Computació i Sistemes Intel·ligents Part III: Machine Learning

Ramon Ferrer-i-Cancho rferrericancho@upc.edu (Marta Arias)

Dept. CS, UPC

Fall 2023

ション ふゆ マ キャット マックシン

Website

Please go to http://www.cs.upc.edu/~csi for all course's material, schedule, lab work, etc.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Announcements through https://raco.fib.upc.edu

Class logistics

- ▶ Theory slots on Tuesdays.
- Laboratory slots on Thursdays.
- ▶ 1 exam (multiple choice exam): Monday Dec. 19th, in class

ション ふゆ マ キャット マックシン

▶ 1 project (due after Christmas break, date TBD)

Check http://www.cs.upc.edu/~csi for details about the schedule.

Lab

Environment for practical work

We will use python3 and jupyter and the following libraries:

▶ pandas, numpy, scipy, scikit-learn, seaborn, matplotlib

During the first session we will cover how to install these in case you use your laptop. Libraries are already installed in the schools' computers.

ション ふゆ マ キャット マックシン

... so, let's get started!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

What is Machine Learning?

An example: digit recognition

Input: image e.g. 4 Output: corresponding class label [0..9]

うして ふゆう ふほう ふほう ふしつ

Very hard to program yourself

Easy to assing *labels*

What is Machine Learning?

An example: flower classification (the famous "iris" dataset)

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
7.0	3.2	4.7	1.4	versicolor
6.1	2.8	4.0	1.3	versicolor
6.3	3.3	6.0	2.5	virginica
7.2	3.0	5.8	1.6	virginica
5.7	2.8	4.1	1.3	?

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

What is Machine Learning?

An example: predicting housing prices (regression)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Is Machine Learning useful?

Applications of ML

- Web search
- Computational biology
- Finance
- E-commerce (recommender systems)
- Robotics
- Autonomous driving
- Fraud detection

- Information extraction
- Social networks
- Debugging
- Face recognition
- Credit risk assessment
- Medical diagnosis

... etc

●●● 画 →画▼ →画▼ → ■ ●●●

About this course

A gentle introduction to the world of ML

This course will teach you:

- Basic into concepts and intuitions on ML
- To apply off-the-shelf ML methods to solve different kinds of prediction problems
- ▶ How to use various python tools and libraries

This course will *not*:

- Cover the underlying theory of the methods used
- Cover many existing algorithms, in particular will not cover neural networks or deep learning

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Types of Machine Learning

- Supervised learning:
 - regression, classification
- Unsupervised learning:
 - clustering, dimensionality reduction, association rule mining, outlier detection

ション ふゆ マ キャット マックシン

- Reinforcement learning:
 - learning to act in an environment

Supervised learning in a nutshell

Typical "batch" supervised machine learning problem..

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Prediction rule = model

Try it! Examples are animals

- positive training examples: bat, leopard, zebra, mouse
- negative training examples: ant, dolphin, sea lion, shark, chicken

Come up with a classification rule, and predict the "class" of: tiger, tuna.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Unsupervised learning

Clustering, association rule mining, dimensionality reduction, outlier detection

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

ML in practice

Actually, there is much more to it ..

- Understand the domain, prior knowledge, goals
- Data gathering, integration, selection, cleaning, pre-processing
- Create models from data (machine learning)
- Interpret results
- Consolidate and deploy discovered knowledge

ション ふゆ マ キャット マックシン

... start again!

ML in practice

Actually, there is much more to it ..

- Understand the domain, prior knowledge, goals
- Data gathering, integration, selection, cleaning, pre-processing
- Create models from data (machine learning)
- Interpret results
- Consolidate and deploy discovered knowledge

ション ふゆ マ キャット マックシン

... start again!

Representing objects

Features or attributes, and target values

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	7.0	3.2	4.7	1.4	versicolor
4	6.1	2.8	4.0	1.3	versicolor
5	6.3	3.3	6.0	2.5	virginica
6	7.2	3.0	5.8	1.6	virginica

Typical representation for supervised machine learning:

 Features or attributes: sepal length, sepal width, petal length, petal width

▶ Target value (class): species

Main objective in classification: predict class from features values

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Some basic terminology

The following are terms that should be clear:

- dataset
- features
- target values (for classification)
- example, labelled example (a.k.a. sample, datapoint, etc.)

ション ふゆ マ キャット マックシン

class

- model (hypothesis)
- learning, training, fitting
- classifier
- prediction

Today we will cover decision trees and the nearest neighbors algorithm

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Decision Tree: Hypothesis Space

A function for classification

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	7.0	3.2	4.7	1.4	versicolor
4	6.1	2.8	4.0	1.3	versicolor
5	6.3	3.3	6.0	2.5	virginica
6	7.2	3.0	5.8	1.6	virginica
7	5.7	2.8	4.1	1.3	?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Decision Tree: Hypothesis Space

A function for classification

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	7.0	3.2	4.7	1.4	versicolor
4	6.1	2.8	4.0	1.3	versicolor
5	6.3	3.3	6.0	2.5	virginica
6	7.2	3.0	5.8	1.6	virginica
7	5.7	2.8	4.1	1.3	?

