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Resum

Energia fosca variable a l’Univers

En algun lloc, alguna cosa incrëıble espera ser coneguda.

Carl Sagan

Introducció i motivació de la tesi

Un dels descobriments cient́ıfics més sorprenents dels últims temps és el fet que

l’Univers estigui en expansió accelerada. Avui en dia, hi ha un acord gairebé unànime

en la validesa del model de Big Bang: l’expansió de l’Univers es va originar a partir

d’un estat inicial de densitat i temperatura molt elevades i, des d’aquell moment,

ha estat creixent i refredant-se. Però, què passa amb l’efecte de la gravetat? No

s’hauria d’estar frenant l’expansió? Per què està accelerant-se?

Aquesta tesi pretén contribuir a la resposta abordant el tema de l’energia fosca.

El mateix nom ja ens indica la naturalesa del problema: desconeixement complet.

L’adjectiu fosc s’utilitza per descriure alguna cosa que ajusta i reprodueix les ob-

servacions però que no coneixem. Habitualment es tracta com una nova forma

d’energia. Per què no? Tot sembla ser finalment energia i la nostra ment està

preparada i predisposada a conèixer-ne noves formes. Però aquesta no és l’única

explicació possible. Altres aproximacions al problema proposen modificacions a la

relativitat general. I fins i tot altres punts de vista més exòtics, o més senzills o

revolucionaris s’haurien de tenir en compte i constrastar-los amb les observacions.

Actualment, sembla que hi ha molts camins per tractar de respondre la pregunta,
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però en tots ells s’està lluny d’arribar al final. Potser ni tan sols hem trobat el camı́

correcte encara. En aquesta tesi s’ha intentat avançar per un d’ells.

El model de Big Bang o Gran Explosió

La descripció més acurada i propera al naixement de l’Univers que podem donar

és que la seva expansió es va originar en una explosió que va fer que el teixit espa-

ciotemporal amb tot el seu contingut comencés a estirar-se enormement. Aquesta

teoria va ser presa seriosament per primera vegada als anys 30 com a conseqüència

de les equacions d’Albert Einstein, la solució obtinguda per Georges Lemâıtre, i els

resultats experimentals de Vesto Slipher i Edwin Hubble que demostraven que les

galàxies s’estan allunyant de nosaltres. Al principi, en una societat que creia en un

univers estàtic, la idea va generar molts detractors. A més, el fet que un univers

en expansió impliqués un origen i, per a alguns, necessàriament un creador, causava

problemes tant f́ısics com filosòfics.

La interpretació del model ha anat canviant amb el temps i, actualment, s’entén

per Big Bang la descripció de l’Univers fins a l’instant de Planck, sense assumpcions

sobre l’origen o instant inicial. Fins ara, aquest model està superant amb èxit els

tests que se li plantegen i són diversos els resultats observacionals que li donen

suport. El Big Bang està recolzat sobre quatre pilars ben sòlids, quatre prediccions

que s’han pogut contrastar de manera acurada.

El primer, òbviament, la confirmació experimental que l’Univers està en expansió.

Edwin Hubble i Milton L. Humason treballaven en la mesura de distàncies i redshifts

a Mount Wilson. Les seves mesures juntament amb les de Slipher els van permetre

veure que els espectres estaven més correguts cap al vermell com més llunyanes eren

les galàxies. Les galàxies havien d’estar allunyant-se de nosaltres. Aquest resultat

els va portar el 1929 a establir una relació entre la distància i la velocitat de recessió,

la llei de Hubble [105].

Més tard, el 1948, George Gamow justificava les abundàncies qúımiques de l’U-

nivers com a resultat de les reaccions que es van produir durant el Big Bang [8].

Aquesta nucleośıntesi primordial és la responsable de la formació dels elements més

lleugers que el beril·li [135, 185].
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El mateix Gamow va deduir en els seus càlculs que una explosió d’aquestes ca-

racteŕıstiques on es prodüıa una gran quantitat de reaccions termonuclears havia de

generar radiació. Des del moment en què els fotons es desacoblen de la matèria, co-

mencen la seva evolució independent que els fa refredar paulatinament. Actualment

s’haurien d’observar com un fons de microones: la radiació còsmica de fons (CMB).

Per aquells temps, la tecnologia no era suficient per detectar una radiació d’energia

tan baixa, però alguns anys més tard, el 1964, Arno Penzias i Robert Wilson van

descobrir la radiació còsmica de fons gairebé per casualitat [143]. Curiosament, un

grup dirigit per Robert Dicke estava treballant en la detecció del bany de fotons [62]

i els dos grups van poder explicar les observacions conjuntament.

La detecció de la radiació predita va afermar el model de Big Bang com a model

cosmològic estàndard, però encara quedava un quart test. Un cop l’Univers s’havia

refredat suficientment com per estar dominat pels nuclis atòmics, la gravetat hauria

fet col·lapsar qualsevol petita inhomogenëıtat, disposant les llavors per a la formació

d’estructura. A banda de la prova palpable que estem envoltats d’agrupacions de

matèria com ara galàxies i cúmuls, la radiació de fons ens proporciona una altra

vegada un indici de les llavors de la formació d’estructura donat per petites ani-

sotropies de temperatura d’ordre 10−5. Aquestes anisotropies les va observar per

primer cop el satèl·lit COBE (COsmic Background Explorer) el 1992 [178].

Tot i el gran èxit del model de Big Bang, hi ha resultats que no es poden explicar

directament dels seus principis o que necessiten filar massa prim en els paràmetres

lliures. Algun d’ells són els que podem anomenar problemes clàssics: Com pot ser

l’univers observable homogeni si no podia estar causalment connectat poc després

del Big Bang? Com podem observar un univers pla si això implicaria una precisió en

el valor de la curvatura original de 10−60? Què va produir l’evident asimetria entre

matèria i antimatèria? I altres problemes estan més relacionats amb el coneixement

dels que semblen els components majoritaris de l’Univers: Què és la matèria fosca?

Com pot ser que l’Univers estigui en expansió accelerada? O, què és l’energia fosca?

Un complement perfecte: la inflació

Per tal de solucionar principalment els dos primers problemes, els que hem anomenat

clàssics, Alan Guth [96] i Andrei Linde [123, 4] van desenvolupar les primeres teories

inflacionàries. Hi ha diverses variacions d’inflació, però en totes elles l’espai-temps
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experimenta un peŕıode d’expansió exponencial. En la teoria original de Guth, l’U-

nivers es troba encallat en un fals buit fins que decau a un estat d’energia més

baixa. Les bombolles de buit real que es van creant en l’estat metastable s’expan-

deixen ràpidament. En la teoria de Linde, un camp escalar, l’inflató, descèn pel seu

potencial creant una expansió accelerada fins que arriba al mı́nim i l’inflató decau a

radiació.

La inflació en aquesta forma simple ja resol quatre problemes que el model de

Big Bang sol no pot explicar. Primerament, una expansió exponencial diluiria la

densitat de monopols de manera que fos prou baixa com perquè en el volum d’u-

nivers observable no se’n veiés cap. Segon, les fluctuacions quàntiques primordi-

als quedarien congelades convertint-se en les llavors per a la formació d’estructura.

A més, la ràpida expansió també suavitzaria qualsevol curvatura inicial de l’Uni-

vers apropant-lo a una geometria plana. Finalment, les petites regions causalment

connectades abans de la inflació creixerien molt més ràpid que la transmissió d’in-

formació durant el mateix peŕıode, i l’actual univers observable podria pertànyer

completament a una d’aquestes regions, cosa impossible amb una expansió lineal.

Això explicaria per què l’Univers és tan homogeni.

Algunes de les prediccions dels models inflacionaris es poden verificar amb ob-

servacions. Tres anys de dades de l’equip de WMAP [183] han confirmat la homo-

genëıtat i isotropia en una part entre 105 i la planor a la centèsima. Els models

inflacionaris prediuen un espectre de fluctuacions de densitat gaussià i gairebé inva-

riant amb l’escala. Els resultats dels sondejos de galàxies i del CMB són compatibles

amb aquestes assumpcions. A més, la polarització del CMB hauria de permetre de-

tectar un fons d’ones gravitacionals generades a la inflació, una altra predicció de la

teoria.

Com es pot veure, els models inflacionaris són adequats perquè a banda de

descriure les observacions fan un gran número de prediccions contrastables. Això

fa que la manca d’un mecanisme que generi la inflació i del coneixement del mateix

inflató no hagi evitat que el model sigui àmpliament acceptat. Evidentment, és un

camp de recerca molt actiu tant en el vessant teòric com en l’experimental, i propers

models de la f́ısica de part́ıcules conjuntament amb futures observacions haurien de

completar en breu el nostre enteniment de la inflació.
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El costat fosc

A la vegada, hi ha una necessitat creixent d’incloure nous components foscos al model

de Big Bang. Per una banda la matèria fosca es va convertir en un requeriment

per tal de justificar les corbes de rotació de les galàxies mesurades [214, 163]. Per

altra banda, l’energia fosca és l’ingredient clau per explicar l’acceleració de l’Univers

[158, 145].

La matèria fosca és, per definició, un tipus de matèria que no interacciona amb

els fotons. No és, doncs, visible i només es pot detectar per efectes gravitacionals.

Pot ser tant bariònica com no bariònica i, probablement, n’hi ha de les dues classes.

Nans marrons, planetes i forats negres són matèria fosca però no n’hi ha la quantitat

suficient per cobrir tota la massa que falta. La matèria fosca no bariònica pot ser

de dos tipus: relativista com els neutrins (matèria fosca calenta) i no relativista

com els hipotètics WIMP (matèria fosca freda). Simulacions sobre la formació de

l’estructura a gran escala mostren que la matèria fosca freda (CDM) és necessària

per permetre que les agrupacions de matèria petites col·lapsin i es vagin fusionant

fins formar les estructures observades. De l’ús dels resultats de corbes rotacionals,

lents gravitatòries, distribucions de temperatura de gas calent o les anisotropies del

CMB, es desprèn que la matèria fosca ha de ser uns set cops més abundant que la

visible. La major part ha de ser, a més, desconeguda i no un component del model

estàndard de part́ıcules.

Quan les teories inflacionàries es van començar a imposar, la matèria fosca es va

agafar com a solució per reconciliar la predicció d’un univers pla amb la quantitat

insuficient de matèria visible. Als 90, el resultats de COBE van reforçar per la

banda observacional la creença que l’Univers era pla, però ja en aquesta dècada les

mesures de la densitat de matèria fosca eren prou precises per veure que la seva

densitat tampoc era suficient per fer l’Univers pla. La constant cosmològica va

sortir al rescat, tal com va passar quan Einstein volia descriure un Univers estàtic.

S’apel·lava, doncs, a un tipus d’energia fosca.

L’energia fosca és una font d’energia amb pressió negativa que actua com a força

repulsiva. Com a densitat, és una component addicional que s’afegeix a les conegudes

per determinar la curvatura de l’Univers. Dinàmicament, però, la pressió negativa

contraresta la gravetat i causa l’acceleració de l’expansió.
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Les distàncies extragalàctiques són molt més sensibles a la dinàmica de l’Univers

del que ho podria ser la radiació de fons de microones que només descriu un punt

del passat. Aix́ı, doncs, la distància a supernoves llunyanes hauria de proporcionar

una mesura més adequada de l’acceleració de l’Univers i, per tant, de l’energia fosca

del que ho feia el CMB. Però va caler esperar fins al 1998 perquè un univers sense

energia fosca fos descartat amb més d’un 99% de probabilitat.

El compendi de resultats establerts a final de segle ha configurat el que s’anomena

model de concordança o model Λ-CDM. Un model coherent amb el Big Bang, la

inflació, amb matèria fosca freda i constant cosmològica amb les densitats adients per

obtenir un univers pla. Però aquest model ens deixa en una situació d’ignorància:

només el 4% de l’Univers està fet de matèria ordinària, el 96% restant està en forma

de matèria i energia fosca per als quals només som capaços d’aventurar algunes

conjectures teòriques. Resulta molt dif́ıcil construir una teoria que ens descrigui un

univers del qual tot just un 4% del seu contingut ens resulta familiar.

Filosòficament, un univers d’aquest estil torna a canviar la concepció que tenim

de nosaltres mateixos. Per als grecs, la Terra era el centre de tot i nosaltres ocupàvem

una posició privilegiada a l’Univers. Després, el principi cosmològic ens va col·locar

en una situació ben comuna. Estem orbitant una estrella t́ıpica que està a les afores

d’una galàxia t́ıpica en un cúmul t́ıpic. A més, estem constitüıts pel mateix material

que la resta d’elements de l’Univers. Ara sembla que ens tornem a diferenciar, com

a mı́nim sota el punt de vista que la nostra biologia està restringida als barions, que

estan resultant ser un component rar de l’Univers.

Constant cosmològica i energia fosca

El candidat més natural per accelerar l’Univers és la constant cosmològica. Primer,

perquè és solució de les equacions d’Einstein. Segon, perquè segons la mecànica

quàntica, el buit té una energia. Desafortunadament, una comparació directa en-

tre la constant cosmològica de les equacions d’Einstein amb l’energia quàntica del

buit discrepa de les observacions en 1055 ordres de magnitud. I el desacord no és

només amb les observacions sinó també amb qualsevol curvatura coherent amb l’-

experiència. Aquesta discordància o l’afinament necessari per compensar les dues

constants i fer la seva suma compatible amb les observacions és el que es coneix

com el problema de la constant cosmològica. Per què la densitat d’energia fosca és
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tan petita avui? O en altres paraules, el problema de la coincidència temporal: Per

què és tan propera a la densitat de matèria? (Per ampliar la informació veure per

exemple [44, 167, 132].)

Una resposta al problema, la pot donar una constant cosmològica dependent del

temps. Una funció d’aquest estil segueix sent solució de les equacions d’Einstein.

Sota el punt de vista f́ısic, la constant cosmològica ha d’experimentar un running si

es considera dintre d’una teoria quàntica de camps. A l’espera d’una teoria quàntica

de camps de la gravitació, l’aproximació semiclàssica hauria de ser suficient per

permetre’ns contrastar la idea amb observacions. Aquesta possibilitat s’explorarà

en detall al llarg de la tesi.

El concepte d’energia fosca dependent del temps s’acostuma a tractar, però,

a través d’un camp escalar dinàmic, el camp de quinta essència. La idea és una

reminiscència de la inflació. Si la constant cosmològica interpretada com a energia

quàntica del buit té similituds amb la teoria inflacionària de Guth, la quinta essència

recorda el model de Linde. Un camp escalar va disminuint el seu potencial amb el

temps [142, 57, 162]. Actualment, es troba prop del seu mı́nim amb velocitat gairebé

nul·la, i això crea una energia constant i una pressió negativa amb efecte similar al

de la constant cosmològica. També s’han considerat camps amb una energia cinètica

no canònica, k-essència [12, 128]. De fet, hi ha moltes versions de la quinta essència

original, però en tots els casos es fa necessari donar una interpretació f́ısica al camp

escalar i afinar enormement els valors dels seus paràmetres.

Una branca diferent de models pretén explicar l’acceleració mitjançant modi-

ficacions de la relativitat general [150, 164, 138]. En alguns casos es considera

l’existència de dimensions addicionals a les 4 espaciotemporals [64, 58, 71], en al-

tres, s’inclouen termes extra dependents de la curvatura a les equacions d’Einstein

[23, 120, 133, 130], o bé s’apel·la a teories tensorials de la gravitació [173, 61, 28, 72].

Dintre de l’àmplia bibliografia dedicada a l’energia fosca també es troben justifi-

cacions al valor de la constant cosmològica basats en principis antròpics [205, 86], i

extensions per a camps de quinta essència per exemple [85]. Per acabar aquesta breu

compilació que de cap manera pretén ser exhaustiva, comentarem que la formulació

actual de la Teoria M necessita que la constant cosmològica sigui nul·la o tendeixi a

zero en el futur; tot i això, s’està treballant en variacions que accepten valors com

l’observat [33].
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Amb aquest ventall de models resulta molt dif́ıcil destacar-ne un per davant dels

altres. Tots es poden ajustar de manera que acabin descrivint les observacions, però

aquests ajustos no tenen al darrera una teoria completa i consistent que els avali.

Per obtenir aquesta teoria, caldrà esperar a modificacions del model estàndard de

part́ıcules o a una combinació exitosa de la relativitat general i la mecànica quàntica

de què se’n dedueixi la seva forma.

Per la banda observacional, veure l’energia fosca és tot un repte. És una com-

ponent de densitat baixa, està distribüıda homogèniament i no interacciona amb la

gravetat. A més, el seu domini ha de ser recent; d’altra manera les pertorbacions

a la matèria no haurien pogut créixer per poder formar l’estructura a gran escala

actual. Tanmateix, l’energia fosca afecta dos fenòmens que es poden quantificar:

l’expansió de l’Univers i el creixement de l’estructura.

Les millors eines de què es disposa per estudiar l’expansió de l’Univers són les

supernoves Ia (SNe Ia). La variació de la magnitud aparent d’aquests objectes amb

la distància va proporcionar la primera indicació clara de l’acceleració de l’expansió

[158, 145]. Avui en dia, encara són el mètode més prećıs de mesurar la quantitat

d’energia fosca i la seva equació d’estat [160, 211].

De la mateixa manera, les oscil·lacions acústiques dels barions (BAO) es poden

tractar com un regle estàndard que es pot mesurar com a funció del redshift [70,

144]. Encara que aquestes oscil·lacions són molt més sensibles a la densitat de

matèria que d’energia fosca, la ĺınia de degeneració entre els paràmetres és gairebé

perpendicular a la degeneració de les supernoves, i la combinació d’ambdues mesures

resulta tremendament útil.

Un altre fenomen f́ısic que es veu influenciat per la presència d’energia fosca és

la deflexió de la llum en travessar zones properes a grans acumulacions de massa.

Les lents gravitacional dèbils ofereixen una gran quantitat de tests possibles. La

mesura estad́ıstica de la distorsió indüıda per l’estructura a gran escala [210, 104] o

la cosmografia de correlació creuada que utilitza les distorsions a diversos redshifts

[112, 27] són dues maneres d’obtenir resultats acurats i complementarietat amb les

proves anteriors.

A més del seu paper com a lents gravitacionals, el cúmuls de galàxies es poden

utilitzar directament per a aquesta tasca donat que la seva abundància i distribució

espacial depèn de la quantitat d’energia fosca present. L’efecte en el número de
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comptes de cúmuls com a funció del redshift ja s’està utilitzant per discriminar entre

models [182, 129]. El mateix passa amb mesures del canvi de la fracció de gas que

emet en raigs X en els cúmuls [6].

Finalment, la cosmologia no pot oblidar tota la informació amagada a la radiació

còsmica de fons. Les mostres del CMB a favor d’un Univers pla [183] són i han estat

una forta indicació de l’existència d’energia fosca. La seva naturalesa, però, s’expli-

ca millor amb altres experiments, mentre que el CMB és de màxima importància

en l’estudi de l’Univers primordial i en la determinació de la densitat de matèria.

De totes maneres, efectes relacionats com ara l’efecte Sachs Wolfe integrat (ISW)

utilitzen aquesta radiació ben coneguda per tal de confirmar la detecció de l’energia

fosca a través de mètodes complementaris [51, 88, 37].

Models d’evolució de la constant cosmològica

La primera tasca d’aquesta tesi ha estat motivar un marc on la constant cosmològica

experimenta de manera natural una evolució amb el temps. En aquest cas, l’evolució

dependrà de les part́ıcules de manera que el seu valor pot quedar justificat per

aquestes i solucionar el problema de la constant cosmològica.

En el context d’una teoria quàntica de camps amb els camps situats en un espai-

temps corbat (aproximació semiclàssica), l’acció de la teoria inclou un terme d’inte-

racció amb el camp gravitatori. Per tal que la teoria sigui renormalitzable, cal afegir

la constant cosmològica a l’acció de Hilbert-Einstein i nous termes amb derivades

d’ordre superior de la mètrica a l’acció total. Després del procés de regularització,

es trenca la invariança d’escala i els paràmetres de la teoria passen a dependre de

l’energia. Aquesta dependència es veu reflectida en les equacions del grup de re-

normalització. Concretament la funció β és la que descriu l’evolució de la constant

cosmològica (i la constant de Newton) amb l’escala de renormalització µ.

El càlcul de la funció β resulta complicat en un espai-temps corbat i s’acostuma

a fer pertorbativament sobre un espai-temps pla. Aix́ı, s’ha calculat βΛ en l’esquema

MS:
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on mi són els graus de llibertat lleugers amb µ > mi, Mj són els pesants amb

µ < Mj, i i i j representen els camps massius. A, B, C i D són constants, i n l’ordre

del desenvolupament.

Per solucionar els problemes d’interpretació d’aquest esquema cal plantejar diver-

ses hipòtesis sobre el significat de l’escala de renormalització i sobre el desacoblament

dels graus de llibertat massius. Això ens ha fet considerar tres escenaris cosmològics

diferents:

Escenari M actius Part́ıcules µ

1 mi < µ neutrins ρ
1/4
c (t)

2 Mi > µ SM ρ
1/4
c (t)

3 Mi > µ Plank H(t)

El domini dels graus de llibertat massius Mi és possible en el cas de la constant

cosmològica perquè gràcies a la seva dimensionalitat experimenta el que s’anomena

un desacoblament suau.

Amb les especificacions de la taula superior, l’evolució de la constant cosmològica

per a l’Escenari 1 és:
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Les conseqüències de l’Escenari 3 han estat desenvolupades especialment. Les

equacions de la cosmologia depenen en aquest cas d’un únic paràmetre funció de les

masses M properes a l’escala de Planck MP : ν = σM2/12 πM2
P . La resolució de les

equacions del grup de renormalització conjuntament amb l’equació de Friedmann

i la de continüıtat mostren l’evolució de la constant cosmològica com a funció del

redshift, la variable més convenient observacionalment:

Λ(z; ν) = Λ0 + ρ0
M

ν

1 − ν

[
(1 + z)3(1−ν) − 1

]

+ ρ0
M

2 νΩ0
K

1 − 3ν

{
z (z + 2)

2
+

ν

1 − ν

[
(1 + z)3(1−ν) − 1

]}
.

Es produeix una transferència d’energia entre la matèria i la constant cosmològica,

ja que el fet que aquesta evolucioni afegeix el terme d’intercanvi en l’equació de con-

tinüıtat. D’aquesta manera, la matèria també es veu afectada pel running. Això

evidentment afecta l’expansió de l’Univers i té repercussió en observables com la

distància-lluminositat. Per fer que l’evolució sigui compatible amb el model de Big

Bang cal que l’́ındex cosmològic ν estigui restringit al rang |ν| ≪ 1. Aquest ĺımit

no resta potència al model perquè el valor més natural obtingut per a M ∼ MP

correspon a aquest interval: ν0 = 1/12π ≈ 0,026.

Dintre d’aquest rang i comparant amb el model cosmològic estàndard amb ν = 0,

es pot veure (Fig. 1) que per un ı́ndex cosmològic negatiu la densitat de matèria

creix més ràpid cap al passat, mentre que per ν positiu el creixement és més lent

que l’habitual (1 + z)3. Mirant cap al futur la distinció no és apreciable perquè per

qualsevol valor de ν la densitat de matèria tendeix a zero. El contrari passa per la

constant cosmològica. És per ν positiu (negatiu) que la constant cosmològica aug-

menta (disminueix) cap al passat, mentre que en el futur tendeix a un valor positiu

i constant. Òbviament, el canvi en ρ(z; ν) i Λ(z; ν) respecte el cas estàndard causa

variacions en altres paràmetres relacionats com ara el paràmetre de Hubble, el de

desacceleració, o el redshift de transició en què es produeix el pas d’un univers domi-

nat per matèria a un dominat per la constant cosmològica. Tots ells paràmetres que

haurien d’ajudar a detectar l’evolució mitjançant observacions a distàncies properes.

Per altra banda, els tests sobre aquests models no s’haurien de restringir només

a distàncies properes. Els efectes del running han estat comparats amb resultats del

CMB o el creixement de les pertorbacions de densitat [136, 77] confirmant la necessi-
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Figura 1: (a) Densitat de matèria i (b) constant cosmològica en un univers pla amb

Ω0
M = 0,3 i Ω0

Λ = 0,7 segons el running a l’Escenari 3.

tat de |ν| ≪ 1. Dintre d’aquest treball tampoc s’han explorat les conseqüències que

poden tenir els termes d’ordre més gran afegits a l’acció per motius de renormaliza-

bilitat, com ara la causa d’un peŕıode inflacionari. Si això fos aix́ı, es completaria

una manera elegant de generar la inflació i, a la vegada, explicar l’acceleració actual.

