Overview

1. Introduction
 - The project within FP7
 - Motivation
 - Goal

2. Multilingual translation system
 - Technologies
 - Research topics

3. Final notes
Introduction

The project

ICT-2009.2.2
Language-Based Interaction

- Majority of EU languages
- Use of existing linguistic resources
Introduction

The project

ICT-2009.2.2
Language-Based Interaction

- Majority of EU languages
- Use of existing linguistic resources

MOLTO FP7-ICT-247914

Research Personal: 390 person-month
Timeframe: 1 March 2010 - 28 February 2013
Introduction

The consortium

Academic Partners

UNIVERSITY OF GOTENBURG
UNIVERSITY OF HELSINKI
UNIVERSITAT POLITÈCNICA DE CATALUNYA

Commercial Partners

ontotext
MATRIXWARE™
Introduction

The idea

Editing Trigonometric functions

In [[mathematics]], the ""trigonometric functions"" (also called ""circular functions""), are [[function (mathematics)]]s of an [[angle]].
Introduction

The idea

Editing Trigonometric functions

In [[mathematics]], the '''trigonometric functions''' (also called '''circular functions''') are [[function (mathematics)|function]]s of an [[angle]].

Funció trigonomètrica

En matemàtiques, les **funcions trigonomètriques** són **funcions** d'un angle.

Funzione trigonometrica

In matematica, le **funzioni trigonometriche** o **funzioni circolari** sono **funzioni** di un angolo.

Funcțiile trigonometrică

În matematică, prin **funcțiile trigonometrică** se înțeleg niște **funcții** ale unui unghi oarecare.
Introduction

The idea

Editing Trigonometric functions

In [[mathematics]], the "'trigonometric functions'" (also called "'circular functions'") are [[function (mathematics)|function]]s of an [[anglo]]. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.

Funció trigonomètrica

En matemàtiques, les funcions trigonomètriques són funcions d'un angle. Són la base per l'estudi de la trigonometria, els triangles i per la modelització dels fenòmens periòdics, entre moltes altres aplicacions.

Funzione trigonometrica

In matematica, le funzioni trigonometriche o funzioni circolari sono funzioni di un angolo. Esse sono importanti nello studio dei triangoli e nella modellizzazione dei fenomeni periodici, oltre a un gran numero di altre applicazioni.

Funcțiile trigonometrică

În matematică, prin funcții trigonometrici se înțeleg niște funcții ale unui unghi oarecare. Ele se folosesc la studierea triunghiurilor și reprezentarea unor fenomene periodice, printre multe altele.
But, nowadays, kind of utopy.

Not viable at Wikipedia level –large coverage– but one can think on a restricted language.
Introduction

The idea

Fridge Magnet Demo

Not viable at Wikipedia level—large coverage—but one can think on a restricted language.
Introduction

The idea in a demo

Fridge Magnet Demo

http://www.grammaticalframework.org:41296/fridge/
Introduction

The idea in a demo

Fridge Magnet Demo

http://www.grammaticalframework.org:41296/fridge/
Introduction

System description by comparison

<table>
<thead>
<tr>
<th></th>
<th>GOOGLE-like</th>
<th>MOLTO-like</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>consumers</td>
<td>translators</td>
</tr>
<tr>
<td>Input</td>
<td>unpredictable</td>
<td>predictable</td>
</tr>
<tr>
<td>Coverage</td>
<td>unlimited</td>
<td>limited</td>
</tr>
<tr>
<td>Quality</td>
<td>browsing</td>
<td>publishing</td>
</tr>
</tbody>
</table>
MOLTO’s mission is to develop a set of tools for translating texts between multiple languages in real time with high quality.
Introduction

Goal: Better tools

System developers’ tools

- An Integrated Development Environment (IDE)
- An example-based grammar writing component
Introduction

Goal: Better tools

System developers’ tools
- An Integrated Development Environment (IDE)
- An example-based grammar writing component

Translators’/Authoring tools
- Syntax editors and word predictors as plug-ins to
 - web browsers
 - text editors
 - professional translators’ tools
Introduction

