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Abstract

Written Arabic is a especially ambiguous due to the lack of diacritisation of texts,
and this makes the translation harder for automatic systems that do not take into ac-
count the context of phrases. Here, we use a standard Phrase-Based Statistical Machine
Translation architecture to build an Arabic-to-English translation system, but we ex-
tend it by incorporating a local discriminative phrase selection model which addresses
this semantic ambiguity. Local classifiers are trained using both linguistic information
and context to translate a phrase, and this significantly increases the accuracy in phrase
selection with respect to the most frequent translation traditionally considered. These
classifiers are integrated into the translation system so that the global task gets benefits
from the discriminative learning. As a result, we obtain improvements in the full trans-
lation of Arabic documents at the lexical, syntactic and semantic levels as measured by
an heterogeneous set of automatic metrics.

1 Introduction

Nowadays, one of the most common paradigms for Machine Translation (MT) is the statistical
approach, above all when one has at his disposal a large amount of parallel texts as it is the
case of Arabic and English. From the first works on Statistical Machine Translation (SMT)
by Brown et al. [2], the field has experienced several enhancements. It was soon noticed that
translation is not a word to word process, that the information of surrounding words would
help and that one word could be translated into more than one element. This motivated the
usage of phrases as translation units and consequently the birth of Phrase-Based SMT [9, 6].
Within this context and the context of this paper, a phrase is a sequence of words that appear
together in the source sentence, but it is not necessarily defined according to the syntactic
structure of the sentence.

In SMT, the best translation for a given source sentence is the most probable one, and
the probability is expressed as the sum of different components. The log-linear model [8], a
generalisation of the original noisy-channel approach, estimates the probability as the loga-
rithmic sum of several terms. Two of them, the language model P(e) and the translation
model P(f|e), are the core of the approach. The former is a collection of probability scores of
word sequences in the target language that take care of the fluency of the output. The latter
is the one taking into account the correspondence between the two languages.

Usually, the probabilities of the translation model are calculated via frequency counts
in a training corpus at the phrase level. Therefore, the probability score associated to the



translation of a phrase f; into e; does not include any information on the context of the phrase
or on the grammar of the sentence; it is just a lexical translation of the isolated phrase. The
language model somehow takes care of the context in the target language but at a short
distance (usually from three to five words).

It seems clear that using linguistic information and the surrounding context of each phrase
should help the translation. One can think of translation as a phrase selection, and treat it
as a classification problem instead of assigning a translation probability given by relative
frequency counts. Machine learning techniques can then be used to classify the translations
using various features that encode the information of the phrase context. Here, one could
understand the different translations of a phrase as different senses of that phrase, and try
to identify which is the intended sense for each word in a sentence. That shows an analogy
between this idea and word sense disambiguation (WSD) techniques, where classifiers are
used to select the correct sense of a word. Several works exploit this idea for MT on different
language pairs (see for instance Refs. [3, 11, 4, 1, 5] and references therein).

Although using discriminative learning methods for SMT can be useful for any language
pair, those source languages with especially ambiguous semantics could get more benefits from
the procedure. The non-diacritisation of Arabic written documents is one of the major causes
for the increment of the ambiguity with respect to other languages. Since short vowels, for
instance, are written as diacritics, its absence makes that sometimes the only way to know
the meaning of a written word is by its context. Arabic is then a perfect language to test the
power of the discriminative phrase selection.

In this paper, we use Support Vector Machines (SVMs) to select the adequate translation
for every instance of a phrase. These local results are included into a SMT architecture so
that the discriminative learning is incorporated in the global Arabic-to-English translation
system without modifying the basic structure.

The outline of the paper is as follows. First of all, in Section 2, we point at some peculiari-
ties of Arabic that will be relevant for our system. Section 3 explains the discriminative phrase
selection method and Section 4 the data we use in the analysis and the pre-process we apply.
Next, in Section 5, we study the local task of phrase selection and afterwards in Section 6 we
explore its extension to the full task of translation. Finally, we draw our conclusions.

2 Arabic Language in the Context of SMT

The Arabic script is an alphabet with allographic variants, diacritics and ligatures. Each
character has four allographs depending on its position within the word: initial, medial, final
or as stand alone. The alphabet is composed by 25 consonants, 3 semi-consonants, 3 short
vowels, 3 long vowels and 2 diphthongs. The short vowels, fatha, kasra and damma, are not
letters themselves but diacritics written above or below consonants. Other diacritics are also
used as a non-vowel mark (sukun), as g double consonant mark (shadda), or as a letter itself
(hamza). For example, fl{—’ rl—‘- and 8\5- are three different vocalisations for the consonants

However, diacritics are not usually seen in written texts. They appear in the Koran, in
some other religious texts, classical poetry, textbooks or in complex texts to avoid ambiguity.
In most cases, when pronunciation is not especially important, texts are non-vocalised and
non-diacritised. This is mostly the case of the corpora used for MT and that increases the
ambiguity of written texts, being the context sometimes the only way of choosing among the
different meanings. The three possible vocalisations of ((\J- seen before must be distinguished



so that they can be translated as “science” or “knowledge” ( rlf-), “flag” ( (lf-) or “teach” (
'qu) These three words are perfectly distinguishable when speaking but not when reading.

his kind of ambiguity is to be added to homonyms in Arabic. Besides, verbal declinations
can further increase the number of meanings.