En aquesta tesi, però, ens hem centrat principalment en utilitzar les observacions

de SNe Ia que s’obtenen de l’Univers més proper, 0 < z < 2, i comparar aquesta

famı́lia de models amb altres tipus de fonts d’energia fosca.

Per poder fer la comparació pot ser útil caracteritzar tots els models d’una ma-

teixa manera. Normalment aquesta manera és determinar la seva equació d’estat:

p(t) = w(t)ρ(t). Aquesta és la descripció per a un camp de quinta essència i aqúı

el considerarem com a arquetip. Matemàticament, però, la major part de les fonts

d’energia fosca es poden reescriure com un fluid perfecte amb una pseudo-equació

d’estat de la forma p = w̃(z)ρ. Això permet tractar qualsevol model en una mateixa

equació de Friedmann amb la densitat d’energia fosca definida per w̃ (Eq. 4.10).

Hem dedüıt o compilat la quantitat w̃(z) per a alguns dels candidats d’energia fosca

més prometedors: un gas Chaplygin, models Cardassian, modificacions a la relativi-

tat general, models de loop quantum cosmology, i, evidentment, models d’evolució

de la constant cosmològica per efectes de renormalització. És d’esperar que d’aques-

ta manera resulti més fàcil identificar el model real a partir d’observacions. Però en

el fons, ens trobem davant una primera indicació del problema de degeneració que
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afrontem amb l’energia fosca: si cada model es pot expressar com un fluid perfecte

amb w̃, haurà d’estar degenerat amb el corresponent model de quinta essència amb

w i amb les altres alternatives caracteritzades amb la mateixa w̃.

La degeneració en w(z) rep també altres contribucions. La forma matemàtica

que relaciona l’equació d’estat amb l’observable distància-lluminositat, una integral

doble, suavitza qualsevol evolució possible. Per altra banda, quan es determina con-

juntament amb altres paràmetres, les correlacions entre ells augmenten la degene-

ració de l’equació d’estat amb petits canvis dels paràmetres cosmològics. La solució

a aquest últim problema ve donada per incloure priors i combinar resultats d’altres

mètodes. El primer problema és caracteŕıstic de l’ús de distàncies extragalàctiques

i afectarà els nostres resultats amb SNe Ia. A més, la dispersió intŕınseca de les su-

pernoves actualment o el nivell de sistemàtics en experiments futurs limitarà també

la discernibilitat que es podrà detectar, que acabarà sent el que defineixi el significat

pràctic de degeneració.

A la recerca de la cosmologia subjacent

Tot i les limitacions que acabem de nomenar en l’ús de les SNe Ia, aquesta candela

estàndard calibrable segueix sent una de les millors eines de què es disposa, i les seves

determinacions del model cosmològic de les més precises. A continuació, s’utilitzaran

les dues compilacions de supernoves més recents: les 182 SNe Ia de Riess et al. (2006)

[160] (R06) i les 162 SNe Ia de Wood-Vasey et al. (2007) [211] (VW07).

Cal dir que ambdós conjunts difereixen tant en el redshift mitjà com en els

mètodes de calibració de les supernoves. És per això que mentre R06 afavoreix un

univers de densitat elevada, VW07 es decanta per un univers de densitat més baixa.

De fet, alguns dels resultats que es mostren a continuació són incompatibles entre ells

a un nivell d’1σ abans d’utilitzar informació a priori complementària (Fig. 2). Quan

imposem que la cerca es restringeixi a un univers pla com indica l’estudi del CMB,

aquesta discrepància entre la densitat de l’Univers és trasllada al comportament de

l’energia fosca. Les dades de R06 tendeixen a universos on l’energia fosca s’està

fent important ara, mentre que amb VW07 la seva densitat augmenta en el passat.

Hem mostrat que la diferència en el redshift mitjà (< zR06 >= 0,54 ± 0,35 vs.

<zV W07 >= 0,38±0,27) no és exclusivament responsable d’aquest desacord obtenint

resultats per al subconjunt de redshift més baix de R06 de manera que fos comparable
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Figura 2: Regions de confiança per als paràmetres cosmològics utilitzant dos conjunts

de dades: R06 [160] i VW07 [211]. (a) Regions 1σ on es comparen els resultats actuals

amb els que es tenien a finals dels 90 (Perlmutter et al. (1999) [145]). (b) Regions 1σ,

2σ i 3σ obtingudes en afegir la informació de les BAO. La inclusió dels priors afecta

considerablement les conclusions obtingudes amb les SNe Ia soles.

amb VW07. Aix́ı, les diferències s’han d’atribuir majoritàriament a les tècniques de

calibració, no només entre els dos conjunts de dades sinó també entre subconjunts

com passa en la compilació de R06.

Per completitud utilitzem els dos conjunts de dades. Els paràmetres d’una cos-

mologia estàndard amb constant cosmològica o una font d’energia fosca que evolu-

ciona amb el temps segons w(z) = w0 + wa z/(1 + z) s’han determinat per diversos

mètodes amb ambdós conjunts de dades. També han estat ajustades algunes teories

alternatives per tal de comparar-les amb aquesta parametrització estàndard. En

aquesta tesi, es presta una atenció especial als models de running de la constant

cosmològica. Per cada un dels tres escenaris que hem descrit definim un paràmetre

que engloba tots els efectes de l’evolució (en general els anomenem θ):

τ ≡ 1

2
m4

S − 4
∑

ν

m4
ν per a l′Escenari 1,
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Figura 3: Regions de confiança per als paràmetres relacionats amb la forma de l’energia

fosca obtinguts amb les dades de la Ref. [56]. Les corbes vermelles afegeixen un prior

en les determinacions (veure Caṕıtol 6 per als detalls).
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η ≡ 1

2

∑

i

Ni −
5

4
per a l′Escenari 2,

ν ≡ σ

12 π

M2

M2
P

per a l′Escenari 3.

El paràmetre τ de l’Escenari 1, és compatible marginalment a 1σ amb l’absència

observable de running. Els resultats amb les dades de VW07 estan més a prop

de la constant cosmològica; els de R06 afavoreixen una evolució negativa amb el

redshift. Aquesta evolució negativa permet de donar un ĺımit superior a la massa

dels neutrins més lleugers de mν = 0,007 ± 0,006 eV . Per l’evolució positiva, la

massa dominant ha de ser la d’un camp escalar que contraresta l’efecte dels neutrins

de manera que l’evolució es comporta com si fos prodüıda per una massa efectiva de

l’ordre de meff = 0,01±0,01 eV . La degeneració de τ amb Ω0
M és important, i afegir

el prior Ω0
M = 0,27 ± 0,03 disminueix la incertesa en la determinació a la meitat.

Malgrat que d’aquesta manera el valor de τ està més a prop de la manca d’evolució,

la constant cosmològica o l’absència d’una evolució efectiva segueix estant a més

d’1σ del millor ajust.

A l’Escenari 2, el paràmetre que té en compte el running, η, està altament

degenerat amb la constant de Hubble (de fet, en general amb qualsevol forma del

punt zero de la magnitud). Això fa imprescindible la informació de H0 per poder

trencar la degeneració. Un cop fixem el seu valor a aquell determinat per cada

conjunt de dades, la constant cosmològica està dintre dels intervals de probabilitat

d’1σ, però el valor predit pel model estàndard de part́ıcules, η = 10,75, s’aparta del

millor ajust en més de 2σ per les dades de R06 i just en el ĺımit per VW07. Encara

que sembla clar que el model estàndard es veurà modificat amb la inclusió de noves

part́ıcules a mesura que ens apropem a l’època de Planck, de moment això fa aquest

escenari menys atractiu observacionalment que els altres dos.

Per a l’Escenari 3, les coses són molt similars a l’Escenari 1. El comportament

de ν i τ és exactament el mateix, però τ porta impĺıcita la informació com una

quarta potència, τ ∝ m4, i el seu coneixement permet restringir el valor de la

massa. En el cas de ν, els models teòrics es decanten per valors molt propers a zero,

i les dades actuals no poden obtenir la precisió adequada per diferenciar aquests

valors de del cas d’una veritable constant cosmològica. Les dades de R06 descarten

ν0 = 0,026 a més d’1σ i privilegien les evolucions negatives. Per VW07, en canvi,

ν0 és perfectament compatible, però les incerteses de més de 10 vegades el seu valor

fan dif́ıcil de restringir-lo. Tot i aix́ı, s’afavoreix una evolució positiva i pronunciada
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amb aquest conjunt. Cal notar que, en aquest cas, encara que s’arribés a determinar

ν = 0 amb gran precisió això podria ser signe de l’absència de part́ıcules properes a

l’escala de Planck, i no implicarà necessàriament la invalidesa de la teoria.

En resum, veiem que les dades actuals de SNe Ia no són suficients per restringir

significativament els paràmetres de la f́ısica de part́ıcules, i els models de la f́ısica

de part́ıcules amb els paràmetres estàndard no acaben de descriure les observacions

satisfactòriament, cosa que obre la porta a una nova f́ısica. No obstant això, hem

vist que fins i tot el signe de l’evolució acaba depenent de les dades utilitzades, i

caldrà esperar missions futures per tal d’obtenir valors acurats. De moment, els

dos conjunts han estat combinats igualant els seus punt zero (Davis et al. (2007),

D07, [56]). Aquesta combinació s’ha d’acabar fent amb la calibració de totes les

dades amb un mateix mètode, però ara, serveix per obtenir una visió més general

dels resultats. Com era d’esperar, els resultats estan a mig camı́ entre R06 i VW07

(Fig. 3). D’ells, no se’n desprèn cap necessitat de running, evolució o partença de

w0 = −1: si l’energia fosca no és la constant cosmològica almenys s’ha de comportar

com si ho fos. De fet, el running ha d’existir si la constant cosmològica es considera

dintre d’una teoria quàntica de camps, però els seu efecte actual seria inapreciable.

Tanmateix, les regions de confiança encara estan lluny de poder restringir els models

de running de la constant cosmològica, i, com acabem de dir, noves dades es fan

necessàries.

En comparar aquests resultats amb els d’una equació d’estat constant, es pot

veure que les dades actuals posen cotes molt més restringents per w0 que per θ. R06

o VW07 acoten w0 amb una precisió del 10% si es considera el prior gaussià de les

BAO. A més, la constant cosmològica sempre es manté dintre dels intervals d’1σ. En

els escenaris 1, 2 i 3, la constant cosmològica s’allunya de vegades fins a 2σ del millor

ajust i les incerteses en τ , η i ν mai s’acosten a aquest 10%, i, el que és pitjor, en

molts casos arriben a ser del 100%. La justificació està basada en el comportament

de l’energia fosca. Per a les dues famı́lies de models, l’evolució s’engloba en un únic

paràmetre, però la f́ısica és diferent perquè una θ constant implica una w̃(z) amb

evolució. Això fa que les diferències degudes al running siguin importants respecte

a una veritable constant cosmològica a redshifts alts, mentre que a redshift zero ja es

poden observar les diferències entre models d’equació d’estat constant. És degut a

això que es necessiten dades a més alt redshift per detectar els escenaris amb running

que no pas diferents equacions d’estat constants.
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Reconstruccions amb un mètode invers

Abans de veure com les missions futures per obtenir SNe Ia poden millorar el conei-

xement dels paràmetres anteriors, sembla profitós comprovar si determinacions de

les funcions cont́ınues Λ(z) i w(z) ens aporten més informació ja en l’actualitat. Per

fer-ho, es necessita un mètode matemàtic que permeti recuperar funcions a partir

d’un conjunt discret de dades. Els mètodes inversos acostumen a afrontar aquest

problema. En aquest treball, n’adaptem una aproximació bayesiana no lineal i no

paramètrica per a les reconstruccions.

Aquest mètode invers tracta les dades i les incògnites de la mateixa manera.

Les dades són mesurables directament i es caracteritzen pel valor mesurat i la seva

incertesa; les incògnites no són mesurables directament i s’han de descriure per

informació a priori. Si s’assumeix que les dues quantitats estan distribüıdes de

forma gaussiana, la funció objectiu a minimitzar es composa de dos termes que

representen densitats de probabilitat gaussianes:

S ≡ 1

2

(
y − yth(M)

)∗
C−1

y

(
y − yth(M)

)
+

1

2
(M −M0)

∗ C−1
0 (M− M0) .

La primera es correspon amb la informació donada per les dades i és la ma-

teixa que en una minimització χ2. La segona afegeix la informació a priori en les

incògnites, com hav́ıem fet amb anterioritat en les parametritzacions discretes amb

el teorema de Bayes. Aquesta és la raó per què diem que és una aproximació baye-

siana, i és necessària per tal de regularitzar la inversió. La minimització de la funció

objectiu s’ha fet mitjançant un mètode de Newton aproximant el hessià de manera

que els termes de segon ordre no s’han tingut en compte. Això porta a una funció

iterativa per a cada paràmetre (o funció) que es vol determinar, i, un cop s’ha arribat

al mı́nim, a una expressió per a la incertesa. Per exemple, per a l’equació d’estat:

w[k+1](z) = w0(z) +

N∑

i=1

Wi [k]

∫ zi

0

Cw(z, z′)gw[k](z
′)dz′ ,

σ̃w(z)(z) =

√√√√σ2
w(z) −

∑

i,j

Cw · ∂yth
i

∂w(z)
(S−1)i,j

∂yth
j

∂w(z)
· Cw .
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Figura 4: (a) Reconstrucció de w(z) i (b) Ω0
Λ(z) a partir de 1000 inversions de les dades

de R06 amb priors aleatoris entre −3 < w(z)0 < 1. La ĺınia cont́ınua mostra la mitjana

de les inversions i la de punts la inversió amb S ḿınima.

Els priors sempre juguen un paper en aquest mètode. Tant la solució com la in-

certesa depenen del prior, però si aquests són prou amplis la dependència es debilita.

El problema és que els priors amplis no sempre permeten la convergència de l’al-

goritme. Aquest contratemps se supera amb una exploració Monte Carlo de l’espai

de solucions. Per a l’equació d’estat s’ha utilitzat −1,5 ≤ w(z) ≤ −0,5 ampliant-lo

a −3 ≤ w(z) ≤ 1 en l’exploració Monte Carlo. En la reconstrucció de Λ(z), s’ha

deixat variar la densitat en el rang −0,1 < ∆Ω0
Λ(z) < 0,1, −0,2 < ∆Ω0

Λ(z) < 0,2 en

l’exploració Monte Carlo.

En aquest enquadrament i les supernoves de R06, w(z) creix des de w < −1

cap a w(z = 0,6) & −0,5 (Fig. 4 (a)). A redshifts més alts, es recupera el prior o

la mitjana de l’interval de l’exploració Monte Carlo depenent del cas. Una funció

anomenada resolving kernel ens indica la regió on les dades contenen prou informació

com per millorar el coneixement a priori. Per al conjunt R06, els kernels són gairebé

plans a z & 0,6 − 0,7, cosa que indica l’absència d’informació. El mateix passa a

z = 0. En el rang d’interès, el mètode recupera una evolució positiva, tal com

hav́ıem obtingut en la parametrització discreta. No obstant això, els errors Monte

Carlo demostren que el resultat és compatible amb la constant cosmològica al nivell

de probabilitat d’1σ gairebé en tot el rang de redshift. Aquest tret és més fort per

les dades de VW07, on la reconstrucció mostra oscil·lacions entorn un valor constant
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Figura 5: Com la Figura 4 per les dades de VW07.

de w(z) = −1 (Fig. 5 (a)).

Sota el punt de vista de la densitat de constant cosmològica (o densitat d’energia

fosca) evidentment es reprodueixen els mateixos resultats. Per VW07 no es pot

descartar una densitat constant, tot i que a redshifts intermedis hi ha una tendència

suau amb pendent negativa, que queda amagada dintre les incerteses i la degeneració

respecte Ω0
M (Fig. 5 (b)). Al igual de la resta de resultats, la Figura 4 (b) mostra

que les dades de R06 afavoreixen una evolució positiva de Ω0
Λ(z). Per a aquesta

funció, els resultats s’aparten del prior també només a z . 0,6 − 0,7. El canvi en

el pendent a redshifts més alts només apareix perquè la funció ha d’acabar tendint

al prior. Per consegüent, resulta molt dif́ıcil detectar qualsevol dels escenaris de

running de la constant cosmològica a partir d’aquestes reconstruccions, ja que el seu

efecte només és important a alt redshift on hem recuperat la informació d’entrada.

La precisió donada per les dades actuals no permet identificar clarament el com-

portament d’un model d’energia fosca en concret. Amb les parametritzacions dis-

cretes, estem limitats a conèixer les funcions a partir dels seus valors actuals i, com

a molt, de la primera derivada a redshift zero. Una part de la millora aconseguida

amb el mètode invers ha estat calcular el valor de les funcions a altres redshifts on

les dades poden ser més sensibles i obtenir precisions diferents a cada punt segons

la quantitat d’informació en aquell lloc. Cada supernova s’utilitza en els càlculs de

cada redshift, amb un pes superior aquelles que en són més properes. Aquesta és la
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raó per la qual no hi ha cap guany en informació a z & 0,7. La falta de conjunts de

dades grans a redshifts alts no afecta només les determinacions d’aquests redshifts,

sinó també les dels inferiors, ja que la contribució de les dades properes és escas-

sa. Aquesta també és la raó per què les funcions estan molt millor determinades a

z = 0,2 que a z = 1,2, encara que els dos punts són valls en la densitat de superno-

ves. I, evidentment, és també la raó del mal ajust de z = 0 en comparació amb els

redshifts intermedis.

Per tal d’ampliar l’interval de redshift en què les SNe Ia contribueixen al guany en

informació, el número de dades hauria d’augmentar significativament a alt redshift.

Fins i tot aix́ı, les determinacions no podran ser tan bones com a redshifts intermedis

perquè la mateixa energia fosca és menys rellevant al contingut i la dinàmica de

l’Univers. De totes maneres, la incertesa disminuirà en conjunt a mesura que anem

ampliant en número de SNe Ia proporcionalment al llarg del redshift. Per tal de

quantificar aquesta millora, hem simulat dos conjunts de dades futures, les que

obtindrà LSST com a representant dels projectes des de terra i SNAP com a prototip

de les missions espacials.

Perspectives futures

Avui en dia, s’estan dissenyant i planificant una gran quantitat de missions destina-

des a la detecció de SNe Ia i a l’estudi de l’energia fosca tant des de terra com des de

l’espai. Tot i que LSST observarà unes 250000 SNe per any (al voltant de 10000 en

l’exploració més profunda), es tracta d’un sondeig fotomètric i, per tant, la majoria

de dades només tindran redshifts fotomètrics (photo-z). Aquest és un inconvenient

habitual per a la majoria de missions massives des de terra, i la incertesa que es

pugui aconseguir en els photo-z repercuteix en la determinació dels paràmetres cos-

mològics i l’energia fosca. La incertesa en el redshift es trasllada a la magnitud de

manera decreixent cap a redshifts alts. A baix z, la incertesa en la magnitud pot

arribar a ser més gran que 1 mag, i el redshift a partir del qual s’estanca i es fa

negligible depèn de la dispersió en els photo-z. Per tant, si es vol minimitzar l’efecte

dels photo-z cal reduir la seva dispersió respecte els redshifts espectroscòpics, i el

que és més important, eliminar completament els photo-z de més baix z en favor de

mesures espectroscòpiques.

Si s’aconsegueix fer aquests esforços en el tractament dels photo-z, les dades
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del LSST deep survey podrien millorar les determinacions de l’evolució de l’equació

d’estat de l’energia fosca, wa, dos (R06) o tres (VW07) vegades respecte els valors

actuals, i aconseguir σwa = 0,7. Aquest resultat és del mateix ordre del que es pot

arribar amb SNAP, que, tot i arribar a redshifts més alts, té menys dades. Per contra,

si no es té cap garantia de poder mesurar espectres per al conjunt de supernoves

més properes, SNAP aconsegueix millors resultats, no únicament per aquest redshift

ĺımit més elevat, sinó pel seu millor control dels sistemàtics. Una equació d’estat

constant es mesuraria en aquest cas amb una precisió de σw0 = 0,07, i l’evolució

σw0 = 0,08 i σwa = 0,7. Aquestes incerteses s’haurien de comparar a les que es

podran obtenir amb LSST wideB σw0 = 0,14 i σwa = 0,94, molt similars a les de

LSST deep. En tots els casos, la inclusió del prior que aporten les BAO per una

equació d’estat constant permet reduir apreciablement els errors.

Pel que fa als models on la constant cosmològica experimenta un running degut

als efectes del grup de renormalització, els millors resultats s’obtenen amb les da-

des de SNAP, que divideix per la meitat les incerteses obtingudes amb LSST deep

(Fig 6). Per SNAP, les incerteses en els paràmetres θ per als tres escenaris són:

στ = 2,1 10−9 eV 4 per a l’Escenari 1, ση = 1,1 per a l’Escenari 2 i σν = 0,06 per a

l’Escenari 3. Això millora les incerteses actuals entre 5 i 10 cops depenent de l’es-

cenari i el conjunt de dades. De totes maneres, tal com s’ha dit, aquesta famı́lia de

models es diferencia d’una constant cosmològica a alt redshift perquè les evolucions

són suaus i petites. Distribucions de dades que tinguin això en compte i amb la

majoria de les dades a z > 1 millorarien les determinacions significativament. Per

donar un exemple, l’Escenari 3 amb un running moderat de ν0 = 0,026 no es pot de-

tectar ni tan sols amb SNAP (σν = 0,06). Però una distribució alternativa d’aquest

estil reduiria la incertesa a σν = 0,02, permetent aix́ı la distinció observacional entre

el model amb running i una constant cosmològica real a més d’1σ. D’altra manera,

només es poden detectar els runnings més pronunciats. S’ha comprovat també si la

mida de les regions de confiança depèn de la posició en el pla del millor ajust. De

fet, els punts d’incertesa mı́nima són aquells amb θ = 0, és a dir, sense running,

però els canvis no són prou importants com per què evolucions molt suaus es puguin

detectar únicament amb SNAP.

Finalment, la determinació de w(z) com a funció cont́ınua també es veu afavorida

pel major nombre de dades d’aquestes missions futures i pel redshift ĺımit més alt

que s’aconsegueix. La reconstrucció queda ben determinada fins a z = 0,7 per LSST

i z = 0,9 per SNAP. A partir d’aqúı, la incertesa en w(z) és molt asimètrica. Mentre
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Figura 6: Regions de confiança 1σ, 2σ i 3σ per als paràmetres θ del tres escenaris amb

running de la constant cosmològica a l’espai (Ω0
M ,θ). Els contorns blaus mostren les

regions de probabilitat obtingudes amb LSST wide survey i les taronja amb SNAP.

que es manté moderada pel costat positiu fins a z = 1,2 (LSST) o z = 1,5 (SNAP),

pel negatiu creix substancialment. Això és degut a la gran degeneració entre els

models amb w < −1 a alt redshift. Passat aquest punt, ni tan sols aquestes grans

compilacions de dades són capaces de millorar el nostre coneixement a priori.

Amb aquestes simulacions de LSST i SNAP, s’han obtingut les millors perspec-

tives que tenim per a l’estudi de l’energia fosca amb les SNe Ia pel cap baix durant

els propers 10 anys. A l’espera de nous mètodes matemàtics i f́ısics, el guany en
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Figura 7: (a) Reconstrucció de w(z) i errors Monte Carlo obtinguts després de 1000

inversions de les dades de LSST deep survey amb δz = 0,01 i σsys = 0,02 i (b) SNAP

amb σsys = 0,02 z/1,7.

precisió ens permetrà acotar el valor de w i Λ, però això no respondrà la pregunta

de què és l’energia fosca, sobretot si els resultats són tan propers a una constant

cosmològica com sembla. Estem força lluny de conèixer la funció de manera similar

a com es coneix l’espectre de radiació del CMB, que de manera uńıvoca pot deter-

minar que es tracta d’una emissió de cos negre a un temperatura de 2,725 K. Per a

l’energia fosca, ni les mesures arriben a aquest grau de precisió ni trobem al darrera

una teoria f́ısica que les recolzi amb convicció. Si els resultats futurs descartessin la

constant cosmològica, serien més fàcils d’interpretar o, com a mı́nim, més informa-

tius, i potser concordarien amb prediccions d’alguna de les teories proposades. Si

els resultats acaben confirmant un comportament com el de la constant cosmològica

estem en un problema: no sabem que és la constant cosmològica f́ısicament, almenys

si no canvia en 1055 ordres de magnitud.

