Unsupervised learning
 Clustering and Dimensionality Reduction

Ramon Ferrer-i-Cancho rferrericancho@upc.edu
(Marta Arias)

Dept. CS, UPC
Fall 2021

Clustering

Partition input examples into similar subsets

Clustering

Partition input examples into similar subsets

Clustering

Main challenges

- How to measure similarity?
- How many clusters?
- How do we evaluate the clusters?

Algorithms we will cover

- K-means
- Hierarchical clustering

K-means clustering

Intuition

- Input data are:
- m examples $\mathrm{x}^{1}, . ., \mathrm{x}^{m}$, and
- K, the number of desired clusters
- Clusters represented by cluster centers $\mu_{1}, . ., \mu_{K}$
- Given centers $\mu_{1}, . ., \mu_{K}$, each center defines a cluster: the subset of inputs x^{i} that are closer to it than to other centers

K-means clustering

Intuition

The aim is to find

- cluster centers $\mu_{1}, . ., \mu_{K}$ and
- a cluster assignment $\mathrm{z}=\left(z^{1}, . ., z^{m}\right)$ where $z^{i} \in\{1, . ., K\}$
- z^{i} is the cluster assigned to example x^{i}
such that $\mu_{1}, . ., \mu_{K}, \mathrm{z}$ minimize the cost function

$$
J\left(\mu_{1}, . ., \mu_{K}, z\right)=\sum_{i}\left\|\mathrm{x}^{i}-\mu_{z^{i}}\right\|^{2}
$$

K-means clustering

Cost function

$$
J\left(\mu_{1}, . ., \mu_{K}, \mathrm{z}\right)=\sum_{i}\left\|\mathrm{x}^{i}-\mu_{z^{i}}\right\|^{2}
$$

Pseudocode

- Pick initial centers $\mu_{1}, . ., \mu_{K}$ at random
- Repeat until convergence
\rightarrow Optimize z in $J\left(\mu_{1}, . ., \mu_{K}, \mathrm{z}\right)$ keeping $\mu_{1}, . ., \mu_{K}$ fixed
- Set z^{i} to closest center: $z^{i}=\underset{k}{\arg \min }\left\|\mathrm{x}^{i}-\mu_{k}\right\|^{2}$
- Optimize $\mu_{1}, . ., \mu_{K}$ in $J\left(\mu_{1}, . ., \mu_{K}, z\right)$ keeping z fixed
- For each $k=1, . ., K$, set $\mu_{k}=\frac{1}{\left|\left\{i \mid z^{i}=k\right\}\right|} \sum_{i: z^{i}=k} \mathbf{x}^{i}$

K-Means illustrated

Limitations of k -Means

K-Means works well if..

- Clusters are spherical
- Clusters are well separated
- Clusters are of similar volumes
- Clusters have similar number of points
.. so improve it with more general model
- Mixture of Gaussians:
- Learn it using Expectation Maximization

Hierarchical clustering

Output is a dendogram

Agglomerative hierarchical clustering

Bottom-up

Pseudocode

1. Start with one cluster per example
2. Repeat until all examples in one cluster

- merge two closest clusters
(Next example from D. Blei's course at Princeton)

Example

Data

Example

D. Blei

Clustering 02
占

Example

iteration 009

D. Blei

Clustering 02
点

Example

D. Blei

Clustering 02
占

Example

D. Blei

Example

D. Blei

Example

iteration 013

D. Blei

Clustering 02
点

Example

iteration 014

D. Blei

Example

iteration 015

D. Blei

Example

iteration 016

D. Blei

Example

iteration 017

D. Blei

Example

iteration 018

D. Blei

Example

iteration 019

D. Blei

Example

iteration 020

D. Blei

Clustering 02
占
三 $5 / 21$

Example

iteration 021

D. Blei

Clustering 02
占
$\equiv 5 / 21$

Example

iteration 022

D. Blei

Example

D. Blei

Clustering 02

Example

iteration 024

D. Blei

Clustering 02
\equiv

Agglomerative hierarchical clustering

Bottom-up

Pseudocode

1. Start with one cluster per example
2. Repeat until all examples in one cluster

- merge two closest clusters

Defining distance between clusters (i.e. sets of points)

- Single Linkage: $d(X, Y)=\min _{x \in X, y \in Y} d(x, y)$
- Complete Linkage: $d(X, Y)=\max _{x \in X, y \in Y} d(x, y)$
- Group Average: $d(X, Y)=\frac{\sum_{x \in X, y \in Y} d(x, y)}{|X| \times|Y|}$
- Centroid Distance: $d(X, Y)=d\left(\frac{1}{|X|} \sum_{x \in X} x, \frac{1}{|Y|} \sum_{y \in Y} y\right)$

Many, many, many other algorithms available ..