In general, the codification of Arabic script is different from Latin script. Since we deal
here with a language pair that mixes both scripts, it is useful to unify the codification. There
exist several transliterations to convert Arabic characters to the Latin alphabet. In NLP,
the original texts encoded in ISO-8859-6 or CP-1256 for example are usually converted to
the Buckwalter transliteration!. That is a one to one correspondence between Unicode and
UTF-8 codification. Once all of our data are in UTF-8 they can be treated homogeneously by
machines. Besides, the romanisation eases the understanding for those not familiarised with
the Arabic phonetics. This way, the previous example can be read as Eilom ( 8\5), Ealam (

£) or Eallama ( -J=).

Arabic is a morphologically rich language, and another characteristic to take into account
in our system is the fact that words are formed by combination of several elements sometimes
joined together by ligatures. A full word agglutinates to the root affixes and clitics. Affixes
mark tense, genus and number. Clitics are divided into proclitics (before the root) and
enclitics (at the end of the word). Proclitics are prepositions, conjunctions and determiners;
enclitics are pronouns and possessives.

Let us see an example. The syntactic phrase “and their knowledge” is written in Arabic
as a single word -y (or wEImhm using Buckwalter’s transliteration). The word can be
morphologically segmented as:

enclitic stem proclitic
hm Elm w
(their)  (knowledge) (and)

where it is taken into account that Arabic is read from right to left. It is clear from this
example that the segmentation of wEImhm in w Elm hm will ease the translation: it will
improve the alignments and reduce the original sparsity, since the number of occurrences in
the corpus of every segment by itself will be higher than the occurrences of the full Arabic
word.

3 Discriminative Phrase Translation Model

There are several recent methods in the literature to integrate discriminative learning tech-
niques into the translation process. In 2005, Carpuat and Wu [3] used WSD predictions
to constrain the possible translations available in decoding time. The same year, Vickrey et
al. [11] applied discriminative models for word selection but used in a blank-filling task instead
of full translation. This work was first extended to the full translation task and afterwards
to translate phrases instead of words ([4] and references therein).

Carpuat and Wu, the authors of Ref. [4], used a WSD system which combined naive
Bayes, maximum entropy, boosting and kernel PCA-based models. Bangalore et al. [1] relied
on a maximum entropy model. Here, we use the model of Giménez and Marquez [5] based
on SVMs to solve the multi-class classification problem where every possible translation is a
class.

In that model, the phrases are extracted from the alignments estimated from the parallel
corpus. Therefore, the candidate phrases to be used for the discriminative phrase selection
are not syntactic phrases but word n-grams and are the same as the collection used in the

1The Buckwalter transliteration can be found at http://www.qamus.org/transliteration.htm



wAn$d AllbnAnywn Al*yn HmlwA ktb S1lAp w rfEwA AlElm AllbnAny, Aln$yd AlwTny
AllbnAny.

The Lebanese, who came carrying prayer books and the Lebanese flag, sang the Lebanese
national anthem.

>n HAlp AIEIm w AltknwlwjyA 1dY nA fy nhAyp Alqrn AlE$ryn 1 hA ElAmtAn mhmtAn.
Al>wly gyAb AlmlAHgp fy h*A AlqTAE.

The situation of science and technology in Egypt at the end of the 20th century had
two important features.

Figure 1: Example of the translation of the phrase | (AlElm in Buckwalter transliteration)
in two different contexts. In each case, a linear S is trained using a different translation
as a positive example (“flag” or “science”) and the rest as negative ones.

translation model of the SMT system. The translation table obtained from the alignments is
then our classification problem.

For the discriminative learning, each occurrence of a phrase is taken as a positive example
for its current translation and negative for the rest. This way the multi-class problem is
binarised and converted in a one-vs-all decision as it is graphically seen in Figure 1 for two
examples of the phrase | (AlEIm).

The linear SVMs are fed with tens of features all of them coming from the source sentence.
Since we are interested in including linguistic information in the learning process, the Arabic
part of the parallel corpus must be annotated so that the feature set for each example can
contain information of the source phrase. For this purpose we consider the part-of-speech
(PoS), a coarser version of the PoS, and the IOB label resulting of a base phrase chunking
for the phrase itself. We also include information of the local context, five words to the left
and five to the right, by taking 3-grams of the linguistic information. A bag of words of the
whole sentence is used to take into account the global context of the phrase. We show a more
detailed example in Section 5.