Això obre tres possibles ĺınies de treball. (i) Continuar treballant en teories que

permetin acabar d’entendre el significat de la constant cosmològica ja que sembla

la resposta més plausible donades les observacions. (ii) Justificar variacions d’un

model de constant cosmològica amb models teòrics alternatius i validar-los amb el

contrast amb observacions. (iii) Explicar l’acceleració de l’expansió a partir de noves

idees i mirar d’atacar el problema per un altre costat.
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Evidentment, s’haurien de seguir tots els camins ja que només el temps ens dirà

quin és el correcte. Potser ja estem a punt d’interpretar correctament el significat

de la constant cosmològica. O potser només estem fent com Ptolomeu ajustant epi-

cicles quan un canvi d’aproximació descriu clarament les observacions. Esperem no

necessitar 15 segles per adonar-nos que estem equivocats... en cas que ho estiguem!
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Chapter 1

Introduction

The most exciting phrase to hear in science, the one that heralds

new discoveries, is not ’Eureka!’ but ’That’s funny...’

Isaac Asimov

One of the funniest and most counter-intuitive scientific discoveries of the last times

is that the Universe is experimenting an accelerated expansion. Nowadays, there is

almost full agreement about the Big Bang model: the Universe’s expansion origi-

nated from an initial state of enormous density and temperature and, since then,

it has always been growing and cooling. But, what about the effect of gravity?

Shouldn’t matter make the expansion slow-down? Why is it accelerating now?

1.1 The Big Bang theory

The closest thing we can say about the birth of the Universe is that its expansion

began in an explosion which made its content and the fabric of the cosmos itself

blow away. That was first taken seriously during the 30s as a consequence of Albert

Einstein’s equations, the solution reached by Georges Lemâıtre in the cosmological

case, and the experimental results of Vesto Slipher and Edwin Hubble which proved

that galaxies were receding from us. At first, the idea had lots of detractors, because

it was against the common belief of a static universe. Besides, looking back in an

expanding universe, one should find an initial point where everything was joined

together. That implied an origin, and, for some people, a creator. The interpretation

1
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has changed through time, and nowadays one understands the Big Bang model as

a description of the Universe up to the Planck time, without any assumption of

the origin point. Up to now, the Big Bang model has overcome all tests, and some

crucial results clearly support it. There are four pillars on which the Big Bang

theory is sustained, four main predictions accurately tested.

First of all, of course, the observational confirmation that the Universe was

expanding. Edwin Hubble and Milton L. Humason were working on the measure

of distances and redshifts at Mount Wilson. That together with Slipher’s measures

made the astronomers realise that the further the galaxy the more redshifted were

the lines in the spectra. Therefore, galaxies had to be receding from us. As a

consequence, they established a relation between distances and radial velocities of

galaxies in 1929, the Hubble law [105].

Later, in 1948, George Gamow justified the chemical abundances in the Universe

as a result of the reactions that took place during the Big Bang [8]. This primordial

nucleosynthesis is responsible for the formation of all the observed elements lighter

than beryllium [135, 185].

Gamow himself realised in its calculations that, as a remnant of such a big

explosion and all the produced reactions, there should be a background of radiation

cooling down since the explosion. At that time, technology was not prepared to

measure such a low energy radiation, but some years later in 1964, Arno Penzias

and Robert Wilson, almost by chance, discovered the Cosmic Microwave Background

radiation (CMB) [143]. A group leaded by Robert Dicke was working then on the

detection of the bath of photons [62] and they could jointly explain the observations.

The detection of the predicted radiation firmly settled the Big Bang model as

the standard cosmological model. Even most of cosmologists supporters of a steady

state universe could not find solid arguments against the Big Bang. Still, there

is a fourth strong prediction. Once the Universe cooled enough in order to be

dominated by matter, the force of gravity should make any overdense inhomogeneity

collapse and be the seed for future clusters of matter: the observed large scale

structure of the Universe. Besides the evident proof that we are surrounded by

associations of matter such as galaxies or clusters, again the CMB radiation shows

the seeds for the structure formation as small temperature anisotropies of order 10−5.

These anisotropies were first observed by the COBE satellite (COsmic Background

Explorer) in 1992 [178].
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Figure 1.1: The four pillars of the standard hot Big Bang model.

Despite the great success of the Big Bang theory, there are some results that

cannot be explained from its principles alone or that would need a very fine tuning.

Some of them are what we could call the classical problems: How can all the observed

universe be homogeneous at large scale if all of it could not be causally connected

in the Big Bang? How can our Universe be so close to be flat if that implies

an accuracy on the initial curvature of 10−60? How did the asymmetry between

matter and antimatter occur? Some others are linked to the knowledge of the new

contents of the Universe being necessary to account for the observations: What is

dark matter? Why is the Universe accelerating now? (Or what is dark energy?)

1.1.1 A perfect complement: inflation

As an idea for solving mainly the two first problems, the classical ones, Alan Guth

[96] and Andrei Linde [123, 4] introduced the inflationary theories. There are several

variations of inflation but in all of them the space-time experiments a period of

exponential expansion. In Guth’s original theory, a universe settled in a false vacuum

decays to a lower vacuum state. The bubbles of the true vacuum in the metastable

state rapidly expand. In Linde’s theory, a scalar field, the inflaton, rolls down its

potential causing an accelerated expansion until it reaches the minimum and the

inflaton decays into radiation.
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Inflation in this simple form already solves four of the problems that the standard

Big Bang model alone cannot explain. First of all, such a rapid and enormous

expansion would dilute the density of monopoles to such extent to make it small

enough so that we do not see any of them in the observable universe. Secondly,

it would allow the primordial quantum fluctuations to frozen and be the seeds for

large scale structure formation. More related to this thesis is the fact that the

exponential growth of the space would smooth any initial curvature and justify

the measured flatness. Finally, the tiny spatial regions causally connected before

inflation would grow much faster than the transmission of information in that epoch,

and our observable universe could all belong to one of those regions, a thing otherwise

impossible with a linear expansion. This can explain why it is so homogeneous.

Some of the predictions of an inflationary model can be checked against obser-

vations. After three years of WMAP data [183], the homogeneity and isotropy were

confirmed to a ten thousandth part. Flatness to a few hundred per cent. Inflation-

ary theories predict a nearly scale-invariant spectrum of Gaussian adiabatic density

perturbations too, which is compatible with galaxy surveys results and anisotropies

in the cosmic microwave background. Future results should further constrain these

forecasts and even give some hints about the nature of the inflaton or the form of its

potential energy. Polarization in the CMB should provide a measure of the amount

of gravitational wave background generated by inflation, another prediction.

The good thing of inflation is that it makes a large number of testable predic-

tions, as we see. Furthermore, it is so good at explaining the observations when

combined with the Big Bang model that the lack of a concrete mechanism that gen-

erates inflation, such as the nature of the inflaton field itself, does not prevent the

model from being widely accepted. Of course, it is an active field of research both

theoretically and experimentally, and particle physics models together with future

observations should lead to an eventual understanding of its insights.

1.2 The dark side supremacy

At the same time, there is an increasing necessity of including new dark ingredients

into the Big Bang model. On the one hand, dark matter became a requirement in

order to fit the rotation curves of galaxies [214, 163]. On the other hand, dark energy

is the key to explain the accelerated expansion showed by supernovae [158, 145].
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Dark matter is by definition a kind of matter that does not interact with photons.

Therefore, it is not visible and can only be detected by gravitational means. It

can be both baryonic and non-baryonic, and it is probably both of them. Brown

dwarfs, planets, and black holes are dark matter, but their amount is not enough

to justify all the missing mass. Non-baryonic matter can be relativistic particles

such as neutrinos (hot dark matter) or non-relativistic as the hypothetical WIMPs

(cold dark matter). Simulations of large scale structure show that CDM (cold dark

matter) is needed in order to allow small objects to collapse and merge until the

observed structure is formed. Using results on rotation curves, gravitational lensing,

temperature distributions of hot gas or CMB anisotropies, dark matter is found to

be around seven times more abundant than visible matter. Paying attention to

simulations, most of it must be unknown and not a component of the Standard

Model of particle physics.

In the 90s, COBE results reinforced the belief of the Universe being flat, but at

that time, measurements of the density of dark matter started to point out that its

density would not be enough to make the Universe flat either. Dark energy could

account for the difference.

Dark energy is a source of energy with negative pressure that acts as a repul-

sive force. As a density, it is an additional component that sums up to determine

the curvature of the Universe. But dynamically, the negative pressure counteracts

gravity and makes the expansion accelerate.

Extragalactic distances are much more sensitive to the dynamics of the universe

than the cosmic microwave radiation at a fixed point. Therefore, distances to su-

pernovae should be more adequate to see the acceleration than COBE results were.

However, supernovae results were compatible with no dark energy until 1998, when

the precision was already high enough to discard a universe without dark energy

with more than a 99% probability.

The combination of results established at the end of the century what was called

a concordance model or the Λ-CDM model. A model that is consistent with the

Big Bang theory, inflation, and that contains cold dark matter and a cosmological

constant with the necessary densities to make the Universe flat. However, such a

model put us in a situation of ignorance: just a 4% of the Universe is made of

ordinary matter, the remaining 96% is in the form of dark matter or dark energy

for which we can only pose some hypotheses. It is very hard to construct a theory
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giving the full description of a universe for which only a 4% of its content is familiar

to us. Imagine, as an analogy, how we could describe the visible universe if we only

knew the existence of the elements heavier than beryllium, and we did not know

what are and which are the constituents hydrogen and helium.

Philosophically, such a universe changes again the conception of ourselves. For

the Greeks, the Earth was the centre of the cosmos and we occupied a privileged

position in the Universe. Later, the cosmological principle, which stated the homo-

geneity and isotropy of the cosmos, put us in an ordinary situation. We are orbiting

a common star, laying in the outskirts of a common galaxy situated in a common

cluster. Besides, we are made up of the same material forming all the constituents

of the Universe. Now, we seem to be singled out again, at least under the point of

view that our biology is restricted to combinations of baryons, which turn out to be

a rare component of the Universe.

1.3 Cosmological constant and dark energy

According to quantum mechanics the vacuum has a zero point energy. Unfortu-

nately, a direct interpretation of Einstein’s cosmological constant as the energy of

the vacuum gives, at best, a discrepancy of 1055 orders of magnitude with obser-

vations. In fact, not only with observations but with a geometry of space-time

consistent with experience. This needed fine-tuning to make the cosmological con-

stant small enough to agree with observations is known as the (old) cosmological

constant problem. Why the energy density of dark energy is so small today? Or in

other words, the time coincidence problem: Why is it so close to the matter density?

(See more information in Refs. [44, 167, 132] for example.)

An answer to the problem is given by considering the cosmological constant as a

dynamical term. Such a function is still solution of Einstein’s equations. And, from

the physical point of view, the cosmological constant must experiment a running

when considered within a quantum field theory. Waiting for a quantum field theory

of gravity, a semiclassical approach could provide us with the first tools to check the

idea. We explore this possibility in detail in this thesis.

The most worked idea is not that of an evolving cosmological constant but of

a dynamical scalar field, the quintessence field. If the cosmological constant as a
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vacuum energy has similarities with Guth’s first inflationary theory, quintessence

shares the idea of Linde’s formulation. The scalar field generates a potential and

slowly rolls down with time [142, 57, 162]. At present, the field would be close to

the minimum of its potential with almost null velocity, creating a constant energy

and negative pressure similar to a cosmological constant. Generalizations with non-

canonical kinetic terms, k-essence, have been considered too [12, 128]. In fact, the

quintessence idea has given rise to multiple models, but all of them need fine tuning

and an interpretation for the field.

A different branch of models opts for modifications to relativity to explain the

observed acceleration [150, 164, 138]. Some of them consider the existence of extra

dimensions [64, 58, 71], others include terms with an extra dependence on the curva-

ture into Einstein’s equations [23, 120, 133, 130], and tensorial theories of gravitation

have been studied as well [173, 61, 28, 72].

On the other hand, we mention the possibility of maintaining the cosmologi-

cal constant resorting to anthropic principles [205, 22, 86], arguments that can be

adapted to other dark energy sources such as quintessence fields for example [85].

Lastly for this brief summary, notice that the current formulation of M-theory needs

of a vanishing cosmological constant, although refinements to include a value as the

observed one are being studied [33].

Within this zoo of alternative models it is very difficult to prefer one in front of

the others. All of them can be tuned so that they describe present-day observations,

but there is not a complete theoretical background that generates a source of dark

energy yet. Modifications to the Standard Model of particle physics, or a successful

union of general relativity and quantum mechanics could predict such a component

or behaviour. On the observational side, current research tries to delimit the set of

compatible models by determining the relation between the pressure and the density,

the equation of state, of dark energy.

Observationally, seeing the dark energy is a challenge. It has a low density, is

distributed smoothly and does only very weakly interact with gravity, that making it

hard to detect. Besides, it must only dominate recently since matter perturbations

could not have grown within its domination. However, dark energy affects two

aspects of the Universe which can be quantified. First, it alters the expansion

history, and second, the growth of large scale structure.
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In order to trace the expansion history of the Universe, the best tool at our

disposal are Type Ia supernovae (SNe Ia). The evolution of their observed magni-

tude along redshift gave us the first clear indication of the acceleration [158, 145].

Nowadays, they still provide us with the most precise measure of dark energy and

its equation of state [160, 211].

Likewise, Baryonic Acoustic Oscillations (BAO) are a standard ruler that one

can measure as a function of redshift [70, 144]. Although the oscillations are much

more sensitive to the density of matter than to the density of dark energy, the line of

degeneracy between the parameters is almost perpendicular to that obtained with

SNe Ia, making the usage of both probes a perfect combination.

Another physical phenomenon which could be influenced because of dark energy

is the deflection of light when traveling close to massive objects. Weak lensing for

instance offers a variety of tests. Weak lensing tomography measuring the statistical

signal induced by large-scale structure [210, 104] or cross correlation cosmography

using the ratio of induced shears at different redshifts [112, 27] can give both accurate

results and complementarity to the previous probes.

Besides their role in weak lensing, clusters of galaxies can be directly used to

this task due to the fact that their abundance and spatial distribution is modified

according to the amount of dark energy. The effect on the cluster number of counts

along redshift is already used to contrast different theories [182, 129]. Measures of

the evolution of the clusters X-ray gas mass fraction are tracing the evolution of

dark energy as well [6].

And, of course, one cannot forget the great amount of information encoded in the

cosmic microwave background. The tilt of CMB results towards a flat Universe [183]

is and has been an important indication of the necessity of dark energy. However,

detailed information of its nature is better addressed with other probes, and CMB

is mostly used to study the youth of the Universe and to determine the density of

matter. These are vital to understand dark energy too. Related tests such as the

Integrated Sachs Wolfe effect (ISW) take advantage of this well known radiation

to confirm the dark energy hypothesis via complementary methods. The measure

of the change of a CMB photon energy that goes through the large scale structure

(ISW) is an active field improving with recent results which correlate WMAP with

SDSS [51, 88, 37].
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1.4 Thesis framework and outline

After this brief description of the current state of the cosmological model, it can be

noted that there are a lot of open fronts to work on and a lot of open questions to

be answered.

This thesis has been carried out after the discovery of the acceleration of the

space-time expansion and at the very peak of dark energy research. Figure 1.2 shows

how the field has been growing through the last years as indicated by the number

of published papers. The time axis spans from the first CMB results measured by

COBE in 1992 to today. The amount of research is characterised here by papers in

the arXiv database [13] where the key words Dark Energy or Cosmological Constant

appear in the title or the abstract. Note that the arXiv is running from 1991, biasing

the first years numbers and that the term dark energy was not coined until the end of

1998. Before Riess et al. (1998) [158] and Perlmutter et al. (1999) [145] papers where

SNe Ia ruled out a universe without dark energy at 3σ level, the study of general

dark energy models was scarce. Still, the cosmological constant was attracting the

attention of some physicists working on particle physics and of cosmologists worried

about the large ages of globular clusters and the flatness implied by COBE data.

This work starts a bit later, in the usually called age of precision cosmology. Now,

the quality of measurements has improved remarkably and that allows a much finer

analysis of the models. This new possibility motivated a research focused on three

aspects. First, we attack the cosmological constant problem by exploring a context

within which an evolving cosmological constant would naturally arise. That takes us

to analyse the running experienced due to the renormalization group equations and

to compare it with a constant term and with other sources of dark energy evolution.

Second, the need to distinguish among the several alternative theoretical models

with close predictions stimulated the development of a mathematical method to

reconstruct continuous functions from a discrete data set. By solving the inverse

problem we are able to recover the form of the cosmological constant and the dark

energy equation of state along redshift from SNe Ia magnitudes. And third, as a

complement of the theoretical aspects it has also been analysed the use of SNe Ia

as cosmological tools and studied their contribution to our future knowledge of the

cosmological model.

According to this workplan, the thesis has been divided in two parts. The first
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Figure 1.2: Increment of observed SNe Ia in the recent years (data from the Padova-

Asiago supernova catalogue [139]) and the corresponding increment in the number of

papers where the key words Dark Energy or Cosmological Constant appear in the title

or the abstract (arXiv database [13]).

part, the theoretical one, starts by introducing Einstein’s equations and their so-

lution in the cosmological case and for an evolving cosmological constant. Next,

the running cosmological constant scenarios are developed and their cosmological

consequences scrutinized. Finally, the general representation of dark energy via

its equation of state is introduced. That served to express some popular dark en-

ergy models in this general parameterization and evaluating the degeneracy of the

problem.

The aim of the second part is to give some observational constraints to dark

energy. Chapter 5 introduces the use of extragalactic distances in cosmology with a

special interest in SNe Ia. Chapter 6 already uses this tool to determine the cosmo-

logical parameters, the parameters of the running cosmological constant scenarios

and those of a general development of the equation of state. The analysis of the

continuous functions is left to the next chapter where the reconstruction methodol-

ogy is introduced as well. In Chapter 8, we make use of simulations of the oncoming
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SNe Ia surveys to see the future perspectives and to quantify the differences be-

tween photometric and spectroscopic surveys and between ground-based and space

surveys. Finally, the last chapter is devoted to summarize the work and to draw the

conclusions.
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Part I

Evolving dark energy





Chapter 2

Dynamics of the Universe

After a very general introduction to the cosmological model, this chapter develops

the main equations which dictate the evolution of the Universe, so Einstein’s field

equations are solved in the cosmological case and in the presence of some dark

energy component. All the parameters that are used to parameterize the dynamics

and which are determined along the rest of the thesis are also presented at the end

of the chapter.

2.1 Einstein’s field equations

The road towards the gravitational field equations was a really long one, and it took

Albert Einstein more than seven years to eventually reach the end. However, despite

the present name of “Einstein’s field equations”, Einstein was not the only respon-

sible for the achievement. He did most of his work together with the mathematician

Marcel Grossmann. In 1913, they already had a preliminary theory based on the

invariant line element,

ds2 = gµνdxµ dxν , (2.1)

but although they thought that the covariant field equations should relate the Ricci

tensor to the energy-momentum tensor, they gave up the idea when concluding

that such equations would not yield, in the weak field approximation, the Poisson

equation in Newton’s theory of gravitation [69]. It was later, in 1915, when Einstein

took up again these equations and obtained the final version of the gravitational

field equations [66]. However, this paper was submitted at the same time as one

15
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Figure 2.1: First mention to the cosmological constant by Albert Einstein in his paper

of 1917 [68].

from David Hilbert [102], which also formulated the field equations (in fact it was

submitted five days later). Nevertheless, Hilbert’s paper was accepted more than

three months after Einstein’s one, and it seems that during this period Hilbert made

some changes to his proofs in order to make the theory generally covariant [52].

These final field equations were generalised in 1917 by Einstein himself [68], who

added a cosmological term compatible with general covariance in order to obtain a

closed static model of the Universe. Although this term is currently one of the most

promising candidates to play the role of dark energy, in that moment Einstein only

introduced it as a mathematical tool which allowed him to describe the Universe he

was expecting. That can be seen in Figure 2.1, which shows the paragraph in the

original text where the cosmological constant was introduced for the first time. The

complete form of the gravitational field equations was given as well.

Next, some of the arguments to obtain the Einstein’s field equations are repro-

duced, even though not the same steps followed by Einstein are developed here. An

easier way to obtain the equations is through a generalisation of Newton’s gravity

law [204, 171]:

∇2φ = 4πGNρ =⇒ Gµν = αTµν . (2.2)

One must start by making the Newton’s law consistent with a relativistic de-

scription of the Universe. Then, the sources of the gravitational field are not energy
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densities ρ any more, but the energy-momentum tensor Tµν . In this way, no refer-

ence system where ρ is at rest is privileged. On the other hand, the fact that this

is a second rank symmetrical tensor forces the left hand side of the equations, i.e.,

the space-time geometry, to be also a symmetrical tensor of rank (0
2). The simpler

tensor which fulfils these demands and is at most of order two in the derivatives of

the metric is

Rµν + CgµνR + λgµν , (2.3)

where C and λ are two constants, Rµν is the Ricci tensor and R is the curvature

scalar. The constant C is determined by imposing the energy-momentum conserva-

tion ∇νTµν = 0, and so, the conservation of the Einstein’s tensor Gµν . Then, it is

obtained C = −1/2 and a redefinition of the cosmological constant as Λ ≡ λ/8πGN

is made. Finally, it must be determined the proportionality constant between en-

ergy and geometry, α, which can be made in the weak field approximation of the

Einstein’s equations and in comparison to the Newton’s law. Finally, the 16 field

equations read:

Gµν + λgµν ≡ Rµν −
1

2
gµνR + λgµν = −8πGNTµν . (2.4)

It must be noticed that none of the arguments introduced here forbids a time

dependent cosmological constant. Thus, a perfectly acceptable general form of the

Einstein’s equations can be written as:

Gµν + λ(t)gµν = −8πGNTµν . (2.5)

The compatibility of this time dependence with current observations is one of the

main parts of this thesis, and so, most of its consequences are widely treated in

Chapter 3.
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2.2 Dark energy in Einstein’s equations

The energy-momentum tensor Tµν appearing in Einstein’s equations comprises any

energy component, including those fields not related to matter and radiation. These

various elements are joined under the dark energy denomination. It will be seen

that the cosmological constant is not exactly in this situation, but it can also be

included since its energy-momentum tensor can be defined. Modifications to the

Einstein’s equations are also possible and conform a family of dark gravity models.

The latters are not specifically treated here, although the phenomenology can be

similar in both cases and that is exploited in Chapter 4. This section has been

restricted to interpret the most general and promising dark energy models.

2.2.1 Vacuum quantum energy and the cosmological con-

stant

The cosmological constant, besides of being a mathematically sound term in Ein-

stein’s equations, has a first possible interpretation within the quantum field theory.

The Standard Model of particle physics in which a spontaneous symmetry breaking

is produced, works extremely well in order to give mass to the elementary particles,

but it is the cause of one of the main problems in cosmology. The reason is that

considering that there was a symmetry breaking at the early times of the Universe,

let us say at the GUT’s scale, produces a huge amount of vacuum energy.

Let us assume that the Higgs field φ is the cause of the spontaneous symmetry

breaking. As it generates a Higgs potential of the form

VH = −1

2
m2

φφ
2 +

λ

8
φ4 , (2.6)

the vacuum expected value is different from zero,

< φ >=

√
2

λ
mφ =⇒ < VH >= −

m4
φ

2λ
∼ 108 GeV 4 , (2.7)

where the value is taken from the current particle physics experiments by the LEP
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Higgs working group [1].