Challenge: Scale up production of domain interpreters

From 100’s of words to 1000’s of words
Introduction

Challenge: Scale up production of domain interpreters

From 100’s of words to 1000’s of words

From GF experts to domain experts & translators
Introduction

Challenge: Scale up production of domain interpreters

From 100’s of words to 1000’s of words

From GF experts to domain experts & translators

From months to days
Introduction

Challenge: Scale up production of domain interpreters

From 100’s of words to 1000’s of words

From GF experts to domain experts & translators

From months to days

From hand-crafting a grammar to translating a set of examples
Romance languages
Introduction

Languages

Romance languages

- Spanish
- Catalan
- Romanian
- French
- Italian
Specific domains of application

- Description of museum items
- Mathematical problems
- Patents in biomedical and pharmaceutical domain
Specific domains of application

- Description of museum items
- Mathematical problems
- Patents in biomedical and pharmaceutical domain

Those are specific selected domains, but it is easy to think of other potential applications.
Introduction

Potential applications

Tourist phrasebooks
Introduction

Potential applications

Tourist phrasebooks

E-commerce sites
Introduction

Potential applications

- Tourist phrasebooks
- E-commerce sites
- Medical treatment recommendations
Introduction

Potential applications

Tourist phrasebooks

Manuals

E-commerce sites

Medical treatment recommendations
Introduction

Potential applications

- Tourist phrasebooks
- Manuals
- E-commerce sites
- Wikipedia articles
- Medical treatment recommendations
Three technologies are involved.
Three technologies are involved.
What is GF?

- A grammar formalism: a notation for writing grammars.
- A functional programming language.
Multilingual translation system

The core: Grammatical Framework

What is GF?

- A grammar formalism: a notation for writing grammars.
- A functional programming language.

What is a multilingual grammar?

- A definition of a parsing and generation operations.
- Concrete syntaxes for many languages related by a common abstract syntax.
The abstract syntax acts as a domain-specific interlingua.
Multilingual translation system

Abstract and Concrete syntaxes

The abstract syntax acts as a domain-specific interlingua.

Defines not only a linguistic structure but a semantic model for translation with:

- fixed word senses
- proper idioms
Abstract Syntax

Nat : Set
Odd : Exp -> Prop
Gt : Exp -> Exp -> Prop
Sum : Exp -> Exp

Concrete Syntax (ENG)

Nat = "number"
Odd x = "x is odd"
Gt x y = "x is greater than y"
Sum x = "the sum of x"

Concrete Syntax (CAT)

Nat = "númber"
Odd x = "x és senar"
Gt x y = "x és més gran que y"
Sum x = "la suma de x"

Concrete Syntax (SPA)

Nat = "númber"
Odd x = "x es senar"
Gt x y = "x es més gran que y"
Sum x = "la suma de x"

Concrete Syntax (GER)

Nat = "Zahl"
Odd x = "x ist ungerade"
Gt x y = "x ist gr¨ osser als y"
Sum x = "die Summe von x"
Multilingual translation system

Translation with GF

Abstract Syntax

<table>
<thead>
<tr>
<th>Nat</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odd</td>
<td>Exp -> Prop</td>
</tr>
<tr>
<td>Gt</td>
<td>Exp -> Exp -> Prop</td>
</tr>
<tr>
<td>Sum</td>
<td>Exp -> Exp</td>
</tr>
</tbody>
</table>

Concrete Syntax (ENG)

<table>
<thead>
<tr>
<th>Nat</th>
<th>"number"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odd x</td>
<td>"x is odd"</td>
</tr>
<tr>
<td>Gt x y</td>
<td>"x is greater than y"</td>
</tr>
<tr>
<td>Sum x</td>
<td>"the sum of x"</td>
</tr>
</tbody>
</table>

Concrete Syntax (CAT)

<table>
<thead>
<tr>
<th>Nat</th>
<th>"número"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odd x</td>
<td>"x és senar"</td>
</tr>
<tr>
<td>Gt x y</td>
<td>"x és més gran que y"</td>
</tr>
<tr>
<td>Sum x</td>
<td>"la suma de x"</td>
</tr>
</tbody>
</table>

Every even number that is greater than 0 is the sum of two odd numbers
Multilingual translation system

Translation with GF

Abstract Syntax

Nat : Set
Odd : Exp -> Prop
Gt : Exp -> Exp -> Prop
Sum : Exp -> Exp

Concrete Syntax (ENG)

Nat = "number"
Odd x = "x is odd"
Gt x y = "x is greater than y"
Sum x = "the sum of x"

Concrete Syntax (CAT)