After training the classifier for every possible translation phrase one obtains a SVM score
for each instance of a phrase, and that score is converted into a probability using a softmax



function. The result of this model as to its application to machine translation is then a
probability table Pypr(e|f). However, not every phrase will have a DPT (Discriminative
Phrase Translation) prediction. We require a minimum number of examples in order to
train the classifiers, let us say 100 in our experiments. For those phrases with less examples
we extend the Pppr(e|f) table with the standard MLE (Maximum Likelihood Estimation)
prediction. Even for a phrase with more than these 100 occurrences in the training corpus,
there might be some of the translations with a representation in the corpus too small to be
learned satisfactorily. As we will see in Section 6, we do not train a classifier for translation
options that represent less than a 0.5% of the total number of examples of the given phrase;
these cases are also completed with the MLE score.

The final probability is included in the translation system as a component of a log-linear
model. A standard SMT system estimates the probability of a translation as the sum of
several terms:

log Psur(elf) = MmlogP(e) + Ngloglex(fle) + Nigloglex(e|f)
+Aglog Puvs(fle) + Aalog Puws (el f)
+Agi log Pdi(eu f) + )\ph Ingh(e) + Ay Ing(e) ) (1)

where P(e) is the language model probability, lex(f|e) and lex(e|f) are the generative and
discriminative lexical translation probabilities respectively, Py.r(f|e) the MLE generative
translation model, Py g(e|f) the discriminative one, Py;(e, f) the distortion model and ph(e)
and w(e) correspond to the phrase and word penalty models.

The log-linear model admits the addition of new scores, so that we consider our final
translation probability to be:

log P(e|f) = log Psur(e|f) + Appr log Popr(elf) s (2)

where Psyr(e|f) is the full sum of log-probabilities. As an alternative, we also use the original
form of Psyr(e|f) with the substitution of Pyg(e|f) by Popr(e|f).

4 Corpus and Pre-processing

We apply the discriminative phrase translation model to the Arabic-to-English translation
task. In the following, we describe the data we use for that purpose and the pre-processing
needed.

4.1 Corpus

The training set is a compilation of six corpora supplied by the Linguistic Data Consortium
(LDC) for the 2008 NIST Machine Translation Open evaluation. The sources for these cor-
pora are the Agence France Press News Service, An Nahar, Assabah, Xinhua News Service,
Language Weaver News, and Ummah Press Service. From the whole corpus, segments with
a length shorter than 100 words and not more than nine times longer in one language than
in the other one are used in the compilation. That is the optimal length for training the
Moses decoder? and the length ratio limit for obtaining the alignments with GIZA++3. These
segments or lines are the minimum aligned unit in the parallel corpus and correspond to one
or more sentences. The filtering selects 123,662 lines, a 99% of the total, which is equivalent

2Moses decoder: http://www.statmt.org/moses/
3Giza++ package: http://www.fjoch.com/GIZA++.html



to about 4 - 10 tokens, resulting a medium size corpus under the point of view of collecting
alignments.

For the development in the full translation task, we selected 500 lines from the same
corpora proportionally to the training set. Results are given for the test set from NISTO0S8
evaluation.

4.2 Pre-processing and Annotation

The use of linguistic information in disambiguating the phrases makes it necessary to annotate
the corpus beforehand. A minimal standard pre-processing in the corpus has been applied
too, and it differs across languages.

For English, the only pre-processing has been to lowercase and tokenise the sentences.
Since we only include linguistic information of the source sentences, there is no need to
annotate the English part of the corpora.

The pre-process for Arabic is a bit wider. First of all, it is useful to change the codification
of the texts and we romanise the orginal corpus with Buckwalter transliteration. As minor
details, we alter the standard transliteration by using the XML-friendly version which changes
the characters <, > and & to I, O and W respectively. That allows to generate the XML
files necessary for the discriminative learning without problems. The character for madda, |,
is a reserved character in the Moses decoder that separates the different factors for a word.
Therefore, it has been substituted by L after the annotation process. Note, as well, that
actual presentation glyphs vary with context as well as entering into various ligatures. The
ligature of the letters lam and alif ( ) + 1) with the corresponding diacritics, Y, \f N or Y
have not been detected in the automatic transhteratlon but converted afterwards.

The standard Buckwalter transliteration has been a prerequisite necessary to annotate
the Arabic part of the corpus using the AMIRA package®. This software uses the Yamcha
SVM tools® to apply the three steps we are interested in: tokenisation, PoS tagging and
base phrase chunking of the input text. AMIRA includes models trained on the Arabic Penn
TreeBank ATB 1 v3.0, ATB 2 v2.0 and ATB 3 v2.0, therefore on a news domain.