On the other hand, the expected value in the vacuum of the energy-momentum

tensor of an scalar field is given in terms of its vacuum expected value < Vφ >:

< Tµν >= gµν < Vφ > . (2.8)

Thus, when the Einstein’s field equations are calculated in the vacuum, the only

field in the standard model which contributes to Tµν is the Higgs field, since all the

others have a null expected value. So, the geometry of the Universe is only affected

by the Higgs and, in case of being considered as an independent source, by the

original Einstein’s cosmological constant:

Rµν −
1

2
gµνR = −8πGN ( gµν < VH > + gµν Λvac ) . (2.9)

From this equation, one can define an effective cosmological constant, Λeff , which

is the sum of that induced by the Higgs and the original one:

Λeff ≡< VH > +Λvac = Λind + Λvac . (2.10)

Out of the vacuum, the Einstein’s field equations can be rewritten in terms of

this effective cosmological constant which is the only one that can be detected with

observations.

Rµν −
1

2
gµνR = −8πGN (Tµν + gµν Λeff ) . (2.11)

It is when joining theory and observations that one of the main problems in

modern cosmology appears: the observed value of the cosmological constant is of

order Λeff ∼ 10−47GeV 4, whereas we have just seen (Eq. 2.7) that according to the

Standard model of particles the value induced by the Higgs is Λind ∼ 108GeV 4.

It would be necessary then a non null Λvac, but even more annoying, it would be

necessary a precision of 1055 orders of magnitude in order to reconcile theory and

observations.
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A last thing to notice is the fact that the cosmological constant was introduced as

a constant related to the geometry of space-time in the previous section (Eqs. 2.3 and

2.4), but now it appears in Equation 2.11 as an energy. The only formal difference is

the side in which it appears inside the field equations, but its interpretation differs.

The treatment of the cosmological constant as an energy density allows to solve the

flatness problem, that is, how we can live in a flat universe as CMB fluctuations show

if we only measure a 30% of the necessary matter, but it has introduced another main

problem in cosmology: the difference between its observed value and the theoretical

one. An evolving cosmological constant can face this problem, and an evolution due

to the renormalization group effects are analysed in Chapter 3. Other options for

dark energy sources are mentioned in the following.

2.2.2 Quintessence and other alternatives

Many alternatives to the cosmological constant have been proposed in order to

reconcile theory and observations. The most explored and successful is up to now

the so-called quintessence. Thus dubbed by Steinhardt in 1998 [39] because of being

the fifth contribution to the cosmic energy density (after the baryonic, dark matter,

radiation and neutrinos ones), it had already been analysed, for instance, in [142]

years before. The phenomenology is similar to the one observed for a time-variable

cosmological constant, but the theoretical ground differs.

The basic idea is that, in a similar way as it happens with inflation and the

inflaton field, an evolving scalar field could account for the present acceleration. By

a quintessence field Q, it is actually understood a dynamical, evolving and spatially

slightly inhomogeneous field with a negative pressure and a positive energy density

greater than the modulus of the pressure. The field evolves in a potential V (Q)

and has a positive kinetic energy 1/2 Q̇2. The energy-momentum tensor of this

component reads then as

T Q
µν = ∂µQ ∂νQ − gµν

(
1

2
∂αQ∂αQ − V (Q)

)
. (2.12)

So, a quintessence energy density is taken into account by just inserting the energy-

momentum tensor 2.12 into the Einstein’s equations as a new source of energy.
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Although the concept of quintessence is very general, there exists a particular

kind of potentials which have very interesting behaviours for cosmology: the tracker

potentials [212, 186]. A tracker field has the same solution to its equation of motion

irrespective of the initial conditions for Q and Q̇, at least in a very wide range.

Besides, this attractor solution is such that the quintessence field is only dominant

at late times. Since the field rolls down the potential, the kinetic energy diminishes

as it reaches the minimum. There, the kinetic energy is very small compared to the

potential, and so, at late times, the energy-momentum tensor can be written as

T Q
µν = gµν V (Q) , (2.13)

which acts exactly as a cosmological constant. The fact that for a wide range of

initial conditions a cosmological constant-like behaviour is recovered, as it seems to

be determined by observations, makes quintessence an appealing idea to solve the

coincidence problem.

In the previous paragraphs, only scalar fields have been considered, but also

vector or tensor fields, or topological defects could be characterized as Q components.

Which of all these possibilities is the correct one, if any, should be determined by a

final particle physics theory.

When supergravity or string theory are considered, the massless scalar degrees

of freedom appear in the effective action not as a quintessence field but as a field

with non-standard (non-linear) kinetic terms. These fields, which also show an

attractor behaviour, are an example of what is called k-essence [12, 128] in analogy

to quintessence. Now, the tensor to be introduced in the Einstein’s equations for a

field K is:

T K
µν = V (K)

(
2
∂F (X)

∂X
∂µK ∂νK − gµν F (X)

)
, (2.14)

where F (X) is a kinetic function with X = ∂αK∂αK and V (K) is the potential.

Other kinds of fields with a negative kinetic energy, the phantom fields, also

drive to a late time acceleration [38, 40, 91]. However, these fields violate the null

dominant energy condition (see Section 4.1), and some of them predict a universe

which ends with a Big Rip. Nevertheless, phantom fields cannot be put aside since
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data have seemed to favour a supernegative (w < −1) equation of state, taken at

their face values, although new observations give more conservative results.

T Ph
µν = −∂µP ∂νP + gµν

(
1

2
∂αP∂αP + V (P )

)
. (2.15)

To finish with this brief description of the most promising dark energy compo-

nents, it is worth mentioning a quite different dark energy model, the Cardassian one

[82, 81]. These models do not introduce a new and unknown field but they change the

usual interpretation of matter as a pressureless fluid and allow it to interact, adding

new terms to the usual matter density and pressure [90]. The energy-momentum

tensor is for these models that of a perfect fluid (see Section 2.3.3) with a density

of matter ρ = ρM + ρCa and a pressure p = pCa, where the subindex Ca indicates

the Cardassian contribution. It must be noted, however, that this is not the only

interpretation for Cardassian models, since they can also be seen as a dark grav-

ity source: the same parameterizations are obtained when it is considered that our

3-dimensional Universe is a brane embedded in extra dimensions [46].

2.3 Solving Einstein’s equations

Einstein’s field equations are a system of ten independent differential equations,

which are, in general, difficult to solve. They must be solved simultaneously for a

given geometry and matter distribution, but only some of these configurations can be

solved analytically as for example spherical stars and black holes. In the cosmological

case, some symmetries are applied to the metric to obtain the Robertson-Walker

form, whereas the matter-energy content is modeled as a perfect fluid. With these

assumptions the dynamics of the Universe is unravelled.

2.3.1 Cosmological principle and Robertson-Walker metric

The symmetries to apply in the cosmological framework are those given empirically

by the cosmological principle. From the ancient times, the Earth was thought to be

the centre of the Universe. This belief, already accepted by the Greeks, endured for

more than twenty centuries. In the 4th century B.C., the Macedonian philosopher
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Aristotle considered a sky of order and perfection formed by perfect spheres where

stars lie around the Earth. Few important changes such as the introduction of

epicycles to justify the observations, were made to the geocentric conception of

the Universe until the Renaissance. It was in the late 15th century when Nicolas

Copernicus started a revolution in astronomy: the Earth would not be the centre of

the Universe any more and that position would be occupied by the Sun. However,

this heliocentric view of the Universe was not fully accepted till the 17th century.

From then on astronomy, and cosmology, would advance faster, mainly due to

the invention of the telescope. New objects in addition to the Solar System ones

are observed, and Immanuel Kant suggests the existence of the Island Universes as

extragalactic objects. The Universe did not seem to be homogeneous, groups of stars

and nebulae where observed in the sky, and there was a privileged direction (the

Galactic plane) where most of these objects were found. The idea of extragalactic

objects, not taken very seriously yet, was recovered when Edwin Hubble determined

the distances to some “nebulae” in 1929, and so, the thought of the Sun being the

centre of everything lost meaning.

Nowadays, the everyday more powerful instruments and the possibility to see in

various bands of the electromagnetic spectrum seem to indicate that the angular

distribution of galaxies at large scale is isotropic. If we see that the Universe is

isotropic, and there is no reason to think that we are in a privileged position, it

must be isotropic with respect to any point, and thus, homogeneous too. This

combination is the base of modern cosmology, and it is known as the cosmological

principle:

The Universe at large scale is homogeneous and isotropic

with respect to any observer comoving with the cosmic fluid.

These symmetries established by the cosmological principle can be now trans-

lated into conditions to apply to the generic form of the metric, Equation 2.1. That

means that in the metric:

• There cannot be mixed terms of space and time (gi0 = 0), otherwise the

Universe would not be isotropic. This allows to define a cosmic time t, the

same for all comoving observers.
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• The space and time parts can be separated if, besides, the Universe is homo-

geneous. This defines the scale factor a(t), where all the evolution in time is

included.

• The curvature of the Universe must be constant (k), and so, the Universe is

spherically symmetric.

In this way, it has been defined a system of coordinates which describes the

symmetries of the Universe and remain constant for any observer comoving with

the cosmic fluid: the comoving coordinates (r, θ, ϕ). The mathematical expression

of the cosmological principle is then the Robertson-Walker metric, which in its

canonic form reads:

ds2 = c2dt2 − a2(t)

[
dr2

1 − kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]

= c2dt2 − a2(t)

[
dr2

1 − kr2
+ r2dΩ

]
, (2.16)

where as it has been said, (r, θ, ϕ) are the comoving coordinates, k is the spatial

curvature and can only take three values:

k = +1 closed space (S3 sphere)

k = 0 flat space (R3 euclidean space)

k = −1 open space (H3 hyperboloid) ,

(2.17)

and a(t) is the scale factor which depends on the cosmic time t. This unknown

function is sometimes expressed as a Taylor expansion:

a(t) = a(t0)

[
1 + H0(t − t0) −

1

2
q0H

2
0 (t − t0)

2 + ...

]
, (2.18)

where H0 ≡ ȧ(t0)/a(t0) is the Hubble constant (see Section 2.4.1 for a widest com-

ment) and q0 ≡ −ä(t0)a(t0)/ȧ
2(t0) is the deceleration parameter.

Nevertheless, the radial coordinate r is not the most adequate in order to de-

scribe physical distances. It is the mathematical distance from the centre to the
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3-dimensional surface of the universe, and so, it is a distance in a dimension outside

the real universe. The distance in 3-dimensional space is given by the arc over the

hypersurface. It is then useful to define the angle χ as:

χ(r) = arcsinn r ≡





arcsin r for k = +1

r for k = 0

arcsinh r for k = −1

. (2.19)

With this definition the metric can be rewritten in a more physical way, where

r(χ) is just the inverse of Equation 2.19:

ds2 = c2dt2 − a2(t)
[
dχ2 + r2(χ)

(
dθ2 + sin2 θdϕ2

)]
. (2.20)

2.3.2 Distances in cosmology

Such an intuitive concept as “distance” has a difficult formulation in cosmology,

but it is indispensable in order to understand our Universe. In the previous section

it has been seen that the coordinate distance r has not a real distance meaning

in our three-dimensional spatial Universe, and instead of it, it has been defined

the comoving coordinate χ. However, this is not measurable and other distances

between objects have to be defined, although all of them differ at large separations.

2.3.2.1 Proper distance

The most direct distance which can be obtained just from the spatial part of the

metric is the proper distance. Let us consider an object situated at some fixed

comoving coordinates (r1, θ1, ϕ1) – or (χ1, θ1, ϕ1) –, and let us consider our position

the origin of coordinates. At a given cosmic time t, the distance between us and

that far object is the sum of differential distances which could be measured with

light signals.

dprop(t) =

∫ r1

0

√
grr dr = a(t)

∫ r1

0

√
dr2

1 − kr2
= a(t) χ1 . (2.21)
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In the above expression, the meaning of the comoving coordinate χ is seen.

However, this definition is still not useful in practice, and it cannot be replaced by a

more useful one like “measuring the time from a single light signal travelling between

the emitter and the receptor at a given time”, as these two objects do not have to

exist at the same time and so, it would be in general not measurable. But, although

it is not then a good definition for a physical distance, it is worth mentioning since

the rest of distances reduce to it at small separations.

2.3.2.2 Redshift

Before entering in the real physical distances, let us first define the cosmological

redshift as a measure of the distance between two events connected by light.

Let us consider a light pulse that follows a null geodesic at constant θ and ϕ.

The comoving distance between the emission (e) and the observation (o) is given by

ds2 = 0 = c2dt2 − a2(t)
dr2

1 − kr2
=⇒ χ =

∫ to

te

c dt

a(t)
. (2.22)

The next wave crest leaving from r1 at te+δte will arrive to the observer at to+δto

and will have the same comoving coordinate χ because a(t) is almost constant during

a light period:

χ =

∫ to+δto

te+δte

c dt

a(t)
. (2.23)

Comparing Equation 2.22 to 2.23 it is established a relation between the time

between pulses for the observer and the emitter with the scale factor for both of

them. This relation is the cosmic time dilation

δto
a(to)

=
δte

a(te)
. (2.24)

Since the frequency of the photons is the inverse of the time interval between pulses,

the time dilation translates into a wavelength dilation, i.e., there is a shift in the

emitted wavelength when it is received:
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λe

λo

=
νo

νe

=
δte
δto

=
a(te)

a(to)
, (2.25)

z ≡ λo − λe

λe
=

a(to)

a(te)
− 1 . (2.26)

For an expanding universe, a(to) > a(te) and a redshift is produced. The op-

posite would happen for a contracting universe. The cosmological redshift is then

only produced because of the Universe expansion, and it has nothing to do with the

motion of the objects. However, the measurable quantity is the sum of both this

cosmological redshift and the one due to the proper motions. For distant objects

far from intense gravitational fields, the observed redshift corresponds to the cos-

mological one, and allows to study the scale factor a(t). A useful relation between

the scale factor and the redshift actually (z = 0 corresponding to a(to) = 1) is:

a =
1

z + 1
. (2.27)

2.3.2.3 Luminosity distance

The most practical way for obtaining extragalactical distances is from observables.

The distance to an object from which the absolute luminosity is known can be

obtained by measuring the apparent luminosity, whereas the distance to an object

from which the diameter is known is obtained by observing its angular diameter.

That defines two different measures of distance: the luminosity distance and the

angular distance.

The main example of the importance of luminosity distances for cosmology is

Type Ia supernovae (see Chapter 5). Let us consider a supernova exploding in a

galaxy situated at a fixed comoving distance χ1 (or r1). This object is emitting a

luminosity Le, which is measured by us as a flux Fo (see Figure 2.2). The observed

flux is related to the luminosity in an euclidean universe by Fo = Le/S = Le/(4πd2
L),

and this can be used to define by analogy the luminosity distance dL in any FLRW

universe. Since the luminosity is nothing else but the rate of emitted energy (dE/dt),

the received luminosity is affected by a (1 + z) factor due to the time dilation and
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Figure 2.2: Quantities used in the calculations of the angular (dA) and luminosity (dL)

distances by analogy to an euclidean universe. In a curved universe both measures are

different for a same location.

another one due to the wavelength dilation (Equations 2.25 and 2.27). On the other

hand, the proper surface S in a Robertson-Walker metric is given by

dS = gθθ gϕϕ =⇒ S = 4πa2(t)r2(χ) . (2.28)

The combination of both facts allows to express the observed flux as a function of

the source coordinates

Fo =
Lo

S
=

Le

4πa2
0r

2
1(1 + z)2

≡ Le

4πd2
L

, (2.29)

and with the definition of luminosity distance, it can be obtained its general form

as a function of the scale factor and the universe’s curvature, the only two functions

to be determined in the Robertson-Walker metric:

dL = a0r1(1 + z) = c (1 + z) a0 sinn

∫ to

te

dt

a(t)
. (2.30)
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2.3.2.4 Angular distance

In a similar way as done for luminosity distances, angular distances can be obtained

for objects from which the diameter is known such as radio galaxies or compact

radio sources (some more comments on Section 5.2).

Let us consider a radio galaxy at a comoving distance r1 as shown in the left side

of Figure 2.2. Its diameter is D, and its proper size is given in the Robertson-Walker

metric by

dD2 = g2
θθ + g2

ϕϕ =⇒ D = a(t)r(χ)dΩ . (2.31)

The angular distance dA is defined also generalising the expression for an eu-

clidean universe as:

dA =
D

dΩ
= a(te)r(χ) =

c a0

(1 + z)
sinn

∫ to

te

dt

a(t)
. (2.32)

As it is seen from the comparison between Equation 2.30 and 2.32, both defini-

tions of distance differ at high redshift. However, there is an easy relation between

them, and both can be translated into proper and coordinate distances. This fact

is very useful to join different sources of data as done in subsequent chapters.

dprop(t0) =
dL

1 + z
= (1 + z) dA . (2.33)

2.3.3 Friedmann equations

Once it has been obtained the Robertson-Walker metric for describing the Universe

at large scale, the independent Einstein’s equations reduce to six, and can be solved

for a given energy distribution. We will see that specifying the form of the energy-

momentum tensor for all the sources of energy allows to determine the curvature k

and the scale factor a(t) appearing in the metric, together with the energy content

of the Universe.
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Let us first introduce the cosmological constant term in the right hand side of

the Einstein’s field equations and define a new energy-momentum tensor, T̃µν . As

it is shown later on, this determines the form of the density and the pressure for

the cosmological constant when considered as an energy source. For the sake of

generality, we consider a time-dependent cosmological constant from now on, being

the real cosmological constant just a particular case.

T̃µν = Tµν + Λ(t) gµν . (2.34)

The energy-momentum tensor for a perfect fluid, that is, a fluid without heat

conduction and viscosity, reads

Tµν = −p gµν + (ρ + p)UµUν . (2.35)

So, it can be defined the corresponding total density ρ̃ and pressure p̃ including

all the energy sources and the cosmological constant. This way, the cosmological

constant (in the general sense) can be interpreted as a perfect fluid with energy

density ρΛ = Λ and pressure pΛ = −Λ:

ρ̃ = ρ + Λ , p̃ = p − Λ . (2.36)

The energy-momentum tensor of the cosmic fluid is then the sum of the various

energy components of the Universe: non-relativistic matter (baryonic and cold dark

matter), radiation, cosmological constant and any other dark energy source which

can be interpreted as a perfect fluid:

T̃µν = T matter
µν + T radiation

µν + T CC
µν + T quintessence

µν + ... (2.37)

The relation between the pressure and the density for each of the perfect fluids

is given by its equation of state. It is assumed that both quantities are proportional,

and defined the barotropic index w(t) which is characteristic of each component

p(t) = w(t) ρ(t) . (2.38)
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This simple relation is fulfilled by the most important components of the Universe.

Only some kinds of dark energy models (as the Cardassian ones, for instance) depart

from this Ansatz as it is widely described in Chapter 4. It must be noted that this

is a known relation for matter and radiation, being only an Ansatz for dark energy

since its nature is unknown. Below, some of the barotropic indexes for the different

components are listed.

wR = 1/3 radiation

wM = 0 non-relativistic matter

wS = −1/3 cosmic strings

wW = −2/3 domain walls

wT = −1/3 textures

wQ(t) > −1 (dwQ/dz > 0) quintessence

wK(t) > −1 (dwK/dz < 0) k-essence

wΛ = −1 (evolving) cosmological constant

wPh(t) < −1 phantoms

All the ingredients to solve the Einstein’s equations have already been presented.

So, we can start with the conservation of the energy-momentum tensor we have

just introduced. Only three components are considered: matter and radiation, an

evolving cosmological constant and a quintessence field. The other dark energy

components can take the role of quintessence.

By hypothesis, the quintessence field does not interact with ordinary matter or

radiation, therefore it is separately conserved.

∇µT̃µν = 0 =⇒ Λ̇ + ρ̇ + 3 H (ρ + p) = 0 (2.39)

ρ̇Q + 3 H (ρQ + pQ) = 0 . (2.40)

In the above equations H is the Hubble parameter defined as H ≡ ȧ/a, all derivatives

are calculated respect the cosmic time t, the subindices Q indicate the quintessence

field, and the pressure p and the density ρ correspond to both matter and radiation.

For a truly constant cosmological constant, Equation 2.39 reduces to the usual

conservation law. However, when the cosmological constant evolves with time, it

appears an energy transfer between matter and cosmological constant.
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The evolution of the cosmological constant is given, in this work, by its renormal-

ization group equation (Section 3.2), whereas the quintessence field evolves following

the Klein-Gordon equation:

Q̈ + 3HQ̇ + V ′(Q) = 0 , (2.41)

where the prime derivative is respect to the field Q.

The different components of the Einstein’s equations provide the other indepen-

dent equation describing the dynamics of the Universe. The temporal components,

(µ, ν) = (0, 0), drive to the Friedmann equation:

H2(z) =

(
ȧ

a

)
=

8 π G

3
[ρ(z) + Λ(z)] − k(1 + z)2 . (2.42)

On the other hand, the spatial components generate a new equation which is not

independent from 2.39, 2.40 and 2.42:

(
ä

a

)
+

1

2

(
ȧ

a

)2

= −4πG
∑

i

pi −
k

2
(1 + z)2 . (2.43)

To fully characterize the dynamics of the Universe, it is now only necessary to

specify the form of the potential V (Q) in order to determine its equation of state.

Finally, the system of equations 2.39, 2.40, 2.41, 2.42 and 3.12 can be solved. All the

kinds of universes which are obtained from this set of equations are called Friedman-

Lemâıtre-Robertson-Walker universes (FLRW ) in recognition to the first authors to

solve the Einstein’s equations in cosmology and to give a form for the metric of

space-time.

2.4 Parameterizing the dynamics

All the interesting physical aspects of the dynamics of the Universe are already in

the equations deduced in the previous sections. However, it is useful to define some

parameters to ease the form of the equations and its dependencies. The concrete

values in the present-day also deserve a special attention.
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2.4.1 Hubble constant and critical density

The Hubble constant, H0, has been defined in Section 2.3.1 as a parameter appearing

in the expansion of the scale factor, and it is a measure of the speed at which the

Universe is expanding per unit of distance.

Edwin Hubble measured its value in 1929. In fact, he established a linear relation

between the velocity of some observed galaxies and the distance to us, from which

the proportionality constant was H0. This was the first observational evidence for

an expanding Universe, and a support for Einstein’s equations which had already

predicted a non-static Universe. Hubble had very few data and with a large disper-

sion, however, he could find a first result for it: H0 = 550 km/s/Mpc. Although

the Hubble law has been confirmed at first order, the value of the Hubble constant

has diminished enormously. Freedman et al. for the Hubble Space Telescope Key

Project have obtained H0 = 72± 8 km/s/Mpc [79]. The inverse of the Hubble con-

stant gives an estimation of the age of the Universe. For an accelerated universe this

estimation is a lower limit, i.e., a Hubble constant of H0 = 72 km/s/Mpc implies

that the Universe is, at least, 13.9 Gyr old.

The Hubble constant is of great importance in all cosmological determinations,

and so, it is sometimes useful to define the dimensionless Hubble constant, which

only introduces variations of order one in the expressions where it appears:

h0 ≡
H0

100 Km/s/Mpc
. (2.44)

Another important definition is the critical density of the Universe. It is the

density that a flat Universe would have now, and it can be calculated from the

Friedmann equation taken without curvature at the present time, k = 0 at z = 0.

ρ0
c ≡ 3 H2

0

8 π GN
≈
(
3
√

h0 × 10−3 eV
)4

∼ 10−27 kg/m3 (2.45)

Measured energies higher than the critical one indicate that we are living in a closed

universe, whereas smaller energies reveal that our universe has an open geometry.

Although usually one refers to the present-day critical density, it can also be defined

as a function of redshift, ρc(z), and that is of particular interest when dealing with
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Figure 2.3: (Ω0
M,Ω0

Λ) plane. Combinations of the cosmological parameters divide the

plane according to the geometry and the dynamics of the Universe.

an evolving cosmological constant.

2.4.2 Cosmological parameters

Once it has been defined a characteristic energy of the Universe, the current energy

density for each component can be normalized to it. These dimensionless values,

the cosmological parameters, show the percentage of energy of the component with

respect to the total energy in a flat universe. It can be defined, for instance:

Ω0
M ≡ ρ0

M

ρ0
c

, Ω0
Λ ≡ Λ

ρ0
c

, Ω0
Q ≡

ρ0
Q

ρ0
c

, Ω0
Ph ≡ ρ0

Ph

ρ0
c

, Ω0
Ca ≡ ρ0

Ca

ρ0
c

, etc. (2.46)
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And, by analogy, also a curvature energy density as:

Ω0
K ≡ −k

a2
0 H2

0

. (2.47)

However, it is habitual to use only one dark energy component. In case a single one

is used to represent any of the options, the corresponding cosmological parameter is

denoted by Ω0
X , and used together with Ω0

M and Ω0
K to depict the dynamics of the

Universe.