Decision Tree: Hypothesis Space

A function for classification

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		x_1	x_2	x_3	x_4	class					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	high	1	с	good	0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	high	0	d	bad	0					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	high	0	с	good	1					
6 low 1 d good 0 high high low high low	4	low	1	с	bad	1					
6 low 1 d good 0 high	5	low	1	е	good	1		(×.		
sh low high low	6	low	1	d	good	0				1	
	high	x 1	lov	N.	hie		low		_		

Exercise: Count many classification errors each tree makes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Decision Tree Decision Boundary

Decision trees divide the feature space into **axis-parallel** rectangles and label each rectangle with one of the classes.

イロト 不得下 イヨト イヨト

ъ

The greedy algorithm for boolean features

```
	ext{GROWTREE}(S)

if y = 0 for all (x, y) \in S then

return new leaf(0)

else if y = 1 for all (x, y) \in S then

return new leaf(1)

else

choose best attribute x_j
```

```
S_0 \leftarrow 	ext{all } (	ext{x}, y) 	ext{ with } x_j = 0
```

 $S_1 \leftarrow ext{all } (ext{x}, y) ext{ with } x_j = 1$

return new $node(GROWTREE(S_0), GROWTREE(S_1))$ end if

ション ふゆ マ キャット マックシン

The greedy algorithm for boolean features

```
egin{aligned} & \operatorname{GROWTREE}(S) \ & \operatorname{if}\ y = 0\ & \operatorname{for}\ & \operatorname{all}\ (\mathrm{x},y) \in S\ & \operatorname{then}\ & \operatorname{return}\ & \operatorname{new}\ & leaf(0) \ & \operatorname{else}\ & \operatorname{if}\ y = 1\ & \operatorname{for}\ & \operatorname{all}\ (\mathrm{x},y) \in S\ & \operatorname{then}\ & \operatorname{return}\ & \operatorname{new}\ & leaf(1) \ & \operatorname{else}\ & \operatorname{choose}\ & \operatorname{best}\ & \operatorname{attribute}\ & x_j \ & S_0 \leftarrow & \operatorname{all}\ (\mathrm{x},y)\ & \operatorname{with}\ & x_j = 0 \end{aligned}
```

 $S_1 \leftarrow ext{all } (ext{x}, y) ext{ with } x_j = 1$

return new $node(GROWTREE(S_0), GROWTREE(S_1))$ end if

ション ふゆ マ キャット マックシン

What about attributes that are non-boolean?

Multi-class categorical attributes

In the examples we have seen cases with *categorical* (a.k.a. discrete) attributes, in this case we can chose to

- Do a multiway split (like in the examples), or
- Test single category against others
- Group categories into two disjoint subsets

Numerical attributes

 Consider thresholds using observed values, and split accordingly

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

The problem of overfitting

- Define training error of tree T as the number of mistakes we make on the training set
- Define test error of tree T as the number of mistakes our model makes on examples it has not seen during training
 Overfitting happens when our model has very small training error, but very large test error

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Overfitting in decision tree learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Main idea: prefer smaller trees over long, complicated ones. Two strategies

Stop growing tree when split is not statistically significant

ション ふゆ マ キャット マックシン

Grow full tree, and then post-prune it

Reduced-error pruning

- 1. Split data into disjoint training and validation set
- 2. Repeat until no further improvement of validation error
 - Evaluate validation error of removing each node in tree
 - Remove node that minimizes validation error the most

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Pruning and effect on train and test error

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Nearest Neighbor

- \blacktriangleright k-NN, parameter k is number of neighbors to consider
- \blacktriangleright prediction is based on majority vote of k closest neighbors

ション ふゆ マ キャット マックシン

How to find "nearest neighbors"

Distance measures

Numeric attributes

 \blacktriangleright Euclidean, Manhattan, L^n -norm

$$L^{n}(\mathbf{x}^{1},\mathbf{x}^{2}) = \sqrt[n]{\sum_{i=1}^{dim} \left|\mathbf{x}_{i}^{1}-\mathbf{x}_{i}^{2}
ight|^{n}}$$

Normalized by range, or standard deviation

Categorical attributes

- Hamming/overlap distance
- ▶ Value Difference Measure

$$\delta(\textit{val}_i,\textit{val}_j) = \sum_{c \in \textit{classes}} \left| P(\textit{c}|\textit{val}_i) - P(\textit{c}|\textit{val}_j) \right|^n$$

ション ふゆ マ キャット マックシン

Decision boundary for 1-NN Voronoi diagram

- ▶ Let S be a training set of examples
- ► The Voronoi cell of x ∈ S is the set of points in space that are closer to x than to any other point in S
- The Region of class C is the union of Voronoi cells of points with class C

Distance-Weighted k-NN

A generalization

Idea: put more weight to examples that are close

$$\widehat{f}(\mathbf{x}') \leftarrow rac{\sum_{i=1}^k w_i f(\mathbf{x}^i)}{\sum_{i=1}^k w_i}$$

where

$$w_i \stackrel{ ext{def}}{=} rac{1}{d(\mathrm{x}',\mathrm{x}^i)^2}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Avoiding overfitting

- \blacktriangleright Set k to appropriate value
- Remove noisy examples
 - E.g., remove x if all k nearest neighbors are of different class

ション ふゆ マ キャット マックシン

Construct and use prototypes as training examples

This is a hard question ... how would you do it?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This is a hard question ... how would you do it?

- Typically, we need to "evaluate" classifiers, namely, how well they make predictions on unseen data
- One possibility is by splitting available data into training (70%) and test (30%) of course there are other ways
- ▶ Then, check how well different options work on the test set

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

... more on this this Friday in the lab session!