5 Discriminative Phrase Selection, the Local Task

Before approaching the full task of translation we show some details of the subtask of phrase
selection. The strength of this method is its capability of using the context of each phrase and
the linguistic information available in order to select the best translation. This is especially
useful to solve ambiguities, as we have seen a very common semantic phenomenon in Arabic.

We have trained linear SVMs to solve this problem. On the one hand, the features for
training the classifier are extracted from both the source phrase and source sentence in Arabic
but not from the target in English. From the phrase we consider word, part-of-speech, coarse
part-of-speech and chunk labels n-grams. The same features are extracted from the full
sentence with the addition of the bag-of-words which keeps the words at the right and at the
left of the phrase.

On the other hand, the candidate phrases are those extracted from the word alignments
obtained with GIZA++. The input corpus is the same training set used for training the trans-
lation system (Section 4). 588,220 phrases are extracted from this corpus, but most of them
are not frequent enough to train a classifier based on their number of examples. If we restrict
our analysis to phrases appearing more than 100 times in the training set and with more than

4The Arabic processing tools AMIRA can be found at http://www.cs.columbia.edu/~mdiab/
5Yamcha SVM tools: http://chasen.org/~taku/software/yamcha/



Training set Acc MFT  Acc.DPT
occurrences # (%) (%)
100-500 4,310 58.7 66.5
501-1,000 565 62.3 68.8
1,001-5,000 393 66.7 73.0
5,001-10,000 27 72.2 79.5
10,001-50,000 19 66.6 74.8
> 50,000 7 76.2 80.7
Total: 5,321 59.8 67.3

Table 1: Mean accuracy obtained in the phrase translation task by the most frequent trans-
lation (MFT) and with SVMs (DPT) for the set of extracted phrases. Results are also given
for subsets of phrases grouped according to its frequency.

one possible translation, a collection of 5,321 phrases is selected. Even if we are considering
less than a 1% of the total, we are keeping the most frequent ones and, so, they cover most of
the corpus. For each of these phrases, we learn a SVM for every translation, unless for those
which do not have a representative number of positive examples. A low number of examples
of a given phrase translation can be an evidence of a bad alignment for instance. We minimise
this effect by discarding translations that occur less than a 0.5% of the times.

For training the SVMs we use the SVM'9"* packageS. The free parameter of SVMs, the
trade-off between the training error and the margin, is adjusted in the learning process for
each phrase.

Table 1 shows the comparison of the accuracy for the phrase selection task obtained by
SVMs and labeled as the Discriminative Phrase Translation (DPT), and that given by the
Most Frequent Translation (MFT). Most of the phrases appear less than 500 times in the
corpus, and for them an improvement in accuracy of a 7.8% is obtained. A larger gain is get
for more frequent phrases, but these are a minority, and the mean in the whole training set
reflects an improvement of a 7.5%.

We can take a look at some particular examples. Our running example, the word FElm,
is found in the corpus together with the article: AlEIm. This token is seen in 114 examples
with 10 possible translations, being the most frequents:

AlEIm :
Translations flag  science knowledge mind the flag
# examples 47 26 15 9 6

With 114 examples, all translations appear more than a 0.5% of the times and are learned.
For one example where AlElm is translated as “knowledge” the set of features to be used in
the learning process would be that of Table 2. Since this phrase is an only word the phrase
features are just unigrams. As for the sentence, we consider up to trigrams of features for
tokens ranging from the position of the phrase minus five to the position plus five.

When training the classifiers with the help of the previous features, we obtain, after a
10-fold cross-validation, an accuracy of 71.3%. The most frequent translation does it well the
49.6% of times. That is, one gets a 40% of relative improvement on the selection of the phrase
translation.

As another example we comment the learning for the translation of the Arabic phrase

59 (wqE), an example that will be further considered in Section 6 to illustrate the full
ranslation task. The word wgFE appears in the corpus 289 times with 30 different translations
such as:

6SVM!*9ht package: http://svmlight.joachims.org/




Annotated sentence (word pog|coarse PoS|chunk) :

wociclo tAbEyppvip—vp mrddyn|np-~np AlIxwAnyn|NiB—NP ‘PUNC|PlO IDIN|I|B-SBAR
AlEImyyvB-~p AlnTlwb; ;i 1-~p £yiNIB-PP dynNN|N|B-NP DAPRPS|P|II-NP
hwprpipiB-NP KlnnN|N|B-~Np Elmyn|njr—np DAfENN|NB-NP - -.