Again, all these parameters can be defined as functions, and the utility of one or

the other definition depends on the feature to be studied. In this thesis, it has been

used the following notation:

Ω0
X ≡ ρ0

X

ρ0
c

, Ω0
X(z) ≡ ρX(z)

ρ0
c

, ΩX(z) ≡ ρX(z)

ρc(z)
. (2.48)

With these definitions, the Friedmann equation is rewritten as:

H2(z) = H2
0

[
Ω0

M (1 + z)3 + Ω0
X(z) + Ω0

K (1 + z)2
]

, (2.49)

and particularizing at z = 0 it is obtained the cosmological sum rule, which relates

the cosmological parameters among them:

1 = Ω0
M + Ω0

X + Ω0
K . (2.50)

These current values completely characterize the geometry and the dynamics

of the Universe. In Figure 2.3, it is shown the (Ω0
M ,Ω0

X) plane. Each point of

the diagram represents a curvature given by Equation 2.50 and also a value for

the present-day deceleration parameter, expressed as q0 = Ω0
M/2 − Ω0

X (see its

definition in Equation 2.18). The lines that separate the different behaviours have

been overplotted, and the shadowed region marks the zone where the backward

evolution of the Universe would not lead to a Big Bang.

All the observables that have been introduced in Section 2.3.2 to measure cos-

mological distances can be written as a function of the cosmological parameters, and
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so, measuring extragalactical distances is a very good method to determine them.

It is also the main method used in this thesis in order to determine both the cos-

mological parameters and the parameters of the theoretical models (also the dark

energy equation of state). The general equations which will be used in the following

for the luminosity and angular distances read:

dL(z, Ω0
M , Ω0

X) = c (1 + z) a0 sinn

∫ to

te

dt

a(t)
=

=
c (1 + z)

H0

√
|Ω0

K |
sinn

(√
|Ω0

K |
∫ z

0

H0 dz′

H(z′, Ω0
M , Ω0

X)

)
, (2.51)

dA(z, Ω0
M , Ω0

X) =
c a0

(1 + z)
sinn

∫ to

te

dt

a(t)
=

=
c

H0(1 + z)
√

|Ω0
K |

sinn

(√
|Ω0

K |
∫ z

0

H0 dz′

H(z′, Ω0
M , Ω0

X)

)
.(2.52)

2.4.3 Dark energy equation of state

In absence of any hint of what the nature of dark energy is, the equation of state of

dark energy is the best parameter to characterize it. For matter or radiation, the only

unknown quantity is the current energy density, or equivalently, the corresponding

cosmological parameter. Its equation of state is already assumed. On the contrary,

for dark energy one needs to determine it too (an exception is the cosmological

constant which has a fixed value of w(z) = −1). A very important part of the

thesis has been devoted to determine the function w(z) without any restriction

(Chapter 7), although sometimes one restricts the space where its values can be

found due to some physical arguments.

Several parameterizations are also tried for w(z), mostly corresponding to Taylor

developments of the equation of state (Chapter 4). So, we could be in the case to

have an arbitrarily large set of parameters. The adequacy of each development is

discussed later in the thesis.
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Running of the cosmological

constant

This chapter continues with the theoretical part of the thesis by introducing a model

based on the Renormalization Group Equations from Quantum Field Theory. In

the first part, some concepts are defined, and straight afterwards some cosmological

models with a running of the cosmological constant are sketched. The major part of

the chapter is devoted to one of these models, which motivated two papers [176, 75].

3.1 Quantum field theory concepts

3.1.1 Action

Any field theory, and in particular a Quantum Field Theory (from now on QFT ),

is characterized by the Lagrangian of the theory (see a general introduction in [111]

for instance).

For the cosmological case, it is interesting a QFT which also incorporates gravity.

Nowadays, there is not a complete quantum gravity theory, but one can start from

a semiclassical approximation that locates the fields in a curved space-time. The

gravitational field is treated then as a perturbation on a flat background (gµν =

ηµν + hµν), but it is not quantized.

37
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The Lagrangian of the theory has the contributions of both the fields and the

vacuum. The former include all the Standard Model fields in a flat space-time plus

a non-minimal term of interaction with the gravitational field in order to guaran-

tee renormalizability (Section 3.1.2). The latter, the vacuum, which is the most

interesting in our case, introduces a first term corresponding to the Hilbert-Einstein

(HE) action with cosmological constant:

SHE = −
∫

d4x
√−g

(
1

16πGvac
R + Λvac

)
, (3.1)

and, also for renormalizability reasons, one has to add some local terms depending

on the curvature through higher orders of the metric derivatives [36]:

Svac =

∫
d4x

√−g

(
a1R

2
µναβ + a2R

2
µν + a3R

2 + a4�R − 1

16πGvac
R − Λvac

)
.

(3.2)

It is important to notice that Λvac itself is necessary for renormalizability, and

therefore, theories without cosmological constant are non-renormalizable. The re-

maining terms in Equation 3.2, the higher order terms, are only meaningful at high

energies and they could be the cause of inflation. But, when dealing with the cosmo-

logical constant nowadays, at low energy, the Hilbert-Einstein action is a sufficient

approximation.

For fields other than the ones in the Standard Model of particle physics, the

action must include new terms. For instance, one of the most sound alternatives to

the cosmological constant, the quintessence field, adds the following term:

SQ =

∫
d4x

√−g

(
1

2
∂αQ∂αQ − V (Q)

)
. (3.3)

The form of the Lagrangian for quintessence is explicitly given in Chapter 4 (Eq. 4.2).

Other kinds of fields such as k-essence or phantom fields have a similar structure. In

the previous chapter, it has been shown the form of the energy-momentum tensors

for these fields, and from them, one can obtain the Lagrangian to construct their

action.
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3.1.2 Regularization and renormalization

Quantum field theories often present divergences in the integrals when considering

high moments (ultraviolet divergences), and a good example of this is the theory

described by the action in Equation 3.2. To deal with these theories, one might use

regularization and renormalization techniques (see for instance [148]). The main idea

is to absorb the divergences into the terms that represent non-observable magnitudes

in the Lagrangian, so that all the observables remain finite.

The first step is to modify the original integrals by introducing a regularization

parameter which makes the integrals finite. This can be done by

• cutting the integral at a certain momentum (cut-off),

• changing the dimension of the space and introducing the corresponding di-

mensional constant to maintain the original dimensionality, or

• discretizing the space-time and considering only a finite volume.

Despite the diversity of regularization methods, always the regularization parameter

eventually tends to a constant and the integral takes a finite value. In this way, in

renormalizable theories, all the techniques are equivalent.

Once regularized, the parameters of the Lagrangian (the masses m and the cou-

pling constants λ) must be written as a function of the regularization parameter Λ1.

If, whether by this method or by also adding new terms to absorb the new diver-

gences (counterterms), all the Green functions are finite, one says that the theory

is renormalizable.

It can be shown that regularization breaks the scale invariance. However, if the

theory had global or local gauge invariances, they should be conserved. That is

achieved by adding new local terms to the Lagrangian which make the symmetry to

be conserved in the Lagrangian as a whole.

1Although λ and Λ are not the best symbols to name these parameters in a thesis based on

the study of the cosmological constant Λ, we do use them to maintain the habitual notation in the

references.
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The same as with regularization, there are several renormalization schemes. All

of them have the function to absorb the divergences by replacing the masses and

coupling constants originals in the Lagrangian (the naked values m0 and λ0) by

the physical values obtained as a function of the regularization parameter. It is

necessary, then, to specify the renormalization conditions that define the Green

functions in an arbitrary point, the renormalization scale µ. These conditions relate

the naked parameters to the renormalized ones:

m = m(m0, λ0, Λ, µ) ,

λ = λ(m0, λ0, Λ, µ) . (3.4)

In order to see the effects of QFT on the cosmological constant, we use two of

the different renormalization schemes:

• Modified minimal subtraction scheme (MS). It eliminates the pole at 1/(4−d)

which has appeared in the regularization together with the other constant

terms, by adding an arbitrary mass M to maintain the dimensions in the

equation.

• Moment subtraction scheme. It considers the renormalization scale as the

euclidean momentum and gives more physical results which depend on the

mass.

3.1.3 Renormalization Group Equations

It has just been seen that a renormalized QFT is not, in general, scale invariant.

This dependence of the QFT with the scale is described by the Renormalization

Group Equations (from now on RGE).

Once the theory has been renormalized, the masses and the coupling constants

become functions of the renormalization scale µ, since although its naked values are

fixed, a change in the renormalization scale varies their renormalized values:

µ −→ µ + δµ =⇒ m −→ m + δm

λ −→ λ + δλ . (3.5)
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The naked Green functions are, however, scale independent. Since renormaliza-

tion rescales the fields following φ = Z−1/2φ0 (where Z is a renormalization con-

stant), going from the naked Green function (G0) to the renormalized one (GR) is

achieved just by this scaling. Therefore, the conservation equation for G0 is simply

converted into another differential equation for GR at order n:

µ
d

dµ
G

(n)
0 (pi; m0, λ0, Λ) = 0 (3.6)

⇓

µ
d

dµ
Z

−n/2
φ G

(n)
R (pi; m0, λ0, Λ) = 0 . (3.7)

The specific dependence of λ, m and Zφ on the scale µ defines three functions:

the beta function (β), the anomalous mass dimension (γm) and the anomalous field

dimension (γφ):

β(λ) ≡ µ
∂λ

∂µ
,

γm(λ) ≡ 1

m
µ

∂m

∂µ
,

γφ(λ) ≡ −1

2
µ

∂ ln Zφ

∂µ
. (3.8)

Using now these three functions to rewrite Equation 3.7, one obtains the Renormal-

ization Group Equations:

[
µ

∂

∂µ
+ β

∂

∂λ
+ γmm

∂

∂m
+ nγφ

]
G

(n)
R (pi; m0, λ0, Λ) = 0 . (3.9)

Because GR is a renormalized function, it does not depend on the regularization

parameter Λ. Consequently, neither do β, γm and γφ. Besides, according to the

form of Equation 3.9, these functions must be dimensionless, and so, in case they

have a dependence on the renormalization scale it should be of the type:

β(λ, µ/m) , γm(λ, µ/m) , γφ(λ, µ/m) .
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Even though the three functions depend on the renormalized coupling constants,

it is the beta function the one that shows the evolution with the renormalization

scale. Mathematically, this function can have three behaviours when one considers

small couplings and therefore the expansion at first order is valid:

(i) β(λ) > 0. In this case the coupling constant λ tends to zero in the infrared,

and that allows the theory to make predictions at low energies. On the contrary, λ

diverges in the ultraviolet.

(ii) β(λ) = 0. λ does not show any evolution, so it coincides with the naked

value λ0.

(iii) β(λ) < 0. The behaviour is the opposite to case (i) and the theories are

called asymptotically free because there is no interaction at high energy.

If, instead, the couplings are strong, the first order approximation is not valid any

more, and one should consider higher orders for β(λ). Then, maxima and minima

in β(λ) arise and so, also fixed points λ∗ so that β(λ∗) = 0. If at high energies λ

tends to λ∗, we say that there is a fixed point in the ultraviolet, and if the tendency

is at low energies, the fixed point is in the infrared.

3.2 Renormalization Group Equations for the cos-

mological constant

The results just introduced are well known in a flat space, but when working in

a curved space-time the formalism shows some problems. The bases for the gen-

eralization are clear: in the action representing a flat space-time one must change

partial derivatives for the covariant ones, the Minkowski metric for a generic one,

and d4x for d4x
√−g. With these transformations on the fields of the Standard

Model, the addition of the Hilbert-Einstein action, and the other terms necessary

for renormalization, one obtains an action 3.2 for the vacuum in a curved space-time.

The cosmological constant appearing in Equation 3.1 is nothing else but a naked

parameter that absorbs part of the divergences when the theory is renormalized.

When one uses the dimensional regularization and the renormalization scheme
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MS, the renormalization group equation for the cosmological constant can be written

as:

µ
d

dµ

(
Λ

8πG

)
= βΛ(MS) =

m4

2(4π)2
. (3.10)

In the same way, the Newton constant G is also a parameter which has been

renormalized and follows its own RGE:

µ
d

dµ

(
− 1

16πG

)
= βG(MS) =

m2

(4π)2

(
ξ − 1

6

)
, (3.11)

where ξ is the parameter introduced by the non-minimal part of the action.

The renormalization scale µ has a difficult interpretation already in a flat space-

time within the MS scheme, because it is only an auxiliary parameter in the dimen-

sional regularization. Furthermore, the beta function usually fails at low energies.

On the other hand, the mass dependent schemes do give a meaning to µ, and since

at high energies both beta functions must agree, the comparison should let us inter-

pret the renormalization scale even in the MS scheme. The MS scheme gets easier

results, but besides the mentioned problems, it does not show the decoupling of the

massive degrees of freedom (Appelquist-Carazzone theorem [11]).

Knowing these difficulties, it seems essential to calculate the RGE within a

mass dependent scheme. However, up to now, calculations in a curved space-

time are made perturbatively on the metric of a flat space-time. Consequently,

non-perturbative effects cannot be seen and results are not universal. Actually, in

Ref. [92] the RGE for Λ and G have already been calculated within a mass dependent

scheme, and they obtained a null β-function. That was attributed to a problem in

the calculation methodology, as the ultraviolet limit did not coincide with the result

in the MS scheme.

These are some of the reasons why usually one calculates the β-function with the

MS scheme which should be correct at high energies, and later, one poses hypotheses

about the renormalization scheme and the degree of compliance of the Appelquist-

Carazzone theorem. In the following, we will use this methodology, but before, a

general form for Equation 3.10 can be given.



44 Chapter 3. Running of the cosmological constant

Let us consider the beta function of Equation 3.10, which has been obtained

within the MS scheme, and therefore, should show the correct behaviour at high

energies. However, at low energies, the β-function depends on the mass and one

should check whether massive degrees of freedom are important or not. We have

seen that we cannot calculate it with a mass dependent renormalization scheme, but

we can look for a general form. This kind of procedures introduce a series of terms

of the form µ/M , as it happens with the ai terms in the vacuum action 3.2 (see

[92]). Hence, one can expect a similar decoupling for the cosmological constant, so

that its β-function has µ2M2 terms:

dΛ

d ln µ
=

1

(4π)2

(
∑

i

Ai m
4
i + µ2

∑

j

BjM
2
j + µ4

∑

j

Cj + µ6
∑

j

Dj

M2
j

+ ...

)

≡
∞∑

n=0

∑

i

αin M4
i

(
µ

Mi

)2n

≡ βΛ(Mi, µ/Mi). (3.12)

where mi are the light degrees of freedom with µ > mi, Mj are the heavy ones with

µ < Mj, and i and j represent the massive fields. A, B, C and D are constant terms,

whereas the index n is the order of the development.

From the comparison between this equation in the ultraviolet and the one ob-

tained in the MS scheme, one can obtain the explicit form for the constant Ai

corresponding to particles with mass mi and spin Ji,

Ai = (−1)2Ji(Ji + 1/2) nJi
Nc , (3.13)

with n{0,1,1/2} = (1, 1, 2) and Nc = 1, 3 for particles without and with colour respec-

tively.

In Equation 3.12 there are not odd powers because µ appears in calculations bi-

linearly in the contractions with the metric tensor. Covariance, for instance, forbids

the first term linear in µ and the development starts with µ2. The decoupling is

produced according to the Appelquist-Carazzone theorem, and it introduces an in-

verse power suppression by the heavy masses. However, the form of the cosmological

constant is different from all the other parameters in the Standard Model, having

a dimensionality of energy to the fourth. That makes the first orders, n = 1, 2, be
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different, since the beta function itself has a particular dependence proportional to

M4. Higher orders are suppressed in the usual way, but the difference in the second

order provides the cosmological constant with a characteristic soft decoupling.

This equation is not univocally defined yet, one must specify a concrete meaning

for the renormalization scale within the cosmological framework. There are mainly

the differences in this choice that originate several cosmological scenarios.

3.3 Cosmological scenarios

Considering the Renormalization Group Equations for the cosmological and Newton

constants in the Einstein’s equations has motivated various cosmological models,

which are variants of the standard FLRW. Most of them are consequence of the

theory just introduced, although results with a non-perturvative quantum gravity

have been obtained too. These are added for completeness at the end of the section.

3.3.1 Perturbative solution to the Renormalization Group

Equations

Before particularizing for the different cosmological scenarios, one should look at

the necessary RGEs.

From the beginning, the ai terms in the vacuum action have been discarded for

the study of the current Universe, that is, at low energies. Besides, in Ref. [175] it

is demonstrated that the evolution of G is irrelevant within the perturbative theory,

since 1/G ∼ M2
P l is very large and so, in comparison, its running is not observed.

Its situation is the opposite that for the cosmological constant, and its RGE does

not need to be used. Finally, in respect to the induced term (Λind), its RGE is

completely independent from the one of Λvac, but the decoupling is expected to

occur in the same way, and therefore, the same form can be used for the total and

physical cosmological constants (Λph ≡ Λ) as it is also demonstrated in [175].

Once it is realised that the only necessary contribution for the current Universe

is the one coming from βΛph
, let us see different approaches to its form.
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3.3.1.1 Scenario 1: mi < µ, µ ∼ ρ
1/4
c (t)

In Ref. [174], Shapiro and Solà suppose that the light degrees of freedom are the

only ones that contribute to βΛ. This way, Equation 3.12 keeps only the first term

proportional to Ai. But in order to know which are these degrees of freedom one has

to first define the renormalization scale µ. Accepting that µ is the typical energy

scale in the Universe, it can be taken as the critical energy at any time:

µ ∼ ρ1/4
c (t) . (3.14)

Nowadays, ρ0
c ≈ (3

√
h0 · 10−3 eV )4, so the renormalization condition is specified

at µc = (ρ0
c)

1/4 ≈ 10−3 eV . With this energy scale and considering the Standard

Model of Particles, the only active degrees of freedom are the lightest neutrinos, and

therefore, the βΛ function in Equation 3.12 can be rewritten as:

dΛ

d lnµ
=

−4

(4π)2

∑

ν

m4
ν , (3.15)

where the sum is only for the lightest neutrinos: the electronic one and possibly an

sterile one.

In this particular case, one can explicitly calculate the RGE both for Λind and

Λvac, which, in fact, result to be identical. Equation 3.15 is the sum of both.

The direct integration of Equation 3.15 implies a growing cosmological constant

towards the future. The expected behaviour is just the opposite, and this is why it

is sometimes included a light scalar field S that is still unknown, but would have an

energy similar to the light neutrinos and would contribute positively to βΛ:

dΛ

d lnµ
=

1

2(4π)2
m4

S − 4

(4π)2

∑

ν

m4
ν , (3.16)

Λ(ρ) = Λ0 +
1

(4π)2

(
1

2
m4

S − 4
∑

ν

m4
ν

)
ln

ρ

ρ0
. (3.17)
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3.3.1.2 Scenario 2: Mi > µ, µ ∼ ρ
1/4
c (t)

The authors in [16] consider that although the contribution of particles with M > µ

is suppressed, this is still dominant over the one of particles with m < µ. So, the

heaviest particles dominate the running at any scale, an the development in 3.12

must be kept until n = 3.

After defining a renormalization scheme, Guberina et al. [93] obtain within the

Standard Model of Particles the following beta function βΛ:

dΛ

d ln µ
=

1

2(4π)2

∑

i

σi m
4
i

µ2

µ2 + m2
i

, (3.18)

where the sum is over the i massive degrees of freedom, and σi = +1,−1 for bosons

and fermions respectively.

Now, Equation 3.18 is integrated, and after approximating the neutrinos to be

massless (which in this case is a valid approximation due to the large mass difference

with the other particles in the Standard Model) the running of the cosmological

constant is given, up to n = 2, by:

Λ(µ) = Λ0+
1

(4π)2

[
µ21

4

(
m2

H + 3m2
Z + 6m2

W − 4
∑

i

Nim
2
i

)
+ µ4

(
1

2

∑

i

Ni −
5

4

)]
.

(3.19)

However, the µ2 term would imply a huge evolution in no way supported by

observations, and therefore this term is set to zero. That imposes a value to the

Higgs’ mass as a function of the other fields in the Standard Model:

m2
H = 4

∑

i

Nim
2
i − 3m2

Z − 6m2
W ≈ (550 GeV )2 . (3.20)

Despite of this mass being a bit high, it is within the current accepted interval of

mass for the Higgs. Anyway, that does not avoid needing too much tuning to make

this cosmological constant compatible with observations. Besides, the condition 3.20

is equivalent to µ2
∑

j BjM
2
j = 0 in the development obtained according to scheme
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in 3.2. These Bj are not exactly the same appearing in Equation 3.19 and therefore,

the Higgs’ mass is different for different schemes.

In the same way as it happened in Scenario 1, the energy scale is given by

µ ∼ ρ1/4.

3.3.1.3 Scenario 3: Mi > µ, µ ∼ R1/2 ∼ H(t)

The main variation in this scenario is a change in the renormalization scale. In

Reference [174], it was already proposed:

µ ∼ R1/2 ∼ (Gρ)2 ∼ H(t) , (3.21)

where R is the scalar of curvature and H the Hubble parameter with current value

H0 ∼ 10−33 eV . With the hypothesis of Scenario 1, that would imply the absence

of any active degree of freedom2, and so the cosmological constant would not suffer

any running. This is why it is assumed here that due to the soft decoupling in

the cosmological constant, the heaviest particles with M ∼ MP l are those truly

responsible for the running. Even the masses close to the possible Great Unification

scale (MGUT ∼ 1016GeV ) would cause a inappreciable running when compared to the

one produced at Planck scale. With these premises, the order n = 0 in Equation 3.12

is strictly zero, and from n = 2 on the terms are irrelevant in front of the dominant

contribution of n = 1 [176]:

dΛ

dln µ
≃ 1

(4π)2

∑

i

µ2BiM
2
i . (3.22)

with Mi ∼ MP l. Since for B = O(1 − 10) and Mi ∼ MP l:

β0
Λ ≃ BH2

0M
2
P l

(4π)2
∼ B (1.5 10−42 GeV × 1.2 1019 GeV )

2

(4π)2
∼ 10−47 GeV 4 ∼ Λ0 , (3.23)

2In the Standard Model of Particle Physics the lightest particles are neutrinos with mν ≥
10−3 eV .
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and two such different scales like the one given by the Planck mass and the Hubble

constant determine the correct order of magnitude of the cosmological constant.

The fact that this choice of the renormalization scale provides such a low value

makes the evolution to remain soft during most of the life of the Universe. The

cosmological constant grows towards the past, and for example, in the Fermi epoch:

ΛF ≃ H2
F M2

P l ∼
(

T 2
F

MP l

)2

M2
P l ∼ M4

F , (3.24)

whereas in the Planck epoch ΛP l ∼ M4
P l. In fact, the RGE is only valid until the

Planck scale. After that point, it is necessary a complete quantum gravity theory,

an since even the metric would be highly fluctuating then, it has no sense to speak

about the Hubble parameter. So, “only” up to the Planck epoch, the running of the

cosmological constant is described by:

dΛ

dlnH
=

1

(4π)2
σ H2M2 , (3.25)

Λ(H) = Λ0 +
σ

2(4π)2
M2(H2 − H2

0 ) . (3.26)

where σ = +1,−1 correspond to the different cases where bosons or fermions dom-

inate at high energies, and it has been defined M ≡
√
|∑i Bi M2

i |.

3.3.1.4 Comparisons

Once it has been obtained the dependence of the cosmological constant with the

energy scale, one can see the magnitude of the effect graphically.

In Figure 3.1, it has been represented the evolution of the cosmological constant

as a function of both the critical density (ρc) and the redshift (z) for the three

scenarios. It must be noted that the renormalization scales are different, but the

relation between the Hubble parameter and the critical density (Eq. 3.27) makes

possible that the results are expressed just as a function of one of them, in this case

ρc.
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ρc(z) =
3M2

P l

8π
H(z)2 . (3.27)

Scenario 1 is, given a particle physics model, a case without free parameters. The

problem is that the mass of the light neutrinos is not a very well known parameter.