Clustering with scikit-learn I

K-means: an example with the Iris dataset

```
In [33]: smatplotlib inline
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.cluster import KMeans
    from sklearn.datasets import make_blobs, load_iris
    iris = load_iris()
    kmeans = KMeans(n_clusters = 3)
    kmeans.fit(iris.data)
    kmeans.cluster_centers_
Out[33]: array([[5.006 , 3.428, , 1.462,0.246 ],
    [5.9016129,2.7483871, 4.39354839, 1.43387097],
    [6.85 , 3.07368421,5.74210526, 2.07105263]])
```

In [34]: kmeans.labels_
Out [34]: $\operatorname{array}([0,0$,
$0,0$,
$0,0,0,0,0,0,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1$,
$1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1$,
$1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,2,2,2,1,2,2,2$,
$2,2,2,1,1,2,2,2,2,1,2,1,2,1,2,2,1,1,2,2,2,2$,
$2,1,2,2,2,2,1,2,2,2,1,2,2,2,1,2,2,1$, dtype=int 32)

In [35]: import pandas as pd pd.crosstab(iris.target, kmeans.labels_)

Out[35]:

col_0	0	1	2
row_0			
$\mathbf{0}$	50	0	0
$\mathbf{1}$	0	48	2
2	0	14	36

Clustering with scikit-learn II

K-means: an example with the Iris dataset

Clustering with scikit-learn I

Hierarchical clustering: an example with the Iris dataset

```
from sklearn.cluster import AgglomerativeClustering
clustering1 = AgglomerativeClustering(linkage='single', n_clusters=3)
clustering1.fit(iris.data)
clustering2 = AgglomerativeClustering(linkage='complete', n_clusters=3)
clustering2.fit(iris.data)
```


Dimensionality reduction I

The curse of dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points (critical for many tasks!) become less meaningful
- Visualization and qualitative analysis becomes impossible

Dimensionality reduction II

The curse of dimensionality

And so dimensionality reduction methods..

- avoid or at least mitigate the curse of dimensionality
- reduce time and memory required
- allow data to be more easily visualized
- may help eliminate irrelevant features
- may reduce noise

Principal Components Analysis

Find linear projections of original coordinates that maximize variance

Low Variance Projection

Maxima Vavance Frojection

t-SNE: t-distributed stochastic neighbor embedding

A non-linear distance-preserving method

${ }^{1}$ From https://lvdmaaten.github.io/tsne/

Dimensionality reduction with scikit-learn

```
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sklearn.preprocessing import StandardScaler
X_normalized = StandardScaler().fit_transform(iris.data)
x_pca = PCA(n_components=2).fit_transform(X_normalized)
X_tsne = TSNE(n_components=2, perplexity=10).fit_transform(X_normalized)
print(X_pca.shape, X_tsne.shape)
```

$(150,2)(150,2)$

So, we are done for this course

Lots of important things we have left out!

- Online and incremental learning; data mining for streams
- Important models: Support Vector Machines, Neural Nets (and Deep learning)
- Kernel methods and learning from structured objects
- Ensemble methods: random forests, boosting, bagging, etc.
- Spatial and temporal learning
- Feature selection methods
- many many more...

Para finalizar

Reading assignment
Article by Pedro Domingos: "A few useful things to know about machine learning"

Examen: ver https://www.cs.upc.edu/~csi/ y aviso correspondiente en Racó.
Será "tipo test". Consistirá en preguntas rápidas de tipo conceptual. No es necesaria calculadora. Sin apuntes. Si se necesita alguna fórmula ya se pondrá en el enunciado.

