

# Unsupervised learning

## Clustering and Dimensionality Reduction

Ramon Ferrer-i-Cancho  
rferrericancho@upc.edu  
(Marta Arias)

Dept. CS, UPC

Fall 2024

# Clustering

Partition input examples into *similar* subsets



# Clustering

Partition input examples into *similar* subsets



# Clustering

## Main challenges

- ▶ How to measure similarity?
- ▶ How many clusters?
- ▶ How do we evaluate the clusters?

## Algorithms we will cover

- ▶ K-means
- ▶ Hierarchical clustering

# K-means clustering

## Intuition

- ▶ Input data are:
  - ▶  $m$  examples  $\mathbf{x}^1, \dots, \mathbf{x}^m$ , and
  - ▶  $K$ , the number of desired clusters
- ▶ Clusters represented by cluster centers  $\mu_1, \dots, \mu_K$
- ▶ Given centers  $\mu_1, \dots, \mu_K$ , each center defines a cluster: the subset of inputs  $\mathbf{x}^i$  that are closer to it than to other centers



# K-means clustering

## Intuition

The aim is to find

- ▶ cluster **centers**  $\mu_1, \dots, \mu_K$  and
- ▶ a cluster **assignment**  $\mathbf{z} = (z^1, \dots, z^m)$  where  $z^i \in \{1, \dots, K\}$ 
  - ▶  $z^i$  is the cluster assigned to example  $\mathbf{x}^i$

such that  $\mu_1, \dots, \mu_K, \mathbf{z}$  minimize the cost function

$$J(\mu_1, \dots, \mu_K, \mathbf{z}) = \sum_i \|\mathbf{x}^i - \mu_{z^i}\|^2.$$

# K-means clustering

## Cost function

$$J(\mu_1, \dots, \mu_K, z) = \sum_i \|x^i - \mu_{z^i}\|^2$$

## Pseudocode

- ▶ Pick initial centers  $\mu_1, \dots, \mu_K$  at random
- ▶ Repeat until convergence
  - ▶ Optimize  $z$  in  $J(\mu_1, \dots, \mu_K, z)$  keeping  $\mu_1, \dots, \mu_K$  fixed
    - ▶ Set  $z^i$  to closest center:  $z^i = \arg \min_k \|x^i - \mu_k\|^2$
  - ▶ Optimize  $\mu_1, \dots, \mu_K$  in  $J(\mu_1, \dots, \mu_K, z)$  keeping  $z$  fixed
    - ▶ For each  $k = 1, \dots, K$ , set  $\mu_k = \frac{1}{|\{i|z^i = k\}|} \sum_{i:z^i=k} x^i$

# K-Means illustrated



# Limitations of k-Means

K-Means works well if..

- ▶ Clusters are spherical
- ▶ Clusters are well separated
- ▶ Clusters are of similar volumes
- ▶ Clusters have similar number of points

.. so improve it with more general model

- ▶ Mixture of Gaussians:
- ▶ Learn it using *Expectation Maximization*

## Hierarchical clustering

Output is a *dendrogram*



# Agglomerative hierarchical clustering

Bottom-up

## Pseudocode

1. Start with one cluster per example
2. Repeat until all examples in one cluster
  - ▶ merge two closest clusters

(Next example from D. Blei's course at Princeton)

# Example



# Example



# Example

iteration 002



# Example



# Example

iteration 004



# Example



# Example



# Example

iteration 007



# Example



# Example



# Example



# Example

iteration 011



# Example

iteration 012



# Example

iteration 013



# Example

iteration 014



# Example

iteration 015



# Example

iteration 016



# Example

iteration 017



## Example

## iteration 018



# Example

iteration 019



# Example

iteration 020



# Example



# Example

iteration 022



# Example



# Example



# Agglomerative hierarchical clustering

Bottom-up

## Pseudocode

1. Start with one cluster per example
2. Repeat until all examples in one cluster
  - ▶ merge two closest clusters

Defining distance between clusters (i.e. *sets* of points)

- ▶ Single Linkage:  $d(X, Y) = \min_{x \in X, y \in Y} d(x, y)$
- ▶ Complete Linkage:  $d(X, Y) = \max_{x \in X, y \in Y} d(x, y)$
- ▶ Group Average:  $d(X, Y) = \frac{\sum_{x \in X, y \in Y} d(x, y)}{|X| \times |Y|}$
- ▶ Centroid Distance:  $d(X, Y) = d\left(\frac{1}{|X|} \sum_{x \in X} x, \frac{1}{|Y|} \sum_{y \in Y} y\right)$

# Many, many, many other algorithms available ..



## Clustering with *scikit-learn* I

## K-means: an example with the Iris dataset

# Clustering with scikit-learn II

K-means: an example with the Iris dataset



# Clustering with scikit-learn I

## Hierarchical clustering: an example with the Iris dataset

```
from sklearn.cluster import AgglomerativeClustering
clustering1 = AgglomerativeClustering(linkage='single', n_clusters=3)
clustering1.fit(iris.data)
clustering2 = AgglomerativeClustering(linkage='complete', n_clusters=3)
clustering2.fit(iris.data)
```



# Dimensionality reduction I

## The curse of dimensionality

- ▶ When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- ▶ Definitions of density and distance between points (critical for many tasks!) become less meaningful
- ▶ Visualization and qualitative analysis becomes impossible

# Dimensionality reduction II

## The curse of dimensionality

And so dimensionality reduction methods..

- ▶ avoid or at least mitigate the curse of dimensionality
- ▶ reduce time and memory required
- ▶ allow data to be more easily visualized
- ▶ may help eliminate irrelevant features
- ▶ may reduce noise

# Principal Components Analysis

Find linear projections of original coordinates that maximize variance



Low Variance Projection



Maxima Variance Projection



## t-SNE: t-distributed stochastic neighbor embedding

## A non-linear distance-preserving method



<sup>1</sup>From <https://lvdmaaten.github.io/tsne/>

# Dimensionality reduction with scikit-learn

```
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sklearn.preprocessing import StandardScaler

X_normalized = StandardScaler().fit_transform(iris.data)
X_pca = PCA(n_components=2).fit_transform(X_normalized)
X_tsne = TSNE(n_components=2, perplexity=10).fit_transform(X_normalized)

print(X_pca.shape, X_tsne.shape)
```

(150, 2) (150, 2)

Original data projected onto sepal length and width



2D embedding by PCA



2D embedding by t-SNE



# So, we are done for this course

Lots of important things we have left out!

- ▶ Online and incremental learning; data mining for streams
- ▶ Important models: Support Vector Machines, Neural Nets (and Deep learning)
- ▶ Kernel methods and learning from structured objects
- ▶ Ensemble methods: random forests, boosting, bagging, etc.
- ▶ Spatial and temporal learning
- ▶ Feature selection methods
- ▶ many many more...

## To finish

Reading assignments: check

<https://www.cs.upc.edu/~csi/>

Exam: check <https://www.cs.upc.edu/~csi/> and  
corresponding notice at Racó.