Furthermore, in order to obtain the observed behaviour, an extra scalar field must

be added to the beta function βΛ, being in this way positive and producing a growing

cosmological constant in the past. Following the values in [174], the figure has been

plotted with mν = 0.002 eV and mS = 4 mν .

A similar thing happens in Scenario 2. However, here the Standard Model of

particle physics fully determines the evolution:

η ≡ 1

2

∑

i

Ni −
5

4
= 10.75 . (3.28)

On the other hand, in Scenario 3, masses close to the Planck mass scale are

completely unknown, waiting for a theory that predicts these values. In Figure 3.1

it has been used ν = 0.1, where the parameter ν is defined later in this chapter

(Eq. 3.35) as the ratio between these masses and the Planck one.

Figure 3.1: Evolution of the cosmological constant as an effect of the RGE in the three

scenarios introduced in this section. The same evolution is shown as a function of the

critical density (ρc) and the redshift (z).
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All the models shown here forecast growing values of the cosmological constant

towards the past and a decline in the future, even though it has been omitted a

version of Scenario 1 without the extra scalar field and Scenario 3 with a negative

ν, both of them with the opposite behaviour. For the first model, Scenario 1, no

running is observed at the scale of the other two. Since its cause are the less mas-

sive particles, its effect is much smaller than in the other cases, and the logarithmic

evolution in ρc predicted by Equation 3.17 remains hidden six orders of magnitude

below the others. The slope in Scenario 2, much more evident, is univocally deter-

mined by its RGE when the µ2 term is tuned to be null. In Scenario 3, the slope

is different according to the value of the index ν. Even if in the figure one can

observe a stepper function than the one in the previous scenario, the slope could

be much smaller, and even insignificant if ν were really small. The discussion of

this third case is detailed in Section 3.4, all of it devoted to see the consequences of

a cosmology dominated by the most massive particles situated close to the Planck

scale as analysed in [75].

As a practical issue with a view to the second part of the thesis, these evolutions

have also been represented as a function of redshift in Figure 3.1. This parameteri-

zation is very useful when cosmological distances are applied in order to characterize

the models and determine the cosmological parameters.

3.3.2 Non-perturbative solution to the Renormalization

Group Equations

This approach is quite different from the ones just shown, since the exact Renormal-

ization Group Equations for quantum gravity are used under the assumption of the

existence of a fixed point in the infrared [31, 24]. That allows the Renormalization

Group Equations to be solved not perturbatively, but in an approximate way by

means of the truncation method. In this manner, it is seen that the couplings G

and Λ also acquire a dependence on the scale.

3.3.2.1 Scenario 4: µ ∼ 1/t ∼ H(t)

The existence of a fixed point (g∗ and λ∗ for G and Λ respectively) allows to establish

a dependence with the scale close to that point:
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G(µ) = g∗/µ
2 ,

Λ(µ) = λ∗µ
2 . (3.29)

On the other hand, Bonanno et al. [31] consider that the energy scale is inversely

proportional to the cosmic time,

µ = ξ/t , (3.30)

where ξ is a positive constant. Since H ∝ 1/t in the FLRW cosmology, this election

is not essentially different from 3.21.

Under these hypotheses, the system of differential equations for a flat FLRW

cosmology is solved in [24]. An only attractor is found at t → ∞:

G(t) =
3

8
(1 + w)2g∗λ∗t

2 ,

Λ(t) =
8

3(1 + w)2

1

t2
, (3.31)

where w is the barotropic index of the equation of state p(t) = wρ(t) corresponding

to the dominant component.

It is worth to mention that, contrary to the other scenarios, the Newton con-

stant also experiments an evolution here which should be taken into account when

depicting the dynamics of the Universe.

3.3.3 Renormalization scale

As it has been seen in these four scenarios, four different renormalization scales have

been proposed (ρ1/4, R1/2, H and t−1), which, in the cosmological framework, can

be reduced to ρ1/4 and H . Nevertheless, that results in a great ambiguity as to the

parameter with respect to which the evolution of the Universe is described.
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A method to resolve the ambiguity has been proposed in [17]. They impose

general covariance on the Einstein’s equations (Eq. 2.5), and so, both sides of the

equations must be conserved. Once established Λ(µ) and GN(µ), that relates µ to

the matter density ρM . In a similar way as the effect of the RGE on the density

of matter is determined in this thesis, the authors in [17] use the relation in order

to determine µ as a function of ρM . However, the background is different: we do

not assume the validity of the usual evolution of ρM(z) but it is derived from the

equations, whereas in [17], the relation is considered to be universal.

Anyway, this method to determine µ agrees within certain limits with the natural

choices of the previous section. For the scenarios corresponding to the perturbative

solution of the RGE, the µ value can be approximated to H under some hypotheses,

whereas for the ones based on quantum gravity with a fixed point in the infrared

one gets µ ∝ 1/t only in a flat universe.

3.4 Cosmology in Scenario 3

In order to see how the dynamics of the Universe is affected by the evolution of

the cosmological constant, the usual system of equations must be solved together

with the Renormalization Group Equation for the cosmological constant, and, if

necessary, with the Renormalization Group Equation for the gravitational constant.

Thus, in this section the equations deduced in Section 2.3 are joined together with

the ones deduced in the previous sections, in particular for Scenario 3.

3.4.1 Cosmological equations

In the previous sections, it has been obtained the RGE for the cosmological con-

stant at low energies as a function of the energy scale, that is to say, in this scenario,

as a function of the Hubble parameter H(t). On the other hand, the conservation

Equation 2.39 (CE ) was expressed in terms of the cosmic time, whereas the vari-

able for the Friedmann equation 2.42 (FE ) was the redshift. By simply using the

chain rule and doing some combinations among equations, the system of these three

independent equations as a function of redshift reads:
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CE, a =
1

1 + z
, ȧ = aH =⇒ dΛ

dz
+

dρ

dz
=

3 ρ

1 + z
, (3.32)

RGE =⇒ dΛ

dz
=

dΛ

d lnH

d lnH

dH

dH

dz
=

(4π)2

2
σ M2 dH2

dz
, (3.33)

FE =⇒ dH2

dz
=

8 π G

3

(
dΛ

dz
+

dρ

dz

)
+ 2 H2

0Ω
0
K(1 + z). (3.34)

This is the set of cosmological equations that, once it is solved, describes the dy-

namics of a universe with an evolving cosmological constant.

Let us define now two dimensionless parameters, ν and κ, from which only one

is independent, but which are useful in order to analyse the model:

ν ≡ σ

12 π

M2

M2
P

, (3.35)

κ ≡ −2 νΩ0
K . (3.36)

With these definitions and inserting Equation 3.34 into 3.33 and then the result

into 3.32, one obtains a differential equation for the density of matter,

dρ

dz
− 3(1 − ν) ρ(z)

1 + z
− κ ρ0

c (1 + z) = 0 , (3.37)

which can be integrated with the initial condition such that for z = 0 the density of

matter be ρ = ρ0
M :

ρ(z; ν) =
(
ρ0

M +
κ

1 − 3ν
ρ0

c

)
(1 + z)3(1−ν) − κ

1 − 3ν
ρ0

c (1 + z)2 . (3.38)

Introducing now this result into the continuity equation 3.32, the evolution of

the cosmological constant energy density is achieved:

Λ(z; ν) = Λ0 + ρ0
M f(z) + ρ0

c g(z) , (3.39)
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where the initial condition is Λ(z = 0) = Λ0 and

f(z) =
ν

1 − ν

[
(1 + z)3(1−ν) − 1

]
, (3.40)

g(z) = − κ

1 − 3ν

{
z (z + 2)

2
+

ν

1 − ν

[
(1 + z)3(1−ν) − 1

]}
. (3.41)

Both in Equation 3.38 and 3.39, the parameters ν and κ play an important role.

The latter denotes the spatial curvature of the Universe: if ν > 0 the sign of κ agrees

with the sign of the curvature k, for κ > 0 (σ > 0) the universe is closed, whereas

for κ < 0 (σ < 0) the universe is open. On the contrary, ν < 0 makes k and κ be of

the opposite sign. For κ = 0 the universe is flat, and the second terms of the right

hand side of Equations 3.38 and 3.39 disappear. The other parameter ν acts as a

cosmological index and shows the deviation of the density with respect to its value

in a FLRW cosmology without the effects of renormalization, since for ν = 0 also

κ = 0, and so, the standard results are recovered.

Let us examine now how the dynamics of the Universe changes with the cosmo-

logical index ν.

3.4.2 Cosmological index ν

The energy density evolution equations for ρ(z) and Λ(z) vary enormously accord-

ing to the value of ν. At low redshift, discrepancies are tolerable since the initial

condition is imposed at z = 0. However, at high redshift, some behaviours are very

different from the cosmological constant case and are incompatible with current

observations.

3.4.2.1 Case ν < 0

In this interval the cosmological constant becomes negative and grows towards the

past (z → ∞, but still in the matter dominated epoch where equations have been
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solved), whereas the density of matter tends towards ρM → +∞. Going to the

future (z → −1) both densities diminish in absolute value, approaching to zero the

matter component and to a ν-dependent value the cosmological constant. In a flat

universe the concrete value is just:

Λ(z = −1) = Λ0 +

∣∣∣∣
ν

1 − ν

∣∣∣∣ ρ0
M . (3.42)

This way the cosmological constant ends by being positive, being now of the

imposed sign Λ(0) = Λ0, and negative in the past. The transition between the

negative and positive cosmological constant was produced at redshift:

ztr =

[
1 +

(
1 +

1

|ν|

) (
Ω0

Λ

Ω0
M

)] 1
3(1+|ν|)

− 1 . (3.43)

Just to give some numbers, let us consider a universe with Ω0
M = 0.3 , Ω0

Λ = 0.7

and ν = −0.1, then the transition occurs at ztr = 1.7. For the same cosmology,

lower values of ν, ν = −0.05 , mean transitions at higher redshift, ztr = 2.4. So,

the physics which is deduced from the ν < 0 case is admissible as long as |ν| is not

excessively large, considering that then the transition redshift would be low enough

so as to be detected.

3.4.2.2 Case ν = 0

All the conclusions obtained for a universe with a truly constant cosmological con-

stant are recovered.

3.4.2.3 Case 0 < ν < 1

In this range, both the density of matter and of cosmological constant become pos-

itive and tend to infinite towards the past. In the future, the cosmological constant

will achieve a positive, and in general different from zero, value, whereas the density

of matter tends to zero.
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Let us come back to the flat case where the asymptotic regimes are more easily

obtained. Similar to Equation 3.42, now the cosmological constant will reach the

value:

Λ(z = −1) = Λ0 −
ν

1 − ν
ρ0

M . (3.44)

So, depending on the value of ν, the asymptotic limit will be positive or negative.

It can be shown that this characteristic remains the same for some values of the

curvature.

Note here that this behaviour is the desired one in string theories or M-Theory,

where it is necessary a negative or null cosmological constant in order to define the

asymptotic states of the so-called S matrix. This kind of theories will then be able

in the future to predict a value for ν as a requirement of the theory itself.

3.4.2.4 Case ν = 1

This is not a very desirable case, since in a flat universe the density of matter would

be the same at each redshift. The situation improves when it is considered a positive

curvature, but it gets even worse in a universe with negative curvature, where the

density of matter in the past tends to ρM → −∞.

For a positive curvature (k > 0) and ν > 0 one obtains κ > 0. With these

signs, Equation 3.38 describes an evolution for the density of matter which goes

from a positive large value in the past to a very small value in the future. On

the other hand, the cosmological constant begins by being also large and positive,

goes through zero and grows again in modulus towards large negative values. The

transition occurs at:

ztr ≃ exp
(
−Ω0

Λ/3Ω0
M

)
− 1 . (3.45)

For a slightly curved universe completely compatible with current CMB obser-

vations, Ω0
M = 0.30 and Ω0

Λ = 0.71, one obtains ztr = −0.54. Therefore, we should

wait to the far future in order to reach the transition epoch.
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3.4.2.5 Case ν > 1

This last section encompasses the most observationally disfavoured case. A value

of ν greater than one implies that as the modulus of the cosmological constant

grows, also does the density of matter due to the energy balance between Λ and ρ.

So, we would live in a universe with an increasing density of matter even though

expanding, reminding of Hoyle’s Universe (although in that case he supposed an

steady universe) where matter was created.

3.4.3 Primordial nucleosynthesis restrictions

The impact of a running cosmological constant is also evident beyond the matter

dominated era. In particular, the nucleosynthesis epoch is a very well known period

which is altered by this running. But this pillar of the Standard Model of Cosmology

is a very solid one, and any new cosmological alternative should respect it unless it

introduces a complete landscape as consistent as the current one for describing the

Universe.

In order to see how our knowledge of the primordial nucleosynthesis restricts

the possibility of an evolving cosmological constant, it is necessary to solve the

cosmological equations in this epoch. That means that the equation of state of

matter (pM = 0) has to be changed by the one of radiation (pR = ρR/3). This way,

the continuity equation converts into:

Λ̇R + ρ̇R + 4 H ρR = 0 . (3.46)

Following the same steps as in the matter dominated era, the density of radiation

can be expressed as:

ρR(z; ν) =

(
ρ0

R +
κ

2 − 4ν

)
(1 + z)4 (1−ν) − κ

2 − 4ν
(1 + z)2. (3.47)

However, for radiation, it is more appropriate to express the result as a function

of the temperature T of the thermal bath of radiation, being (1 + z) ∝ T ,
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ρR(T ; ν) =
π2

30
g∗ T 4

(
T0

T

)4 ν

+
κ

2 − 4ν

[(
T

T0

)4 (1−ν)

−
(

T

T0

)2
]

, (3.48)

where T0 ≈ 2.75 K = 2.37×10−4 eV is the current CMB temperature and the number

of ultrarelativistic degrees of freedom, g∗, is of order one ( g∗ = 2 for photons and

g∗ = 3.36 with also neutrinos). In a similar way, the cosmological constant density

is:

ΛR(T ; ν) = Λ0 + ρ0
R fR(T ) + ρ0

c gR(T ) , (3.49)

with

fR(T ) =
ν

1 − ν

[(
T

T0

)4 (1−ν)

− 1

]
, (3.50)

gR(T ) = − κ

2 − 4ν

{
T 2 − T 2

0

T 2
0

− ν

1 − ν

[(
T

T0

)4 (1−ν)

− 1

]}
. (3.51)

The first limitation from these equations comes from the fact that the density

at the nucleosynthesis epoch cannot be much different from the standard one since

its value is known with high precision [200, 135]. Therefore, the ν index has to be

small enough:

|ν| ≪ 1 . (3.52)

Furthermore, the density of cosmological constant must be less than the density

of matter at the nucleosynthesis epoch in order to allow atomic nuclei to be formed

with the abundances they are observed. Imposing the difference between both to be

at least one order of magnitude, it is obtained again the same restriction:

ΛR(T )

ρR(T )
≃ ν

1 − ν
≃ ν ≪ 1 , (3.53)
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where the development is valid in a flat universe.

This limit obtains a stricter constrain from the CMB fluctuations and galaxy

studies, which impose a maximum of νmax = 2.3×10−3 [136]. Density perturbations

further constrain the limit to |ν| < 10−4 [77].

3.4.4 Behaviour in the physical range |ν| ≪ 1

Once it has been determined the most probable range for ν, all the subsequent

analysis is restricted to this interval. It is then useful to define the most natural

value for this index, that obtained for σ = +1 and M = MP :

ν0 ≡
1

12 π
≈ 2.6 × 10−2. (3.54)

The various functions and parameters will be represented for the first multiples of

ν0.

Figure 3.2: Density of matter (a) and cosmological constant (b) in a flat universe with

Ω0
M = 0.3 and Ω0

Λ = 0.7. Different kinds of lines show a different deviation from the

standard model with ν = 0.

Figure 3.2 shows the variation of the density of matter (a) and cosmological

constant (b) in a flat universe with Ω0
M = 0.3 and Ω0

Λ = 0.7. The redshift interval
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starts in a point in the future, z = −0.5, and ends where the furthest supernova data

are expected to be detected, z = 2. So, variations in this range should be detected

observationally.

As a result of demanding a non-null βΛ, it appears a correlation between the

evolution of ρM(z; ν) and Λ(z; ν). These two quantities are important in cosmology

since the luminosity distance is a function of them, and their form is relevant in the

determination of the cosmological parameters (Eqs. 2.51 and 2.42 in Chapter 2).

Comparing with the standard cosmological model (ν = 0), it is seen that for

a negative cosmological index the density of matter grows faster towards the past,

whereas for a positive value, the growth is slower than usual. Looking at the future,

the distinction is not appreciable: the density of matter tends to zero regardless the

value of ν. The opposite happens for the cosmological constant. It is for a positive

ν (negative) that the cosmological constant increases (decreases) towards the past,

whereas in the future it reaches a constant positive value. It is worth remembering

that all these comments refer to |ν| ≤ 0.1, since as it has been seen, wider ranges

imply other behaviours.

Figure 3.3 reproduces the same functions as Figure 3.2 for a non-null curvature.

The results are qualitatively the same, but the features are stronger already at lower

ν’s. Particularly, it is for closed universes with ν < 0 that the greatest evolution in

the cosmological constant is generated, and so, this is the most favoured case to be

compared with observations.

Looking at the evolutions of the cosmological constant and the density of matter

one can wonder if these high values of the cosmological constant could alter the struc-

ture formation. Nevertheless, in this model the cosmological constant remains al-

ways under the density of matter, and for ν ≪ 1 it has been seen that primordial nu-

cleosynthesis is not damaged either (see Section 3.4.3). In fact, the equality between

matter and cosmological constant has been produced recently. For a flat universe

with the parameters used in Figure 3.2 (Ω0
M = 0.3 and Ω0

Λ = 0.7), it is obtained the

equality redshift z = (0.29 , 0.31 , 0.32 , 0.34 , 0.36) for ν = (−2ν0,−ν0, 0 , +ν0, +2ν0)

respectively. For larger values of ν still within the limit 3.53, the transition redshifts

are low: z = (0.27 , 0.43) for ν = (−0.1 , +0.1), and the structure formation is never

altered. The variation of the equality redshift with ν is represented by the lower

curve in Figure 3.7 (b).
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Figure 3.3: Evolution of the density of matter and cosmological constant for an open

universe with Ω0
M = 0.3 and Ω0

Λ = 0.5 (left) and for a closed universe with Ω0
M = 0.4

and Ω0
Λ = 0.8 (right).

It has been already mentioned that the functions ρM(z; ν) and Λ(z; ν) are the

most interesting ones for cosmology, since they are the only observables. In order

to see the effect that the running of the cosmological constant has in the luminosity

distance, it can be calculated the percentage of variation of the function. Again in

the flat case, the development of the cosmological constant at first order in ν is:

Λ(z) ≃ Λ0 + ν ρ0
M

[
(1 + z)3 − 1

]
. (3.55)
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Then, the effect of the variation is given by

δΛ ≡ Λ(z; ν) − Λ0

Λ0

= ν
Ω0

M

Ω0
Λ

[
(1 + z)3 − 1

]
. (3.56)

This effect is important at high redshifts from the point of view of Type Ia

supernovae. At z = 1.5 and with a cosmology Ω0
M = 0.3, Ω0

Λ = 0.7 and ν = ν0 the

effect is δΛ = 16%. Considering ν = 0.1, still in the acceptable range of ν (ν = 0.1

implies an effective mass scale of M . 2 MP ) the deviation grows up to 48%. These

results should be perfectly distinguishable with future supernova experiments such

as SNAP [179].

The deviation for δΛ for the first multiples of ν0 is drawn in Figure 3.4 (a). The

second graphic in the same figure represents the variation rate of Λ(z) with redshift

normalized to the current critical density (Fig. 3.4 (b)), that is another way of seeing

how the cosmological constant varies with respect to a truly cosmological constant.

In fact, this function is nothing but the Taylor development to first order near z = 0,

and so, it is another observable function.

Any of these curves is symmetric with ν at high redshifts. As it is observed in

the form of Equation 3.39, the running is greater for ν < 0 than for ν > 0, and that

is reflected in both figures.

3.4.5 Other characteristics

The density of matter and cosmological constant are not the only magnitudes being

affected by the ν dependence. The deviations appearing with respect to the Standard

Model are also significant in the Hubble parameter, the cosmological parameters Ω0
M

and Ω0
Λ, and the deceleration one, for instance.

3.4.5.1 Hubble parameter

Once it has been obtained the redshift evolution of the matter and cosmological

constant densities, the evolution law of the Hubble parameter can be recovered by

simply introducing these evolutions into Equation 2.42 or by integrating expression

3.33. With any of the options, the result is given by:
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Figure 3.4: (a) Deviation δΛ and (b) variation rate (1/ρ0
c) dΛ/dz in a flat universe with

Ω0
M = 0.3 and Ω0

Λ = 0.7. Curves are not symmetric with ν due to the form of Λ(z)

(Eq. 3.39).

H2(z; ν) = H2
0

{
1 + Ω0

M

(1 + z)3 (1−ν) − 1

1 − ν

+
1 − Ω0

M − Ω0
Λ

1 − 3 ν

[
(1 + z)2 − 1 − 2ν

(1 + z)3 (1−ν) − 1

1 − ν

]}
. (3.57)

Clearly, this expression is a generalization, and so, for ν = 0 it is recovered the

standard result:

H2(z) = H2
0

{
1 + Ω0

M

[
(1 + z)3 − 1

]
+ (1 − Ω0

M − Ω0
Λ)
[
(1 + z)2 − 1

]}

= H2
0

[
Ω0

M (1 + z)3 + Ω0
K (1 + z)2 + Ω0

Λ

]
. (3.58)

Since it has been seen that the cosmological index ν is restricted by physics and

observations and that the most physical region is that with ν ≪ 1, Equation 3.57

can be developed in this range with the guarantee that the result is valid. Then,

the behaviour in the future is easily modeled: the Hubble parameter always tends,

independently of the curvature, to a constant value in the future which depends on

ν:
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Figure 3.5: Deviations of the Hubble parameter for the different ν’s indicated on the

curves, with respect to a universe with cosmological constant. Figure on the left shows

a flat universe with Ω0
M = 0.3 and Ω0

Λ = 0.7, whereas the curvature is negative in the

right one (Ω0
M = 0.3 and Ω0

Λ = 0.5).

H2(z = −1; ν) = H2
0

[
1 − Ω0

M + Ω0
K

1 − ν

]
≃ H2

0

[
Ω0

Λ − ν (Ω0
M + Ω0

K)
]
. (3.59)

At every redshift the function H(z, ν) is related with Λ(z, ν), and so it appears

a deviation with respect to the Λ(z) = Λ0 case. This variation could be observable.

Let us consider an example which can show that. For a flat universe (κ = 0) and

still in the ν ≪ 1 limit, one can define at first order in ν

∆(z; ν) ≡ H2(z; ν)−H2(z) ≃ − ν H2
0Ω0

M

{
1 + (1 + z)3 [3 ln(1 + z) − 1]

}
, (3.60)

and so, the relative deviation between this model and the standard one, which

represents the different rate at which H(z; ν) approaches the constant value given

by 3.59 in comparison to that of H(z; ν = 0), is:

δH(z; ν) ≡ H(z; ν) − H(z)

H(z)
=

1

2

∆(z; ν)

H(z)
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= −1

2
ν Ω0

M

1 + (1 + z)3 (3 ln(1 + z) − 1)

1 + Ω0
M [(1 + z)3 − 1]

. (3.61)

That is a negative correction for ν > 0. Therefore, the Hubble constant would

always stay under the expected value in the Standard Model. The opposite would

occur for ν < 0. This behaviour is shown in Figure 3.5, first in the flat universe

where the development 3.60 has been made, and then for an open universe with

Ω0
M = 0.3 and Ω0

Λ = 0.5. Even though the variations are really small (< 10% for

ν < 0.1), H is the parameter which experiences the least important variations, and

so, it is not the optimal one to use in order to distinguish this kind of model from

the real cosmological constant.

3.4.5.2 Cosmological sum rule

When the Friedmann equation (Eq. 2.42) is divided by the Hubble parameter itself,

it is obtained the so-called cosmological sum rule. However, the running of the

cosmological constant includes the ν dependence also in this expression, and the

usual law is modified:

1 = ΩM(z; ν) + ΩΛ(z; ν) + ΩK(z; ν) , (3.62)

where

ΩM (z; ν) ≡ ρM (z; ν)

ρc(z; ν)
, ΩΛ(z; ν) ≡ Λ(z; ν)

ρc(z; ν)
, ΩK(z; ν) ≡ −k

H2(z; ν) a2
(3.63)

and ρc(z; ν) ≡ 3 H2(z; ν)/8 π GN is the critical density at each time.