Nat = "número"
Odd x = "x és senar"
Gt x y = "x és més gran que y"
Sum x = "la suma de x"

Concrete Syntax (SPA)

Nat = "número"
Odd x = "x es senar"
Gt x y = "x es més gran que y"
Sum x = "la suma de x"

Concrete Syntax (GER)

Nat = "Zahl"
Odd x = "x ist ungerade"
Gt x y = "x ist größer als y"
Sum x = "die Summe von x"

Every even number that is greater than 0 is the sum of two odd numbers

Cada número parell que es més gran que 0 és la suma de dos números senars
Multilingual translation system

Translation with GF

Abstract Syntax

Nat : Set
Odd : Exp -> Prop
Gt : Exp -> Exp -> Prop
Sum : Exp -> Exp

Concrete Syntax (ENG)

Nat = "number"
Odd x = "x is odd"
Gt x y = "x is greater than y"
Sum x = "the sum of x"

Concrete Syntax (CAT)

Nat = "número"
Odd x = "x és senar"
Gt xy = "x és més gran que y"
Sum x = "la suma de x"

Concrete Syntax (SPA)

Nat = "número"
Odd x = "x es senar"
Gt xy = "x es más grande que y"
Sum x = "la suma de x"

Concrete Syntax (GER)

Nat = "Zahl"
Odd x = "x ist ungerade"
Gt x y = "x ist größer als y"
Sum x = "die Summe von x"
Abstract Syntax

Nat : Set
Odd : Exp -> Prop
Gt : Exp -> Exp -> Prop
Sum : Exp -> Exp

Concrete Syntax (ENG)

Nat = "number"
Odd x = "x is odd"
Gt x y = "x is greater than y"
Sum x = "the sum of x"

Concrete Syntax (CAT)

Nat = "número"
Odd x = "x es senar"
Gt x y = "x es més gran que y"
Sum x = "la suma de x"

Concrete Syntax (SPA)

Nat = "número"
Odd x = "x es senar"
Gt x y = "x es más grande que y"
Sum x = "la suma de x"

Concrete Syntax (GER)

Nat = "Zahl"
Odd x = "x ist ungerade"
Gt x y = "x ist grösser als y"
Sum x = "die Summe von x"
Multilingual translation system

OWL-GF interoperability

OWL Express formal meaning representations (semantics) of data and content

GF Renders those ontologies into natural language (and vice versa)
Multilingual translation system

OWL-GF interoperability

OWL Express formal meaning representations (semantics) of data and content

GF Renders those ontologies into natural language (and vice versa)

The mapping translates OWL’s classes to GF’s categories and OWL properties to GF’s functions that return propositions.
<table>
<thead>
<tr>
<th>Multilingual translation system</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWL-GF interoperability</td>
</tr>
</tbody>
</table>

Research topic

(Semi-)automatically construct GF’s abstract syntax from OWL ontologies.
Multilingual translation system

OWL-GF interoperability

Research topic

(Semi-)automatically construct GF’s abstract syntax from OWL ontologies.

Also, a Research topic not strictly related to translation:

Information retrieval from ontologies in multiple natural languages.
Multilingual translation system

OWL-GF interoperability

Research topic

(Semi-)automatically construct GF’s abstract syntax from OWL ontologies.

Also, a Research topic not strictly related to translation:

Information retrieval from ontologies in multiple natural languages.

! Museum case data are already in OWL.
Multilingual translation system

Robustness by statistics

Research topic

Develop hybrid MT methods that complete the GF-based ones by extending their coverage in unconstrained text translation.
Multilingual translation system

Robustness by statistics

Research topic

Develop hybrid MT methods that complete the GF-based ones by extending their coverage in unconstrained text translation.

At last, our task!

Hybridisation is closely related to the work in the Spanish project OPEN-MT2.
Develop hybrid MT methods that complete the GF-based ones by extending their coverage in unconstrained text translation.

At last, our task!
Hybridisation is closely related to the work in the Spanish project OPEN-MT2.

The patents case is a quasi-open domain suitable for it.
1. Probabilistic extension of a GF domain grammar.
1. Probabilistic extension of a GF domain grammar.

2. Adapt base SMT systems to the patents domain.
1. Probabilistic extension of a GF domain grammar.

2. Adapt base SMT systems to the patents domain.

3. Develop and test hybrid GF-SMT translation methods.
2.1 Base SMT system built with out-of-domain corpora.

Out-of-domain
2.1 Base SMT system built with out-of-domain corpora.