Phrase features:

PoS NN
coarse PoS N
chunk B-NP

Sentence features:
word (AlmTlwb)1, (fy)2, (dyn)s, (nA)a4, (hw)s,

-NP B- PP)17 (B- PP B-NP)a, (B NP I—NP)(;7 (I-NP B-NP)4,
B-SBAR I-NP)_1, (O, B-SBAR)_2, (B-NP O)_3, (B-NP B-NP )_4
B-VP B-NP)_;

-NP B-PP B- NP)1, (B-PP B-NP I-NP),, (B-NP I-NP B-NP)3,
B-SBAR I-NP B-PP)_;, (O B-SBAR I-NP)_,, (B-NP O B-SBAR)_3,
(B-NP B-NP O)_4, (B- VP B-NP B-NP )_5

bag-of-words  left: AllxwAn, mr$d, tAbE
right: $rEyAF, AlmTlwb, AlnAs, Elm, EImAF, dyn, kAn, ki,
nAfE, swA’, tbqY, tjrybyAF, vmrt

n-grams (In)—1, (7)—2, (AllxwAn)_s, (mr$d)_4, (tAbE)_s
(Almleb fy)l, (fy dyn)2, (dyn nA)s, (nA hW)4,
(In AlmTlwb)_1, (7 In)_2, (AllxwAn ”)_3, (mr$d AllxwAn)_4, (tAbE mr$d)_s
(AlmTlwb fy dyn)17 (fy dyn nA)z, (dyn nA hw)s,
(In AlmTlwb fy)_1, (" In AlmTlwb)_», (AllxwAn ” In)_s,
(mr$d AllxwAn 77) , (tADE mr$d AllxwAn)_s
PoS (30)1, (IN)z, (NN)s, (PRPS)s, (PRD)s,
n-grams (IN)_1, (PUNC)_2, (NN)_3, (NN)_4, (VBD)_s
(JJ IN)l, (IN NN)Q, (NN PRP$)3, (PRP$ PRP).,
(IN JJ)_1, (PUNC IN)_, , (NN PUNC)_s, (NN NN)_4, (VBD NN)_;
(JJ IN NN)l, (IN NN PRP$)2, (NN PRPS PRP)s,
(IN JJ IN)_;, (PUNC IN JJ)_»
(NN PUNC IN) , (NN NN PUNC)_4, (VBD NN NN)_5
coarse oS (D1, Mz, (M, (P, (Ps, D1, (P)—z, (N)—s, (M), (V)5
n-grams (J 1)17 (IN)2, (N P)s, (PP)a, TJ)=1, (P I)—2, (NP)_3, (NN)_4, (VN)_5
(JIN)1, (LN P)a, (N P P)3,
(I1JD)_y, (P1J)_a, (NP I)_5, (NN P)_s, (VNN)_s
chunk (NPY:, (B-PP)s, (B-NPJs, (LNP)s, (B-NP)s,
n-grams (B-SBAR)_1, (O)—2, (B-NP)_3, (B-NP)_4, (B-VP )_5
(
(
(
(
(

Table 2: Set of features used for the given example to train a classifier for the phrase AlFEIm.

wqk':
Translations signed took place was signed occurred happened fell
# examples 70 36 30 23 16 5

As before, the accuracy of the most frequent translation (30.6%) is beated by the accuracy
given by the SVMs (42.6%). This is the general trend, the accuracy in the translation of
phrases is improved with respect to that corresponding to the most frequent translation,
but the amount of improvement depends on the phrase, the number of translations and the
number of examples.



6 Full Translation Task

In the following, we investigate whether the improvement obtained for the local task of phrase
selection has a positive repercussion on the global task of translation.

6.1 Baseline System

Our baseline system follows the standard phrase-based SMT architecture, in which models
are combined in a log-linear fashion. This architecture has the main advantage of allowing for
considering additional feature functions further than the language and translation probability
models typically used. Here, we use the standard features for an SMT system, i.e., those in
Equation 1.

We build a 5-gram language model by interpolated Kneser-Ney discounting using the
SRILM Toolkit?. As for the translation models, we use the GIZA++ Toolkit to obtain the
alignments, and the tools available with the Moses package for phrase extraction and estima-
tions of maximum likelihood probabilities.

In order to speed up the translation process, we have limited the number of candidate
translations to 20 and set the distortion limit to 6 positions. Using these settings, the final
search in the space of translations is accomplished by the Moses decoder.

Finally, we optimise the weights of every probability table by optimizing translation per-
formance on a development set. For this optimisation we use a minimum error rate training
(MERT) [7] where BLEU [10] is the reference score.

6.2 Discriminative Phrase Translation

Finally, we integrate DPT predictions into the SMT system. To do this, we pre-calculate
the DPT predictions for all possible translations of all source phrases appearing in the test
(or development) set. Calculating these probabilities beforehand allows us to use a standard
decoder without any modification to estimate them online, but a small trick is needed to
distinguish every distinct instance of every distinct phrase. So, the input text is transformed
by introducing identifiers which correspond to the number of occurrences of the word seen
in the test set before the current one. For instance, the second time the transliterated word
AlFEIm appears in the set is annotated as AlEIm;:

Hyvog tmop AHrAq AlElm; AldnmArky .1128

For those words without subindex there is not DPT prediction.