If, as observations seem to point out, the universe is flat, the cosmological sum

rule reduces to ΩM (z; ν) + ΩΛ(z; ν) = 1, and it is, in principle “measurable”. Since

observations can provide us with H0, Ω0
M and Ω0

Λ, the functions can be determined

for each z and ν.

ΩM(z; ν) =
8 π G ρM(z; ν)

3 H2(z; ν)
=

Ω0
M (1 + z)3 (1−ν)

1 +
Ω0

M

1−ν

[
(1 + z)3 (1−ν) − 1

] , (3.64)
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Figure 3.6: Redshift evolution of ΩM (a) and ΩΛ (b) for a flat universe with Ω0
M = 0.3

and Ω0
Λ = 0.7. In the bottom panel it is shown the evolution of ΩΛ for an open universe

with Ω0
M = 0.3 and Ω0

Λ = 0.5 (c) and for a closed universe with Ω0
M = 0.4 and Ω0

Λ = 0.8

(d).

ΩΛ(z; ν) =
8 π G Λ(z; ν)

3 H2(z; ν)
=

Ω0
Λ + ν

1−ν
Ω0

M

[
(1 + z)3 (1−ν) − 1

]

1 +
Ω0

M

1−ν

[
(1 + z)3 (1−ν) − 1

] . (3.65)

From these equations it is easy to look at the behaviour in the two temporal

limits: the past and the future,
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ΩM(z = ∞) = 1 − ν , ΩΛ(z = ∞) = ν ,

ΩM(z = −1) = 0 , ΩΛ(z = −1) = 1 , (3.66)

which, evidently follow the cosmological sum rule:

ΩM (z = ∞) + ΩΛ(z = ∞) = 1 = ΩM(z = −1) + ΩΛ(z = −1) . (3.67)

It is interesting to note that towards the future ΩΛ(z; ν) → 1 and ΩM(z; ν) → 0,

the same in this model and in the standard one. In fact, (ΩM = 0, ΩΛ = 1) is a

fixed point towards which the cosmic fluid is driven, independently of the value of

ν (ν = 0 included). Towards the past, things are different. The asymptotic trend is

ΩΛ(z → ∞) → ν, and so, ΩΛ never reaches 0, differing from what happens in the

standard case. All these behaviours are reflected in Figure 3.6 for a flat universe

with Ω0
M = 0.3 and Ω0

Λ = 0.7. The bottom panel in the same figure shows how ΩΛ

tends to its limit faster or slower depending on the curvature.

3.4.5.3 Deceleration parameter

Another interesting parameter that describes the dynamics of the Universe is the de-

celeration parameter which has been first shown in Section 2.3.1 in the introductory

chapter. Nowadays, there is a great amount of supernovae close to the point where

the Universe passed from being decelerated to accelerated (z∗) and therefore, it has

become a unique observational feature to distinguish among models. This redshift

is then model dependent, and in our case:

q(z; ν) = − ä a

ȧ2
= − ä

a H2(z; ν)
=

1

2
[ΩM (z; ν) − 2 ΩΛ(z; ν)] , (3.68)

or equivalently,

q(z; ν) = −1 − Ḣ

H2
= −1 +

1

2
(1 + z)

1

H2(z; ν)

dH2(z; ν)

dz
. (3.69)
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Figure 3.7: (a) Deceleration parameter and (b) transition redshift both for the decel-

eration/acceleration transition and the matter/cosmological constant one. The more

positive ν is, the farther we are now from the transitions.

In Figure 3.7 (a), one can observe the deceleration parameter for a flat universe

with Ω0
M = 0.3 and Ω0

Λ = 0.7. Though it is only shown the flat case, the characteris-

tics are the same for any reasonable curvature, that is to say, for compatible values

with CMB. The common trend is an increasingly accelerated universe coming from

decelerating universes. The value of this deceleration in the remote past depends on

the cosmological index ν.

If we restrict to the flat case, which as we have seen is representative enough, and

introduce the functions ΩM (z; ν) and ΩΛ(z; ν), it can be obtained a development at

first order in ν that is useful to do some analytical calculations:

q(z; ν) = −1 +
3

2

Ω0
M (1 + z)3

1 + Ω0
M [(1 + z)3 − 1]

(3.70)

×
{

1 − ν

[
3 ln(1 + z) +

Ω0
M [(1 + z)3 − 1 − 3(1 + z)3 ln(1 + z)]

1 + Ω0
M [(1 + z)3 − 1]

]}
.

At z = 0, even with the inclusion of ν, it is recovered the standard result for the

cosmology in a flat FLRW universe:
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q(0; ν) = −1 +
3

2
Ω0

M =
Ω0

M

2
− Ω0

Λ ≡ q0. (3.71)

Doing the opposite and eliminating the dependence in ν, it is defined the redshift

at which the acceleration of the universe is zero z∗ in the Standard Model:

q(z; 0) = −1 +
3

2

Ω0
M (1 + z)3

1 + Ω0
M [(1 + z)3 − 1]

, (3.72)

z∗ = −1 + 3

√

2
Ω0

Λ

Ω0
M

≈ 0.67 . (3.73)

The numerical value corresponds to Ω0
M = 0.3 and Ω0

Λ = 0.7 and separates the decel-

erated universe from the accelerated universe. This point has nothing to do with the

redshift which separates the universe dominated by matter from the universe dom-

inated by the cosmological constant (Fig. 3.7 (b)). In fact, before the cosmological

constant equals the matter, it is already important enough to produce acceleration,

and the transition redshift matter/cosmological constant is posterior (Section 3.4.4

for numerical values) to the deceleration/acceleration one.

To fully characterize this model with a running of the cosmological constant,

it is interesting to obtain the variation of z∗ as a function of the index ν. Since

the acceleration begins for ΩM (z) < 2 ΩΛ(z), considering a flat universe implies the

change of celerity at ΩΛ(z; ν) = 1/3, or equivalently at

1

2
(1 + z∗)3 − Ω0

Λ

Ω0
M

= ν

{
(1 + z∗)3

[
1 +

3

2
ln(1 + z∗)

]
− 1

}
. (3.74)

The solution to this transcendental equation has been drawn in the upper curve

of Figure 3.7 (b). The more negative ν is, the closer to us the transition has oc-

curred, being the evolution non-symmetrical with respect to the standard case ν = 0:

whereas a positive value of ν = +0.1 makes a shift of 36% in z∗, the negative value

ν = −0.1 only produces a variation of 21%. As it is being happening with most of

the commented functions, this is consequence of the asymmetry with respect to ν

of the original function Λ(z).



Chapter 4

Dark energy equation of state

Due to the difficulty of determination of the nature of dark energy and the large

amount of theoretical candidates, many studies are focused on determining its equa-

tion of state. The other components of the Universe are fully characterised by it:

the density is one third of the pressure for radiation, and for matter the pressure

can be assumed to be null, for instance. However, for dark energy things are not so

easy. Since we do not have any hint about what dark energy is, not even a constant

proportionality can be assumed. In the following, and after introducing some gen-

eral aspects of the equation of state, it is explored how very different dark energy

models can mimic a standard equation of state. The problems of parameterizing

such a general function as w(z) and its high degree of degeneracy are also discussed.

4.1 Basics

The equation of state for each component in the Universe is the relation between

its pressure and its density, and it is a necessary ingredient in order to characterize

the fluid. By knowing the equation of state, and therefore, the energy-momentum

tensor which in our case is that of a perfect fluid, one can establish properties about

the space-time evolution through the classical energy conditions. We start now by

stating these conditions in the cosmological context and seeing its implications about

the range where we expect the equation of state to lie. After that, it is explored the

form of the equation of state of a quintessence field and take it as an archetype to

later compare dark energy models with each other.

71
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4.1.1 Classical energy conditions

The classical energy conditions impose restrictions over the form of the energy mo-

mentum tensor, which can be translated into the equation of state of a perfect fluid,

such as dark energy in a FLRW universe. A complete discussion about it can be

found in [43], here it is only mentioned how the most habitual conditions restrict

the possible combinations of density and pressure of the dark energy component and

the consequences into w(z). A summary of the energy conditions reads:

Weak energy condition (WEC) ρ ≥ 0 and ρ + p ≥ 0

Null energy condition (NEC) ρ + p ≥ 0

Dominant energy condition (DEC) ρ ≥ |p|
Null dominant energy condition (NDEC) ρ ≥ |p| and ρ = −p

Strong energy condition (SEC) ρ + p ≥ 0 and ρ + 3p ≥ 0

On the other hand, what is expected from the dark energy component is to be

a source with positive energy density so that there is enough density to make the

Universe flat or nearly flat, and also to be a source with negative pressure so that the

expansion of the Universe is accelerating now1. In the (ρ, p) plane, this implies that

we are interested in models of the 4th quadrant as indicated in Figure 4.1. Most

of the energy conditions allow a component to have ρ ≥ 0 and ρ ≥ |p|, what, as it

will be seen, corresponds to the family of quintessence models (also k-essence and

other alternatives can share this characteristic). In an homogeneous and isotropic

universe, these requirements translate, for an equation of state of the form p = wρ,

into having −1 ≤ w ≤ 0. In this case, DEC assures that dark energy would always

be stable as stated by the conservation theorem of Hawking and Ellis [100]. However,

also models with ρ ≥ 0 and ρ < |p| have a positive density and negative pressure,

but they do not obey any of the classical energy conditions. This is not a sufficient

condition to assure that the dark energy component is not stable, but in most cases

it is so. For a dark energy source with p = wρ in a FLRW universe that implies

w < −1, that is, a phantom component.

Phantom energies violate then all energy conditions. Since they do not obey

DEC, p+ρ < 0 and the density grows to infinity in a finite time, when also the scale

1In fact, it is necessary that p < −1/3 ρ in order that the Einstein’s equations describe an

accelerating Universe. Therefore, a dark energy source must violate SEC.
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Figure 4.1: Pressure-density plane shadowing the region expected for a component that

makes the Universe accelerate: positive energy density and negative pressure. This

quadrant corresponds to two very different behaviours: quintessence-like behaviour (Q)

and phantom-like behaviour (Ph). The parameter w is defined as the ratio w = p/ρ.

factor has grown to infinity. This singularity is known as Big Rip. The catastrophic

end and the violation of the classical energy conditions sometimes motivate to limit

the dark energy equation of state in the range −1 ≤ w < −1/3. Nevertheless, as it

is seen in the numerical analysis of this work, current data favour a supernegative

equation of state. Since the relation p = wρ can be just an effective parameterization

of the component, and in fact, the classical energy conditions are not even clear

demands of General Relativity (quantum systems for example do violate classical

energy conditions), we do not restrict its value whenever it be possible to work

without priors on w, and in any case, never to the small interval −1 ≤ w < −1/3.

4.1.2 Quintessence

Although it has just been said that phantom fields are not going to be excluded as

a reasonable source of dark energy, quintessence is introduced here as the archetype

of an energy component with equation of state p = wρ. K-essence and phantom

fields are only mentioned here for comparison and completeness.
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A quintessence field is a minimally coupled to gravity scalar field Q that evolves

with time according to the Klein-Gordon equation as explained in the introductory

chapter of this part:

Q̈ + 3HQ̇ + V ′(Q) = 0, (4.1)

where dots indicate a derivative respect to time and primes respect to the field Q.

Somehow, quintessence is an extension or modification to General Relativity,

since it introduces a new term in the Lagrangian density, LQ, and therefore, in the

effective action. Even so, there is no fundamental theory with such an action that

predicts the field, and it is for the time being a phenomenological theory which

seems to describe the observations.

LQ =
√
−g

(
1

2
∂µQ∂µQ − V (Q)

)
. (4.2)

The above Lagrangian density gives the energy-momentum tensor for quintessence,

and hence its pressure and density, that for an homogeneous field (inhomogeneities

should only be seen at very large scale) is:

ρ =
1

2
Q̇2 + V (Q) , p =

1

2
Q̇2 − V (Q) . (4.3)

From these quantities, it is straightforward to write the equation of state as:

w =
p

ρ
=

1
2
Q̇2 − V (Q)

1
2
Q̇2 + V (Q)

. (4.4)

Such an equation of state mimics the observed cosmological constant-like be-

haviour (p ∼ −ρ) when the kinetic energy of the field is negligible compared to the

potential energy (Q̇2 ≪ V (Q)). So, if the field is rolling down its potential, it must

be now approaching the minimum. Further from this minimum and also further in

time, the evolution of the field and the specific form of the potential play a role in the

evolution of the equation of state. Nevertheless, if the slow-roll condition is fulfilled,

the equation of state must lie in the range −1 < w < 0 but the exact behaviour
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can be very different (constant, slowly varying, rapidly varying or oscillatory [39])

according to the potential.

However, and although this mechanism generates the desired behaviour, the

present-day density associated to the field is very much dependent on the initial

conditions and so, instead of answering the question Why the energy density of dark

energy is so small today?, it just changes the question to Why the energy density of

dark energy had to be exactly that in the past?.

An answer is partly given by a branch of quintessence models with tracker fields

[212, 186]. The equation of motion of these fields allows an attractor solution,

so that the evolution at late times of the field is quite independent of the initial

conditions and it only dominates recently. In these cases, the Q field follows the

evolution of the dominant component (first radiation and then matter) having its

equation of state a value close to but less than the one of the dominant component,

till wQ → −1 and the acceleration shows. This scaling behaviour of dark energy

justifies the coincidence between the current density of matter and the density of

dark energy, and that irrespective of its initial value.

There exists a wide family of potentials that drive to an attractor, but choosing

one or the other is still an ad hoc decision. A table with some of the studied

quintessence potentials is shown below together with the motivation for its inclusion

in the action (Table 4.1). Each of these potentials generates a different form for w(z)

according to Equation 4.4, and, as seen in Figure 4.2, the forms are unrelated to each

other. This plot has been obtained from Ref. [206] and it shows nine quintessence

models including brane inspired potentials, pure exponentials, potentials with two

exponentials, periodic potentials, Pseudo Nambu-Goldstone bosons (PNG), etc. (see

Ref. [206] for details).

The minimally coupled to gravity Q field is the simpler option one introduces

in order to fit the observations. However, the field could also interact with other

components. In coupled quintessence models, the quintessence field is coupled to,

for instance, dark matter and/or baryons [10]. The Lagrangian of the theory is

then modified accordingly. On the other hand, the Q field is compatible with the

inclusion of other sources. It has been noted in Chapter 3 that the cosmological

constant is necessary for renormalizability within a Quantum Field Theory context,

and therefore, even when working with a quintessence field, the cosmological con-

stant should not be omitted. Its inclusion or that of any other independent source
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V (Q) Motivation Reference

V0 exp (−λQ) Compactification of Ratra & Peebles (1988) [156],

higher dimensional Wetterich (1988) [207],

supergravities Ferreira & Joyce (1998) [78]

V0/Q
α SUSY QCD Peebles & Ratra (1988) [142]

m2Q2 PNG bosons Frieman et al. (1995) [83]

cos(Q/f) + 1 PNG bosons Frieman et al. (1995) [83]

V0 exp (λQ2)/Qα SUGRA Brax & Martin (1999) [35]

V0(cosh λQ − 1)p Field theory Sahni & Wang (2000) [169]

Condensed matter

non-perturb. RGEs

V0 sinh−α (λQ) - Ureña-López & Matos (2000) [198]

V0(e
ακQ + eβκQ) Particle physics Barreiro, Copeland & Nunes (2000) [20]

Slopes?

V0(exp Mp/Q − 1) Particle physics Zlatev, Wang & Steinhardt (1999) [212]

V0[(Q − B)α + A]e−λQ Low energy limit Albrecht & Skordis (2000) [3]

of M-theory

Table 4.1: Potentials and motivation for their form for some of the quintessence models.

See the references for the value and the meaning of the constants. The table is an

extension of that given by Varun Sahni in Ref. [166].

of dark energy does not alter the equations for the quintessence component.

From Equation 4.4 and visually from Figure 4.2 one can see that, in general,

the barotropic index is time dependent (equivalently redshift dependent). At the

present epoch w is almost constant, but, when exploring the past of the Universe,

the form of the potential dictates the evolution of the equation of state. To solve
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Figure 4.2: Equation of state for nine different quintessence models. Most of them

correspond to potentials in Table 4.1 (see text). Plot extracted from Weller and Albrecht

(2002) [206].

the Friedmann equations, it is enough to know that w = w(t), and then, the specific

form for each model can be inserted into the result. Introducing this dependence

into the continuity equation for quintessence (Eq. 2.40) one obtains the evolution of

its energy density:

dρQ

dt
+ 3H(ρQ + pQ) = (1 + z)

dρQ

dz
− 3[1 + w(z)]ρQ = 0 , (4.5)

ρQ(z) = ρ0
Q exp

(
3

∫ z

0

dz′
1 + w(z′)

1 + z′

)
. (4.6)

This is the general expression for the energy density of a perfect fluid with p = w(z)ρ

which can be put in the Hubble parameter. For a constant barotropic index, the

energy density reduces to:

ρQ(z) = ρ0
Q(1 + z)3(1+w) , (4.7)

and for a cosmological constant (w = −1) one recovers a constant energy:
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ρQ(z) = ρ0
Q . (4.8)

Applying this procedure for other components X rather than quintessence is

what we call a quintessence-like setup for an X dark energy component. With this

methodology, one can describe any source of dark energy as a density

ρX(z) = ρ0
X exp

(
3

∫ z

0

dz′
1 + w̃(z′)

1 + z′

)
, (4.9)

with an effective equation of state of the form p = w̃(z)ρ as it is explained in the

following.

4.2 Mimicking the equation of state p = wρ

Most of dark energy models can be described by an energy component which can be

modeled as a perfect fluid with an equation of state of the form p = wρ. However,

there are some alternatives that either are not perfect fluids or their equation of state

has a different dependence. The aim of this section is to express mathematically the

most promising models as if they consisted of a perfect fluid with an equation of

state of the form p = w̃ρ, although in the context of some of the models that does

not have any physical sense.

This pseudo-equation of state or effective equation of state, w̃, depending on

the case, allows to directly treat all the alternative models in a single Friedmann

equation, that is to say, all of them are represented by:

H2(z) = H2
0

[
Ω0

M(1 + z)3 + Ω0
X exp

(
3

∫ z

0

dz′
1 + w̃(z′)

1 + z′

)
+ Ω0

K (1 + z)2

]
. (4.10)

This is important in observational cosmology, since each experiment can then

contrast its data with a simple and very general equation and obtain a family of

dark energy models compatible with their observations. Otherwise, one should test

all the models one by one to see which is the most favoured one.



4.2. Mimicking the equation of state p = wρ 79

4.2.1 Evolving cosmological constant

The first example is one of the main models in this thesis, an evolving cosmological

constant. Although a cosmological constant has always a real equation of state of

the form p = −ρ, the fact that it evolves makes the conservation equation to be

different from the one we assume for a dark energy X component. Therefore, it

is defined a mathematical pressure p̃Λ which fulfils the conservation law for an X

component:

dΛ

dt
+ 3H(Λ + p̃Λ) = 0 . (4.11)

Now, the functions ρ(z) and Λ(z) needed to solve that differential equation are those

obtained from solving the system of Equations 3.32-3.33-3.34 adding the conserva-

tion law.

With this definition, one can determine the pseudo-equation of state pΛ(z) =

w̃Λ(z)Λ(z) as the one that satisfies Equation 4.11:

(1 + z)
dΛ

dz
− 3 [1 + w̃Λ(z)] Λ = 0 , (4.12)

w̃Λ =
1

3
(1 + z)

1

Λ(z)

dΛ(z)

dz
− 1 . (4.13)

Particularizing for a flat universe where the equations are much simpler, and using

Equation 3.39 in 4.13 is easy to see that:

w̃Λ =
Ω0

Mν(1 + z)3(1−ν)

Ω0
Λ + Ω0

M
ν

1−ν
[(1 + z)3(1−ν) − 1]

− 1 . (4.14)

That introduces important changes with respect to the true w as seen in Fig-

ure 4.3. For a flat universe with Ω0
M = 0.3 and Ω0

Λ = 0.7 and ν = ν0 ≈ 0.026, a

different value even at redshift zero is obtained:

w̃Λ(z = 0.0) = −0.99 , w̃Λ(z = 0.5) = −0.96 , w̃Λ(z = 1.0) = −0.91 . (4.15)
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Towards the future (negative redshifts), the pseudo-equation of state tends to the

true equation of state, whereas in the past either it mimics the behaviour of a

phantom component or tends towards positive values depending on the sign of the

cosmological index ν. This is a first example that could be detected as a phantom

source of dark energy, when, in fact, it is just an effective behaviour observed when

the analysis is made on a quintessence-like setup.

Figure 4.3: Evolution of a pseudo-equation of state produced by an evolving cosmo-

logical constant. This particular case corresponds to the model introduced in Section

3.3.1.3 for a flat universe with Ω0
M = 0.3 and Ω0

Λ = 0.7, and different values of the

cosmological index ν.

4.2.2 Chaplygin gas

The Chaplygin gas case is much different from the previous one. It is a perfect fluid,

but not with a common equation of state. The generalized Chaplygin gas equation

of state [26] reads:

pCh = − A

ρn
Ch

, (4.16)

where A and n are positive constants and which reduces to the original Chaplygin

gas model [117] for n = 1. With this equation of state, the conservation law for a
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Figure 4.4: Evolution of the effective equation of state of a common dark energy com-

ponent with p = w̃ρ when the universe is made of a Chaplygin gas. A flat universe with

Ω0
M = 0.3 and Ω0

Λ = 0.7 is assumed. (a) Variation as a function of the parameter As

with n = 3 fixed. (b) Variation as a function of the parameter n with As = 0.95 fixed.

dark energy component, Equation 4.5, leads to a density evolution:

ρCh = ρ0
Ch

[
As + (1 − As)(1 + z)3(1+n)

]1/(1+n)
, (4.17)

where ρ0
Ch is the current energy density of the Chaplygin gas and As ≡ A/(ρ0

Ch)
1+n

is a dimensionless constant. This energy density tends to a “matter” dominated

universe towards the past and to a “cosmological constant” dominated universe

towards the future, and so, it has been proposed as a candidate to unify dark matter

and dark energy [29, 26]. Due to that, a universe sourced with a Chaplygin gas does

not have the usual contribution of dark matter, having a total energy density given

by the sum: Ω0
b(z) + Ω0

Ch(z) + Ω0
k(z), where Ω0

b(z) is used instead of the habitual

sum of baryonic and dark matter Ω0
M(z) = Ω0

b(z) + Ω0
DM (z). If we want to rewrite

the equations of a Chaplygin gas in the way established in Section 4.1 we have to

take the latter into account.

Once we know all the ingredients, the effective equation of state of this component
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is derived by first considering ρX = ρCh − ρM
2. Since matter is pressureless, the

pressure remains the same pX = pCh, and then via the ratio w̃X = pCh/(ρCh − ρM)

one obtains:

w̃X = − As

[As + (1 − As)(1 + z)3(1+n)]

{
1 − Ω0

M

Ω0
X+Ω0

M

(1+z)3

[As+(1−As)(1+z)3(1+n)]
1/(1+n)

} .

(4.18)

This evolution is plotted in Figure 4.4. In both plots it is assumed a flat universe

with Ω0
M = 0.3 and Ω0

Λ = 0.7, and either As or n are fixed to the values obtained with

the fits to SNe Ia magnitudes in [25]. Vertical lines appear because of the various

zeros of the function w̃X . In general, the apparent behaviour of this component

would be that of dust in the past, passing through a phantom epoch where we still

are, to finish with a cosmological constant-like behaviour.

