$ then $p(k) \sim k^{-3}$
- If $p \rightarrow 1$, exponential $p(k) \sim e^{-k / m}$. Easy proof: [Barabási et al., 1999]
- Impose $p=1$ which gives $\pi\left(k_{i}\right)=p$.
- Derive $p(k)$ from $\partial k_{i} / \partial_{t}=m_{0} \pi\left(k_{i}\right)=m_{0} p$ (mean-field non-rigorous proof).

The degree distribution of Liu et al's model III

$$
\gamma=3+b
$$

with

$$
b=\frac{p}{m_{0}(1-p)}
$$

- What is range of variation of γ ?
- Warning: the higher the value of γ the less valid the power-law
- A serious problem (recall that exponents are close to two in the majority of cases).

An example of a consistent degree distribution

Word thesaurus network［Motter et al．，2002］
－Thesaurus：list of entries．Entry：word＋list of related words．
－friend：Maecenas，acquaintance，adherent，advocate，ally，alter ego，amigo，angel，associate，baby，backer，beau，bedfellow，benefactor， best friend，bird，boon，companion，bosom，buddy，bosom friend， boyfriend，chum，co－worker，cocker，cohort，colleague，compatriot， compeer，comrade，concubine，confederate，confidant，confidante， confrere，consociate，crony，doxy，escort，familiar， fellow，financier，girl，intimate，investor，lover，man，mate，mistress，moll， pal，partner，patron，playmate，roomie，soul ，mate，squeeze，supporter， sweetheart，twist，woman，person，individual，someone，somebody，mortal， human，soul，protagonist，champion，admirer，booster，advocator， proponent，exponent，Friend，Quaker，Christian

Thesaurus network

- Two words are connected if one is in the entry of the other.
- Two regimes: 1st regime exponential and 2nd regime power-law with $\gamma \approx 3.5$.
- Was the Moby thesaurus built at random?

Bianconi and Barabási hybrid model

- Barabási-Albert model: growth + preferential attachment
- Bianconi-Barabási model: growth + preferential attachment + fitness [Bianconi and Barabási, 2001]
- Every vertex has a fitness. η_{i} is the fitness of the i-th vertex ("etha").
- Every vertex is assigned a random fitness when added to the network. The random fitness is obtained with a probability density function $\rho(\eta)$
- New attachment probability:

$$
\pi\left(k_{i}, \eta_{i}\right)=\frac{\eta_{i} k_{i}}{\sum_{1}^{n} \eta_{j} k_{j}}
$$

The degree distribution of the Bianconi-Barabási model

- The degree distribution of the model depends on $\rho(\eta)$.
- If $\rho(\eta)$ is uniform ($\rho(\eta)$ constant)

$$
p(k) \sim \frac{k^{-\left(1+C^{*}\right)}}{\log k}
$$

with $C^{*} \approx 1.255$.
The model reproduces degree correlations (disassortative mixing) of the Internet autonomus systems [Vázquez et al., 2002] (vertices are Autonomous systems, autonomous systems are partitions of Internet).

Dorogovtsev and Mendes model

Growth + preferential attachment + accelerated edge growth [Dorogovtsev and Mendes, 2001]
The evolution of an undirected network over time t.

1. $t=0$, a disconnected set of n_{0} vertices (no edges). Assume $n_{0}=1$ here.
2. At time $t>0$,
2.1 Add a new vertex with m_{0} edges. Assume $m_{0}=1$ here.

- The new vertex connects to the i-th vertex with probability

$$
\pi\left(k_{i}\right)=\frac{k_{i}}{\sum_{j} k_{j}}
$$

2.2 Add $c t$ new edges (c is a parameter of the model).

- The probability that the i-th and the j-th vertex are connected is proportional to $k_{i} k_{j}$.

Accelerated growth

Thus

$$
n=n_{0}+t
$$

(as for the Barabási-Albert model)

$$
m \approx m_{0} t+c \sum_{t^{\prime}=1}^{t} t^{\prime}
$$

Assuming $m_{0}=1$,

$$
m \approx t+c t(t+1) / 2=\left(\frac{c}{2}+1\right) t+\frac{c}{2} t^{2}
$$

(accelerated growth!)

Degree distribution

$$
\begin{gathered}
p(k) \sim\left\{\begin{array}{cc}
k^{-3} & \text { for } k \geq k^{*} \\
k^{-3 / 2} & \text { for } k \leq k^{*}
\end{array}\right. \\
k^{*} \approx \sqrt{c t}(2+c t)^{3 / 2}
\end{gathered}
$$

More ingredients for modelling

- Vertex growth \rightarrow edge growth (edges added without adding new vertices)
- Vertex growth \rightarrow ageing (vertex death)
- Edge removal
- ...

We have focused on the degree distribution: clustering, geodesic distances, degree correlations, ...are important aspects to determe the best model for a real network.

References I

Rarabási, A.-L., Albert, R., and Jeong, H. (1999). Mean-field theory for scale-free random networks. Physica A: Statistical Mechanics and its Applications, 272(1-2):173-187.

圊 Bianconi, G. and Barabási, A.-L. (2001).
Competition and multiscaling in evolving networks. EPL (Europhysics Letters), 54(4):436.

Dorogovtsev, S. N. and Mendes, J. F. F. (2001).
Language as an evolving word web.
Proceedings of the Royal Society of London B: Biological Sciences, 268(1485):2603-2606.

References II

國 Liu, Z., Lai, Y.-C., Ye, N., and Dasgupta, P. (2002). Connectivity distribution and attack tolerance of general networks with both preferential and random attachments. Physics Letters A, 303(5-6):337-344.
围 Motter, A. E., De Moura, A. P., Lai, Y.-C., and Dasgupta, P. (2002).

Topology of the conceptual network of language. Physical Review E, 65(6):065102.

References III

Vázquez, A., Pastor-Satorras, R., and Vespignani, A. (2002). Large-scale topological and dynamical properties of the internet.Physical Review E, 65(6):066130.