In a similar way and for the same reason, translation tables must be modified. Now, each
occurrence of every source phrase has a distinct list of phrase translation candidates with their
DPT predictions. DPT predictions are only estimated for the phrases appearing in the test
set. Still, indexing increments tremendously the size of the translation table, and, even when
filtered for only the phrases in the test set, the resulting tables become larger than 1GB and
do not fit into memory at decoding time. Therefore, we only keep the first 50 translations® for
every phrase. Translations are sorted by weighting all the scores. Being the scores differents,
every system (baseline and DPT) already differs in the translation candidates list available
to the decoder.

In case we do not have a DPT prediction for a phrase because it did not have the minimum
number of examples required (100 in our experiments), we complete the translation table by

7SRILM Toolkit: http://www.speech.sri.com/projects/srilm/
8Using more than 20 translations per phrase during decoding was found to provide no improvement when
applied to our baseline with respect to the case where only 20 translations are available.



i 2 Pppr(elf) Pure(fle) lex(fle) Pure(elf) lex(elf)

AlElm; flag 0.1986 0.6438 0.5417 0.3241 0.2826
AlElm; the 0.0419 0.0001 0.0001 0.0207 0.0217
AlElm;  mind 0.0401 0.0608 0.0425 0.0620 0.0543
AlElm; the flag 0.0397 0.4000 0.5417 0.0414 0.0786
AlEIm; flag during 0.0394 0.6667 0.5417 0.0138 0.0001
AlElm; knowledge 0.0392 0.0846 0.0798 0.1103 0.0924
AlElm; flag caused 0.0387 1.0000 0.5417 0.0138 0.0001
AlElm; science 0.0377 0.1529 0.1477 0.1793 0.1413
AlElm;  education 0.0377 0.0018 0.0029 0.0138 0.0163
AlElm;  in mind 0.0371 0.0571 0.0425 0.0138 0.0004
A1E1m1

Table 3: Example of a fragment of the translation table indexed in order to take into account
DPT predictions.

using the MLE prediction. For those phrases with only some of the translation probabilities
obtained with the DPT method (the others having less than a 0.5% of positive examples in
our experiments), we normalise the probabilities to the number of examples of each method
with respect to the total.

Table 3 shows all the translations available for the phrase AlEIm the second time it appears
in the test set. In this case, the preferred translation would be the same both according to
Pppr(e|f) and to Pyrge(e|f), but one can already see in the table that the distribution of
the probability mass is different for both predictions and that can alter the best choice.

Notice that we make available to the decoder several scores. Therefore, the decoder does
not always use the DPT prediction as the best translation. DPT is competing with the MLE
prediction and the remaining features shown in Equation 2. The weight of every score is
determined during the MERT tuning process. In our results, the DPT prediction always has
a larger weight than the MLE one, being Appr ~ 3Ayg. We checked another configuration
as well, where the discriminative probabilities Pppr(e|f) replace Pyrg(e|f) instead of being
added as an additional feature. We denote by DPT this last system where the DPT prediction
replaces the MLE one, and by DPT" the system where the DPT prediction is added.

In order to study the impact of DPT predictions we perform a deep analysis by using an
heterogeneous set of metrics for evaluation. In previous sections, we used a lexical metric,
BLEU, to evaluate the quality of the translation. Here, we use the IQumT package®, which
provides a rich set of more than 500 metrics at different linguistic levels. We have selected a
representative set of metrics, based on different similarity criteria:

e Lexical n-gram similarity on word forms (PER, TER, WER, BLEU, General Text
Matching -GTM-, ROUGE -RG-, and METEOR -MTR-).

e Shallow-syntactic similarity on part-of-speech tags and base phrase chunks (Shallow
Parsing -SP- family).

e Syntactic similarity on dependency and constituent trees (Dependency Parsing -DP-
and Constituency Parsing -CP- families).

e Shallow-semantic similarity on semantic roles (Semantic Roles -SR- family).

A deeply detailed description of the metric set may be found in the IQpr technical manual.

91QumT software: http://www.lsi.upc.edu/~nlp/IQMT.
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We translate the test set supplied for the 2008 NIST MT Evaluation and evaluate the
translations against four references. The results of our automatic evaluation can be read in
Table 4, where we show in boldface numbers the score for the preferred system. The set of
metrics is calculated for the two systems with DPT prediction (DPT and DPT") together
with the baseline where there is no DPT prediction (indicated by SMT in the table). In
general, improvements are obtained with the DPT systems at the three linguistic levels:
lexical, syntactic and semantic.

