
Evaluation metrics and model selection

Marta Arias

Dept. CS, UPC

Fall 2018



Quantifying the performance of a binary classifier, I

x1 ... xn True class Predicted class
— ... — 0 0 correct true negative
— ... — 0 1 mistake false positive
— ... — 1 0 mistake false negative
— ... — 1 1 correct true positive

Confusion matrix

Predicted class
positive negative

True class
positive tp fn
negative fp tn

I tp: true positives
I tn : true negatives

I fp: false positives (false alarms)
I fn : false negatives



Confusion matrix
From the scikit-learn documentation



Quantifying the performance of a binary classifier, II

Confusion matrix

Predicted class
positive negative

True class
positive tp fn
negative fp tn

Accuracy, hit ratio

acc =
tp + tn

tp + tn + fp + fn

Error rate

err =
fp + fn

tp + tn + fp + fn



Alternative measures
Sometimes accuracy is insufficient

I Ability to detect positive examples:

Sensitivity (recall in IR): ratio of true positives to all
positively labeled cases;

recall =
tp

tp + fn

I Precision: ratio of true positives to all positively predicted
cases;

prec =
tp

tp + fp
I Specificity: ratio of true negatives to all negatively labeled

cases.
spec =

tn
tn + fn



Why precision/recall is important sometimes
The unbalanced data case

If we have a vast majority of one (uninteresting) class, and a
few rare cases we are interested in

I Fraud detection
I Diagnosis of a rare disease

Example
99.9% of examples are negative, 0.1% of examples are positive (e.g.
fraudulent credit card purchases). Easy to get very good accuracy
with “always predict negative” simple classifier.

What is precision and recall in this case?

Precision: from all purchases tagged as fraudulent, how many
were in fact fraudulent?

Recall: from all fraudulent purchases, how many were detected?



The main objective

Learning a good classifier
A good classifier is one that has good generalization ability,
i.e. is able to predict the label of unseen examples correctly



How to Test a Predictor, I
On the original data?

Training error

Far too optimistic!



How to Test a Predictor, II
On holdout data?

Test error
after training on a different subset.



How to Test a Predictor, III
Advantages and disadvantages

Training error

I Employs data to the maximum.
I However, it cannot detect overfitting:

I A predictor overfits when it adjusts very closely to
peculiarities of the specific instances used for training.

I Overfitting may hinder predictions on unseen instances.

Holdout data

I Requires us to balance scarce instances into two tasks:
training and test.

I Usual: train with 2/3 of the instances — but, which ones?
I It does not sound fully right that some available data

instances are never seen for training.
I It sounds even worse that some are never used for testing.



Code for train-test split
From the scikit-learn documentation



Overfitting vs. underfitting, I



Overfitting vs. underfitting, II



Splitting data into training and test sets

Usually, the split is done using 70% for training and 30% for
testing, although this depends on many things e.g.: how much
data we have, or how much data the learning algorithm needs
(simpler hypotheses need less data than more complex ones).

The split should be done randomly.

For unbalanced datasets, stratified sampling is highly advisable
I Stratified sampling ensures that the proportion of positive

to negative examples is kept the same in the train and test
sets.



Estimating generalization ability
k -fold cross validation

We split the input data into k folds. Typical value for k is 10.

At each iteration, the blue folds are used for training, and red
folds are used as validation

Each iteration produces a performance estimate, final estimate
is computed as the average of iteration estimates.



Cross-validation vs. random split

Pros of cross-validation

I Estimates are more robust
I Better use of all available data

Cons of cross-validation

I Need to train multiple times



Cross-validation in scikit-learn



On model selection
E.g. how to optimize k for nearest-neighbors

Suppose we want to optimize k to build a good
nearest-neighbor classifier. We do the following:
Compute the cross-validation error for each possible k , and
select k that minimizes it.

Question: Is the cross-validation error of the best possible k a
good estimate of the generalization ability of the chosen
classifier?
Answer: No! Think why ...



On model selection
E.g. how to optimize k for nearest-neighbors

The “right way” of measuring generalization ability would be to
get new data and test the chosen k -NN on that new data.

Alternatively:
1. Split data into train and test datasets
2. Use cross-validation to optimize k but using the training
data only
3. Use the test data to estimate generalization ability of chosen
k -NN