2.2 Use of small patents parallel corpora for adaptation.
2.1 Base SMT system builded with out-of-domain corpora.

2.2 Use of small patents parallel corpora for adaptation.

2.3 Explore the usage of synthetic corpora generated by GF.
2.3 Explore the usage of synthetic corpora generated by GF.

Use domain grammar to generate **correct** translations in the patent domain, which serve as more training examples for SMT.
2.3 Explore the usage of synthetic corpora generated by GF.

Use domain grammar to generate correct translations in the patent domain, which serve as more training examples for SMT.

But, some requirements are needed:

- Translations have to be varied.
- The balance between in-domain and general training corpora has to be properly set.
Multilingual translation system

Hybrid GF-SMT system

GF translation is high quality, thus there is no need of SMT when GF parses the input and generates a complete translation.
Multilingual translation system

Hybrid GF-SMT system

GF translation is high quality, thus there is no need of SMT when GF parses the input and generates a complete translation.

3.1 Baseline combination

Fall-back / back-off / cascaded approach, i.e., use pure SMT whenever GF fails to produce a translation of the source sentence or a source phrase.
3.2 Hard integration

Fix translation phrases produced by the partial GF analyses in a probabilistic decoding.

It constrains the search space with secure translations of some phrases, but GF predictions do not really interact with the SMT model.
3.3 Soft integration

GF scored partial output as **new features** in SMT decoding.

\[
\log P(e|f) \sim \lambda_{lm} \log P(e) + \lambda_g \log P(f|e) + \lambda_d \log P(e|f) + \\
\lambda_{di} \log P_{di}(e,f) + \lambda_w \log w(e) + \lambda_{GF} \log P_{GF}(e|f)
\]
3.3 Soft integration

GF scored partial output as **new features** in SMT decoding.

\[
\log P(e|f) \sim \lambda_{lm} \log P(e) + \lambda_g \log P(f|e) + \lambda_d \log P(e|f) \\
+ \lambda_{di} \log P_{di}(e, f) + \lambda_w \log w(e) + \lambda_{GF} \log P_{GF}(e|f)
\]

But, some **requirements** are needed:

- GF predictions have to be probabilistic.
- Phrase pairs without prediction must be complemented.
Final notes

In summary

Three innovations.

- Scale up grammar-based interlingual translation with GF from a set of successful experiments to a productive tool.
- Link GF grammars with web ontology standards and exploit ontologies in translation.
- Find useful ways of combining GF with statistical translation methods.
Three families of results.

- A tool for creating domain-specific translation systems.
- A set of tools for translators and the general public to translate documents.
- Three extensive case studies (mathematical exercises, biomedical patents, museum objects).
MOLTO software will be released as open-source software under GNU LGPL license, except for the patent translator which will be exploited by one of the partner companies.
Thanks!

GRÀCIES!

More about MOLTO at http://www.molto-project.eu/
MOLTO
Multilingual Online Translation

Cristina España-Bonet
TALP Research Center

Jornada sobre la Indústria de la Traducció entre Llengües Romàniques
València, September 8th, 2010
Aarne Rantra et al.
- Grammar development tools
- Museum case

Lauri Carlson et al.
- Translation tools
- Evaluation
Partners

People & Commitments

Borislav Popov et al.
- Ontology tools
- Web interfaces

Neil Tipper et al.
- Patents data
Jordi Saludes et al.
- Mathematic problems case

Lluís Màrquez et al.
- Statistical methods
Jordi Saludes et al.
- Mathematic problems case

Lluís Màrquez et al.
- Statistical methods
Enhance the multilingual mathematical GF library by adding a grammar for commanding a Computer Algebra System by natural language imperative sentences. Using ontologies to describe word problems, the system will be able to carry out a dialog with the student solving the problem.
Build an ontology-based multilingual grammar starting from a CRM ontology for artifacts at Gothenburg City Museum. The prototype will be tested for cross-language retrieval and representation, and for automatic generation of Wikipedia-like articles for museum artifacts in 5 languages.
Cases of study in depth

Biomedical and pharmaceutical patents

Create a commercially viable prototype of a system for multilingual translation and cross-language retrieval of patent abstracts and claims in at least 3 languages.