At the lexical level, all the metrics but TER and WER prefer the DPT system over the
baseline. The DPTT is of the same order or slightly better than the SMT system as well,
but the substitution of the MLE predictions by the DPT ones seems to be more effective,
probably because of the minor number of parameters to optimise. For this system, the BLEU
score increases from 31.0 to 32.4 and the NIST one from 8.7 to 8.9. We generate 1000 sets by
bootstrap resampling of the original test set to check whether these results are statistically
significant. With the previous values, the DPT system shows to be statistically better than
both DPTT and SMT systems, and DPT" statistically better than SMT.

On the other hand, the syntax of the translations is improved as well. Metrics based on
shallow parsing (SP) and constituent parsing (CP) behave as the lexical metrics and favour
the DPT system. The only scores indifferent to the discriminative learning are those reflecting
similarities among dependency trees (DP).

Finally, the quality of the semantics as measured by the similarities between the semantic
roles (SR) of the translation and the target increases for the discriminative methods. The
metrics which do not take into account the lexical realisation of the linguistic element favour
the DPT system, those considering the lexical realisation prefer the DPT" one.

6.2.1 Analysis at the sentence level

So far we quantified the improvement of the translations at the system level, but one can also
study the nature of the improvement by checking how concrete translations are modified. Of
course, there is not a one-to-one correspondence between a particular translation preferred
by the discriminative method and such modification because all the components play a role
in the final election of the full translation, but anyway one can extract some general ideas.

We randomly selected 50 sentences from the test set that contain at least one of the phrases
disambiguated by the discriminative method with a frequency 100 < v < 500. As seen at
the beginning of this section with the example sentence for the phrase AlEIm, several phrases
with DPT prediction coexist in a same sentence. We calculate all the set of metrics shown in
Table 3 at a sentence level for this small subset and analyse the results.

Although the mean effect is the improvement reflected in Table 3, individual sentences
get both benefits and damages from the discriminative phrase translation. Tables 5, 6 and
7 show the translations of three of the sentences: Example A, B and C respectively; there,
some general characteristics are outlined.

Example A accomplishes the main objective of the method. In this case, a phrase that
according to its frequency in the corpus has a probability one order of magnitude lower than
the most frequent translation gets promoted due to the DPT prediction (the isolated task
of this phrase selection has been analysed in Section 5). This way wqFE is translated as fell
instead of the MFT signed being in agreement with 2 of the 4 references. Lexical metrics are
the ones that get more benefits from this improvement.

Since, as we have said, all the probabilities interact among them in order to determine the
translation of the whole sentence, the addition of the DPT prediction can alter the structure
of the output. For instance, Example B in Table 6 shows a case where the effect is a reorder of
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Level Metric | SMT DPT DPT™

1-PER 0.5814 0.5892 0.5852
1-TER 0.4493 0.4482 0.4454
1-WER 0.4161 0.4102 0.4078
BLEU-4 0.3103 0.3243 0.3175
NIST-5 8.7113 8.9053 8.7920
GTM-1 0.6974 0.7159 0.7107
GTM-2 0.2234 0.2267 0.2247
Lexical GTM-3 0.1721 0.1745 0.1728
RG-L 0.4986 0.4993 0.4968
RG-S« 0.3185 0.3229 0.3188
RG-SUx 0.3395 0.3437 0.3395
RG-W-1.2 0.2662 0.2675 0.2659
MTR-exact 0.4909 0.5001 0.4958
MTR-stem 0.5098 0.5174 0.5135
MTR-wnstm 0.5147  0.5222 0.5186
MTR-wnsyn 0.5352 0.5426 0.5391
SP-Oc-* 0.4376  0.4448 0.4407
SP-Op-+ 0.4195 0.4271 0.4235
Shallow SP-cNIST-5 5.5783 5.6684 5.6703
Syntactic SP-iobNIST-5 5.9931 6.1318 6.1172
SP-INIST-5 8.8869 9.0547  8.9523
SP-pNIST-5 6.9679 7.1610 7.1117
CP-Oc-* 0.3943 0.3995 0.3962
CP-Op-* 0.4220 0.4296 0.4265
CP-STM-9 0.2396 0.2394 0.2380
DP-Oc-% 0.3852 0.3949 0.3892
Syntactic DP-Ol-% 0.30561 0.3164 0.3115
DP-Or-* 0.2523  0.2557 0.2534
DP-HWC-c-4 0.2986  0.2975  0.2970
DP-HWC-r-4 0.2023 0.2023 0.2029
DP-HWC-w-4 0.0835 0.0826  0.0831
SR-Mr-% 0.0224 0.0227 0.0262
SR-Mrv-% 0.0123 0.0129 0.0129
Shallow SR-Or 0.3686 0.3792  0.3609
Semantic SR-Or-x 0.1160 0.1209 0.1234
SR-Orv 0.0685 0.0815 0.0765
SR-Orv-* 0.0284 0.0325 0.0349

Table 4: Automatic evaluation of the translated test set supplied for the 2008 NIST MT
FEvaluation using lexical, syntactic and semantic metrics.

the phrases. In the given example, the reorder damages the final translation and the meaning
of the original sentence is modified.

Finally, Example C allows us to comment the gain in fluency in the translations. Articles
and prepositions are more frequent in the translations obtained with the DPT method. In
fact, the mean length of these translations is one word larger than the ones with the baseline.
In the sentence of Table 7 that corrects the output from Monday to on Monday and from
strategy to the strategy. In this case, this has a positive repercussion specially with the BLEU
metric since the length of the matching n-grams is larger, but it damages the translation of
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Source Of&&sdwuxdcoj q,LAHC» Je;\f\f\ }‘u.(.l
lkn Aljz’ AlAkbr mn h*h AlAslHp wqE fy yd HmAs fy qTAE gzp.
Baseline  But the largest part of these weapons signed in the hands of Hamas
in Gaza Strip.

DPT However, the largest part of these weapons fell in the hands of Hamas
in Gaza Strip.
Refs. But most of these weapons have fallen into the hands of Hamas in

the Gaza Strip.

But most of these weapons fell into the hands of Hamas in the Gaza Strip.
However, the largest part of these weapons landed in the hands of

Hamas in the Gaza Strip.

But most of these weapons fell into the hands of Hamas in Gaza Sector.

Table 5: Example A. The translation obtained with the DPT system selects the correct word
in the given context although being the least frequent translation.

Source Jleyt L C.-.U Lews d e O ) Ll Al &BY L J b 00 OF
w kAn SrH SbAHA 1 hy}p AIA*AEp AlbryTAnyp (by by sy) An mSdrA fy
rwsyA Ablgh bAmr AlAgtyAl.

Baseline  And had announced in the morning to the British Broadcasting Corporation
(BBC) that source in Russia informed them about assassination.

DPT And had announced in the morning to the British Broadcasting Corporation
(BBC) that source informed them about assassination in Russia.
Refs. In the morning he told the British Broadcasting Corporation (BBC) that a

Russian source had told him about the assassination.

In the morning, he told the British Broadcasting Corporation (BBC) that a
source in Russia had informed him about the assassination order.

In the morning he told the British Broadcasting Cooperation that a source
in Russia had informed him of the assassination order.

In the morning he told the British Broadcasting Corporation (BBC) that a
source in Russia informed him about the assassination order.

Table 6: Example B. Sentence where the inclusion of the DPT prediction alters the final order
of the phrases. In this case, it degrades the quality of the translation.

headlines which are common in news corpora such as the one we use.

7 Conclusions

We have shown the positive impact of including a discriminative phrase translation model in
a SMT architecture designed for the Arabic-to-English translation task.

First of all, we have studied the task of phrase selection independently of the full transla-
tion. By training a classifier to choose the adequate phrase translation for every instance of a
phrase, we have obtained a gain of a 7.5% in accuracy with respect to the answer that would
give the most frequent translation. These classifiers are informed of the context of the source
phrase and its part-of-speech and chunk label. Information on the target phrase would further
improve the results, but the integration in a SMT system would not be straightforward and
one would need a new architecture.

Taking into account that the probabilities used in SMT are estimated from relative fre-
quency counts, we study how the gain in accuracy achieved by the DPT preditions affects the
translation quality according to automatic evaluation metrics. Improvements are obtained at
the three linguistic levels analysed: lexical, syntactic and semantic. The DPT system that
substitutes the probability score from the maximum likelihood estimate Py (e|f) by the
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Source el g};ﬁj S Lo LN Ol B gy JB o
w qAl bw$ AlvIAVvA’ An AlAstrAtyjyp Alty trtkz EIY ArsAl...
Baseline  Bush said @ Tuesday that @ strategy based on sending...
DPT Bush said on Tuesday that the strategy based on sending...
Refs. On Tuesday, Bush said that the strategy focusing on sending...
Bush said on Tuesday that the strategy based on sending...
Bush said on Tuesday that the strategy that focuses on sending...
Bush said on Tuesday that the strategy based on sending...

Table 7: Example C. The DPT system favours in general more fluent translations by increasing
the number of functional words as seen in the example.

discriminative prediction Pppr(e|f) is preferred by a 73% of the calculated metrics, that is,
27 out of 37. Just in 5 cases the baseline is not improved; for the remaining ones, the best
system is that combining both Pysrg(e|f) and Pppr(e|f).

These encouraging results have also been found for the Spanish-English language pair [5],
but as expected from the semantic ambiguities of Arabic, the gain is larger for this language.
The Arabic phrases are translated locally with 2.5% more accuracy than the Spanish ones,
and that is captured by all lexical metrics in the full translation. Contrary to the Spanish
case, the improvement in lexical selection in Arabic has a positive repercussion not only on
semantics but on syntax as well.
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