4.2.3 Cardassian models

As it has been noted in Chapter 2, Cardassian models are a quite special kind of

models since they can be seen from two points of view: as the interpretation of

matter as an interacting fluid [90], or as the effects of observing a Universe which

is a 3-dimensional brane in a higher dimensional universe [82]. The consequences in

both cases are the same, the Hubble parameter is modified by the introduction of a

new term. The Friedmann equation for this family of models is a general function

of the density, for example:

H2 = f(ρ) =
8πG

3
(ρ + Cρn) , (4.19)

where C and n are constants. Note that the density only accounts for matter and

radiation, there is no vacuum or curvature. There exist various generalizations of this

2To be precise, ρX = ρCh − ρb should be used. However, the baryonic energy density is a well

known quantity Ω0
b
h2 = 0.0224 ± 0.0009 (WMAP result with a varying spectral index [184]), and

it is easier for calculations to consider the commonly used parameter ρM and then subtract the

known value ρb.
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simple model [80]. However, this first proposal is the one used here. This is also the

easiest model to be compared with quintessence in the analysis: mathematically, it

can represent a universe sourced with matter and an extra perfect fluid with density:

ρCa = Cρn = ρ0
Ca(1 + z)3n. (4.20)

Obtaining the effective equation of state is then straightforward: since n is con-

stant, w̃Ca = n − 1. Therefore, any quintessence model with a constant equation of

state is equivalent to have a Cardassian component with n = w + 1.

4.2.4 Modified Gravity

Cardassian models can be seen as modifications of gravity because they add a new

term in the action of the theory. Although General Relativity has been tested at

small and intermediate scales, it has not been checked at large scales (of the order of

the Hubble radius). So, up to now, gravity admits modifications at large distances

and, under this point of view, Cardassian models are completely admissible. The

family of models that depend on these modifications are called on the whole Modified

Gravity Models. For them, the scalar of curvature appearing in the Hilbert-Einstein

action is replaced by a function of it or of any other invariant:

S = − 1

16πG

∫
d4x

√−g R =⇒ S = − 1

16πG

∫
d4x

√−g f(R, RαβRαβ , ...) .

(4.21)

This function f(R, RαβRαβ, ...) can have different contributions, but usually it

only depends on the scalar of curvature R (whether it be as 1/R, ln R...) and not

on other contractions. As the easiest example, we consider the inclusion of inverse

powers of R [120, 42]:

f(R) = R − −µ2(n+1)

Rn
. (4.22)

For a positive integer n, it can be shown that the modification to the curvature

behaves as if it were a source of dark energy with an equation of state of the form:
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w̃X = −1 +
2(n + 2)

3(2n + 1)(n + 1)
for n > 1. (4.23)

That is a constant equation of state regardless of the dimension n. It spans from

w̃ = −2/3 for n = 1 to w̃ = −1 for n → ∞, a range that, as it has been argued in

Section 4.1, fulfils DEC and, therefore, represents a stable source of dark energy.

Figure 4.5: Different values of the effective equation of state according to the index n.

Since n is constant, w̃ is also always constant for this simple model. That is not true

for more complicated models.

Other expressions for f(R) involve different dependences for w̃X . Its constancy

can be lost and even some models predict equations of state with w̃ < −1.

4.2.4.1 Braneworld cosmologies

One of the ways in which gravity is modified from the usual General Relativity

is by the existence of extra dimensions as motivated by M-theory. If these extra

dimensions are not compactified, ordinary matter must be confined onto a three-

dimensional brane embedded into a bulk of a higher dimension. These kinds of

universe are known as Braneworlds.

Modifying gravity implies a modification on the Friedmann equation as well, and
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this modification can be hidden in a correction function L(ρ) which multiplies the

usual density [49]:

H2 =
8πℓ2

Pl

3
ρχL2(ρχ) − k

a2
. (4.24)

Therefore, braneworlds with extra dimensions are treated as a scalar field χ with its

own continuity equation on the brane:

ρ̇χ + 3H(ρχ + pχ) = 0 . (4.25)

Some models do really have this field on the brane. For others, it is just a

representation within this framework. That is so for Cardassian [90, 82] and Dvali-

Gabadadze-Porrati (DGP) models [64]. The function L(ρ) for some of these models

is shown in Table 4.2.

From Equation 4.25 and 4.24, one can calculate the effective equation of state

parameter as:

w̃brane ≡ −1

3

d(n ln ρχ)

d ln a
− 1 , (4.26)

where it has been introduced an index n defined as

n(ρχ) ≡ 1 + 2
ln L(ρχ)

ln ρχ
. (4.27)

The barotropic index w̃brane is sometimes constant, as for Cardassian models

(Section 4.2.3), but it is in general time dependent and very different depending on

the model. For instance, none of the branches of DGP models have a constant w̃(z).

The so-called positive branch is self-accelerating (+), and the negative one needs

dark energy to produce acceleration (−). In the latter case, the effective equation

of state goes through an epoch of phantom behaviour (w < −1). For the former,

the DGP model (+) in a flat universe, the effective equation of state was derived in



86 Chapter 4. Dark energy equation of state

Figure 4.6: Effective equation of state in DGP (+) models. The value only depends on

the density of matter, and so, cosmologies with a small Ω0
M have a more stressed dark

energy behaviour, whereas the equation of state is closer to be matter-like for large Ω0
M .

Ref. [127] by considering an effective energy density of ρeff ≡ 3H/8πGrc
3 with an

standard conservation law. Therefore, it was obtained:

w̃(z) =
Ω0

M − 1 −
√

(1 − Ω0
M )2 + 4Ω0

M (1 + z)3

2
√

(1 − Ω0
M)2 + 4Ω0

M(1 + z)3
. (4.28)

This equation only depends on the density of matter, since the cosmological sum

rule relates it to the scale rc in a flat universe as 4Ωrc = (1 − Ω0
M )2. Intuitively,

one can understand this modification to gravity as a dark energy component that

is important when the density of matter is small, but that is reduced for large Ω0
M ,

being then closer to zero, as the equation of state of matter is (Figure 4.6).

Although DGP and Cardassian models are the most treated and constrained by

observations due to their simplicity, there is a wider family defined by the function

L(ρ) as we have seen. It is interesting to note that this parameterization in terms of

L(ρ) has allowed the authors of [49] to establish conditions under which the system

achieves scaling solutions. That is an interesting condition for a dark energy model

3The constant rc is the only parameter of the model, defined as the scale at which gravity starts

to propagate into the bulk rc = mPl 2
(4) /MPl 3

(5) (mPl

(4) is the Planck mass in 4D and MPl

(5) in 5D).
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since then the energy density scales with the dominant energy component of the

Universe and the coincidence problem can be solved.

Braneworld model L(ρχ) Reference

Randall-Sundrum type II
√

1 + (ρχ/2σ) Randall & Sundrum (1999) [154, 153]

Shtanov-Sahni
√

1 − (ρχ/2|σ|) Shtanov & Sahni (2003) [177]

Dvali-Gabadadze-Porrati (1/
√

Dρχ) × Dvali, Gabadadze & Porrati (2001) [64]

(∓1 +
√

1 + Dρχ)

Cardassian
√

1 + Bρn
χ Freese & Lewis (2002) [82]

Table 4.2: Different braneworld models as described by the function L(ρχ). σ is the

tension of the brane, D and B are positive constants and n < −1/3.

4.2.4.2 Loop quantum cosmology

Loop quantum cosmology is a different approach that does not try to modify gravity

by itself, but to unify it with quantum physics. As a result, gravitation is modified

at small scale, at least, and therefore, we include it in this section. Besides, there

have been some attempts to establish a correspondence between braneworlds and

loop-inspired cosmologies [50].

The unification of general relativity and quantum physics is made non-perturbati-

vely and without the need for a classical background. In this framework, the ap-

plication of cosmological symmetries (isotropy and homogeneity) allows to develop

the Friedmann equations from the effective Hamiltonian of the theory, where the

inverse volume a−3 is quantized. Loop quantum cosmology as developed by Bo-

jowald [30] differentiates three regimes: one below the Planck scale ai ∼ lP l where

space-time is discrete, one over a∗ where classical equations are recovered, and in

the middle a semi-classical phase where quantum effects modify the standard Fried-



88 Chapter 4. Dark energy equation of state

mann equations. Here, it is discussed the behaviour in this phase and its transition

to a > a∗.

In a similar way as we have done with braneworld cosmologies, we do not deduce

the set of equations, but only give their expression in order to treat the models as

a component of dark energy. The justification and complete formulae can be found

in [50] for example.

The quantification of a−3 in the momentum of an scalar field (a−3 → D(q)a−3)

introduces a correction function in its kinetic energy, and therefore, the Friedmann

equation can be expressed as:

H2 =
8πl2P l

3

[
1

2D(a)
φ̇2 + V

]
− k

a2
. (4.29)

Also the conservation equation is modified:

φ̈ + 3H

(
1 − 1

3

d lnD

d ln a

)
φ̇ + D

dV

dφ
= 0. (4.30)

Quantization results give for D(q):

D(q) =

{
3

2l
q1−l

[
(l + 2)−1

(
(q + 1)l+2 − |q − 1|l+2

)

− 1

1 + l
q
(
(q + 1)l+1 − sgn(q − 1)|q − 1|l+1

)]}3/(2−2l)

, (4.31)

with q = a2/a2
∗, a2

∗ = a2
i j/3, ai =

√
γℓPl, the quantization parameter j taking

half-integer (positive) values, and γ = ln 2/
√

3π ≈ 0.13.

The system of equations 4.29 and 4.30 allows to define an effective pressure pL,eff

and density ρL,eff so that they reproduce the standard equations:

ρL,eff =
φ̇2

2D
+ V , (4.32)
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pL,eff =
φ̇2

2D

(
1 − 1

3

d lnD

d ln a

)
− V . (4.33)

So, the effective equation of state takes the form

w̃LQC =
2φ̇2

φ̇2 + 2DV

(
1 − 1

6

d lnD

d ln a

)
− 1 . (4.34)

The similarity between Eq. 4.34 and Eq. 4.26 has motivated the authors of

Ref. [50] to propose a relation between braneworlds and loop-inspired cosmologies,

as it has been said before. However, the correspondence cannot be one-to-one, since

loop quantum cosmology models have two free functions (V (φ) and D(a)) and from

branewords it is only needed to know the expression of L(ρχ). Therefore, there is a

family of loop-inspired models for every braneworld.

4.3 Parameterizing the equation of state

After this brief route along some of the multitude of dark energy models, we have

seen the variety of redshift evolutions that w(z) can follow. The selection did not pre-

tend to be exhaustive, yet representative of the main approaches. Only quintessence

models by themselves cover the whole (w, z) plane (remember Figure 4.2). If, be-

sides, it is allowed the possibility for the equation of state of being an effective

representation of a different theoretical model, as discussed in the previous section,

the possibilities for the form of the dependence w(z) spectacularly rise.

It is evident, then, that there is not any ideal parameterization of w(z) that

describes all of the possibilities. At this point, one should decide which strategy to

follow so as to be as general as possible. The optimal solution would be to determine

w(z) in a non-parametric way which would be valid for all dark energy models. We

develop this option in Chapter 7 as one of the main contributions to this thesis.

However, there are also arguments on the side to try to parameterize w(z) in a way

that it can be adapted to the majority of the models. We will see the pros and cons

of each choice as we dig into the analysis and the results. First of all, we give some

of the most common developments in the literature.
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4.3.1 Common developments

The first try to do is to consider a constant equation of state. Cosmological models

have in general a large number of free parameters to be fitted from observations,

so the less parameters introduced artificially the better. In the case of using extra-

galactic distances, the number is significantly smaller than in other methods such

as CMB, but still the cosmological parameters (Ω0
M , Ω0

Λ and Ω0
K) together with

those corresponding to dark energy and those related to the standardization of the

astrophysical objects used must be determined. That already represents degeneracy

in the results with respect to variations of the parameters. Therefore, a constant

equation of state is, in principle, preferable if there is no justified reason to consider

evolution. Anyway, even if evolution is present, a constant equation of state can be

interpreted as an effective or average value4 along the studied redshift range:

w(z) = w0 , (4.35)

w0 ≡
∫ z

0
w(z)Ω0

X(z)∫ z

0
Ω0

X(z)
(constant average equation of state) . (4.36)

A cosmological constant; topological defects such as domain walls, strings or

textures; a Cardassian model; a f(R)-modification of gravity, and some others are

completely determined by a constant value. For evolving models, one can define

the average w0, but the integration through z makes it impossible to go back to the

original model from the observed constant value. There is as well the problem of

deciding the redshift range where to calculate it.

It seems then that the information obtained from w0 is not enough to distinguish

among all the models. An additional hint is given by knowing the sign of the

evolution. Cooray and Huterer (1999) [48] introduced the first derivative in dark

energy studies:

w(z) = w0 + w′z . (4.37)

4We prefer average rather than effective to distinguish this meaning to the effective used in the

previous section.
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Their aim was to study quintessence as an evolving field, and not only as a constant

or average value as it was done in previous analyses. Just from the sign of the

derivative, one can already distinguish between quintessence tracker models (w′ > 0)

and k-essence (w′ < 0).

Nowadays, that is not the most used development for the equation of state. The

linearity in z makes that at high redshift w(z) becomes ridiculously high [124]. The

difference is not very meaningful for SNe data, which at most reach z ≈ 2, but for

CMB (z ≈ 1100) the value of w has no physical sense. A couple of years after the

introduction of the linear development, Chevallier and Polarski (2001) [45] proposed

another development: it was a linear Taylor expansion as well, but now in the scale

factor a instead of the redshift z. The development was popularized later by Linder

(2003) [125]:

w(z) = w0 + wa
z

1 + z
. (4.38)

Recently, the fit of this function with one of the latest SNe Ia data sets was used

in Ref. [160] to argue that its use is equivalent to a strict prior on the form of w(z).

That was justified by the difference both in uncertainty and form of w(z) with this

development and with another one with more freedom (w(z) =
∑4

i wi ln
i(1 + z) in

this case). What is evident is that if the equation of state happened to be sinusoidal

or cubic with z for example, it would not be well approximated by a linear function.

On the other hand, more parameters such as the four wi from [160] increase the

uncertainty in the determination enormously. The trade-off between restricting too

much the function and having an excessive number of parameters is a very difficult

problem to solve when parameterizing the equation of state.

Other forms have been suggested by different authors. Some of them, as the

one introduced by Efstathiou (1999) [65] adapt to a kind of dark energy models in

particular (tracker fields in this case):

w(z) = w0 + wl log(1 + z) . (4.39)

Others, as that of Rapetti et al. (2005) [155], also consider the redshift zt at which

there is the transition between the present value w0 and the early value w1:
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w(z) =
w0zt + w1z

z + zt
. (4.40)

All of them are different parameterizations of the same behaviour. Therefore,

when there is no reason to prefer one development in front of another, we will trust

that, usually, the simplest solution tends to be the best one. In the following, we

consider two kinds of expansions: the constant (or average) one 4.37 and Linder’s

development 4.38.

4.4 Degeneracy

The determination of the equation of state of dark energy via extragalactic distances

is an extremely degenerate problem. Besides the ambiguity in the theoretical model

behind a result, w(z) suffers from two main sources of numerical degeneracy:

• Degeneracy because of uncertainties in the cosmological parameters. Fitting

more than one parameter at the same time always introduces degeneracy due

to correlations among them.

• Degeneracy due to the mathematical form with which the equation of state is

related to the distance, a double integral that smooths a possible evolution.

The first point is usual in all the problems of determining free parameters and it

is addressed via the introduction of priors for some of them. Also the combination of

the results of various methods with different degeneracy directions allows to break

the large degeneracy of one method alone. The combination is better the more

different are their main directions of degeneracy. This is what is called perpendicular

methods in the Scheme 4.7. The concrete priors and combinations are going to be

commented while obtaining the results.

The second point is intrinsic to the method and cannot be avoided when using

this approach that necessarily involves a double integral. In the following section,

we see the degree of degeneracy that this point introduces in the result.

Furthermore, these two sources of degeneracy in the obtained value of the equa-

tion of state are not yet the whole problem. Once an w(z) is determined, it appears
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a second problem of assigning a theoretical model behind the numbers. As it has

been seen in the previous section, that is a third point:

• Degeneracy due to all the different models that produce the same effective

equation of state.

This source cannot be reduced either mathematically or observationally. If all the

models can be expressed by the same effective equation of state, and some of them

are equivalent, to choose one or the other given a particular result can only be

justified by the theoretical preference for one of the models.

Figure 4.7 shows an scheme of these steps and of the problems one finds when

trying to conclude and explain a form for the equation of state from observational

data such as SNe Ia magnitudes.

4.4.1 Degeneracy in the luminosity distance

Let us attack now the source of degeneracy specifically associated with the main

method used in this thesis to determine the equation of state, that coming from the

luminosity distance. In the following, we give some rough numbers to quantify the

problem.

The expression of the luminosity distance as a function of the cosmological pa-

rameters is given by Equations 2.51 and 2.49. As it can be seen, the distance is

related to the equation of state via a double integral. We define the inner integral

in the luminosity distance as the function J(z):

J(z) ≡
∫ z

0

dz′
1 + w(z′)

1 + z′
. (4.41)

And then, the normalized density of dark energy is simply:

ΩX(z) = Ω0
X exp (3J(z)). (4.42)

Very different forms of the equation of state w(z) can lead to a similar J(z). In

fact, the equality of the several J(z) does not need to be exact in order to obtain
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GOAL

DATAOBSERVATIONS

distance

w(z)1, w(z)2… w(z)n

n numerical possible solutions

w(z)1, w(z)2… w(z)m

m< n numerical possible solutions

w(z)1 Th.1, Th.2, Th.3…

w(z)2 Th.2, Th.4, Th.7…
…

w(z)m Th.1, Th.2, Th.6…

Th.i w(z)k

improvement

numerical

degeneracy

theoretical
degeneracy

interpretation

theoretical

preference

perpendicular

methods

Figure 4.7: Steps in the determination and explanation of the equation of state from

observations of extragalactic sources. A fit to the distance is highly degenerated, and

one tries to solve it by using priors and combining methods. That breaks part of the

numerical degeneracy, but there is still the problem of knowing which of the theoretical

models that predict the measured equation of state is the real one.

differences in the luminosity distance that are smaller than the dispersion from

current data.

In the following, we always suppose an exact knowledge of Ω0
M in a flat universe,
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so we do not observe the large degeneracy with small variations of Ω0
M or with the

inclusion of curvature Ω0
K . We are forgetting about the first point in the previous

section to concentrate on the second one. Besides, we are only taking into account

the effects of the first integral in redshift in order to obtain some analytical expres-

sions (otherwise it would be impossible) and so, we are losing again part of the

degeneracy.

To study this concrete source of degeneracy, we can particularize for a devel-

opment of the equation of state at first order in the scale factor a (Eq. 4.38), and

calculate J(z):

J(z) = −wa
z

1 + z
+ (1 + w0 + wa) ln(1 + z). (4.43)

Just to give an example, we can observe with which evolving models a constant

equation of state is degenerate (named wc to distinguish it from the constant term

in the evolution equation):

(1 + wc) ln(1 + z) ≡ −wa
z

1 + z
+ (1 + w0 + wa) ln(1 + z) (4.44)

=⇒ wa

w0 + wa − wc
=

1 + z

z
ln(1 + z) . (4.45)

If we consider data ranging from z = 0 to z = 2 (as supernova of Type Ia are

distributed) we can average the dependence on redshift and use a constant value,

which is enough to obtain degenerate models. From now on we mean by degenerate

models that the difference between their respective luminosity distance curves is

smaller than the data capability to distinguish between them.

0 < z < 2 =⇒ 1 + z

z
ln(1 + z) ≈ 1.25+0.40

−0.25 ≈
5

4
. (4.46)

From Eq. 4.45 and Eq. 4.46 we deduce the rough equality:

wc ≃ w0 +
wa

4
. (4.47)
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The same just done for Linder’s development can be done for the linear expansion

in redshift (with notation w(z) = w̃0 + w′z), with a result:

wc ≃ w̃0 +
w′

3
. (4.48)

In short, different combinations of the equation of state parameters which fulfil

the following equality have a similar enough J(z) to be degenerate in the luminosity

distance:

wc ≃ w0 +
wa

4
≃ w̃0 +

w′

3
. (4.49)

With these averages (Eq. 4.46 for instance), we are able to find models which

differ in the luminosity distance typically by less than a 3%. Data uncertainty for

the best future SNe surveys such as SNAP is supposed to allow a distinction at

1% level. So, not all the models obtained with this methodology are degenerate for

oncoming data. However, this does not mean that the degree of degeneracy of the

equation of state is low since, as we have said before, we are not considering part of

the degeneracy.

Let us consider now five models with an equation of state of the form of 4.38.

Three of them are degenerate with a cosmological constant model as indicated by

the criterion 4.49:

Model 1 w0 = −1.0, wa = +0.0 (4.50)

Model 2 w0 = −1.2, wa = +0.8 (4.51)

Model 3 w0 = −0.7, wa = −1.2 (4.52)

The other two show a distinct evolution both of the equation of state and the

luminosity distance. We call them non-degenerate models.

Model 4 w0 = −0.7, wa = +0.0 (4.53)

Model 5 w0 = −1.1, wa = −0.8 (4.54)
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Figure 4.8: Degeneracy caused by dark energy. (a) Luminosity distance vs redshift for

the five different models showed for exemplification purposes in Section 4.4.1 and the

form of their equation of state (b). (c) Percentage of deviation of the luminosity distance

of those models with respect to the cosmological constant one (w0 = −1, wa = 0). (d)

The same as in (c) but for magnitudes. Lines in the four graphics correspond to the

labels in (a).

Figure 4.8 shows a representation of these different cosmologies. In Fig. 4.8 (b)

it has been plotted the form of the equation of state, whereas the corresponding

luminosity distances are in Fig. 4.8 (a). We have also made two definitions in order

to observe the variation among models. Figure 4.8 (c) shows the deviation in the
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luminosity distance with respect to a cosmological constant model (w0 = −1, wa =

0) which can be defined as

deviation(%) =
DL − DΛ

L

DL

× 100 . (4.55)

This deviation can be translated into magnitudes (Fig. 4.8 (d)) via the relation:

m − mΛ = −5 log

(
1 − DL − DΛ

L

DL

)
. (4.56)

Considering the current intrinsic dispersion of SNe (∼ 0.15 mag), all these mod-

els would be degenerate, and data cannot distinguish among them. However, if

future experiments such as SNAP achieve an effective dispersion (only because of

systematics) of 0.02, then differences of 1% in luminosity distance will be, in prin-

ciple, distinguishable. Models 1, 2 and 3 would be in the limit of distinguishability,

but methods as the one proposed in Chapter 7 could take advantage of intermediate

redshifts, where differences are larger, to discriminate among them. It is interesting

to notice that although models have been chosen according only to criteria referring

to the inner integral, the plots in Figure 4.8 account for the whole degeneracy.

In conclusion, nowadays the degree of numerical degeneracy is important, but it is

expected to diminish appreciably as the dispersion in SNe Ia magnitudes diminishes.

In Chapter 5, some alternative methods to combine these results with those from

other extragalactic distances are shown, and it is seen that the combination breaks

part of the degeneracy. Anyway, equivalences among theoretical models cannot be

avoided and a better understanding of what dark energy is, is needed in order to bet

for one of the theoretical options given the best numerical (w0,wa) solution. Up to

now, then, theoretical degeneracy cannot be broken, although there is the tendency

to prefer the cosmological constant, given the lack of well-founded motivations to

discard it in favour of a more complicated model.
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Observational constraints





Chapter 5

Cosmic distances and standard

candles

All the theoretical cosmological models introduced in the first part of the thesis need

to be compatible with astrophysical observations and, among them, extragalactic

distances are a very important tool to test these models. This chapter describes the

determination of cosmic distances both to astrophysical objects and to some key

points in the past of the Universe. Most of the chapter is devoted to summarize the

details of the main tool used in our calculations, Type Ia supernovae.

5.1 The cosmic distance ladder

The only direct way to measure distances is by trigonometric parallaxes. The mea-

sure is based on the different position that seems to have a star due to the movement

of the Earth around the Sun. However, at large distances, parallax angles become

too small to be measured, and the method, although very precise, is only valid up

to a scale of some kiloparsecs.

All the remaining methods must be calibrated with this first step of the ladder,

and in some cases, with previous steps to the method itself as well. Secondary indi-

cators are typically stellar clusters, main sequence stars and some standard candles

which are described in the next section. At really large distances various techniques

are used: the Tully-Fisher relation, the planetary nebula luminosity function, the

101
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globular cluster luminosity function, the surface brightness and luminosity fluctu-

ations, etc. Type Ia supernovae, although being a standard candle, is also a very

powerful tool to measure extragalactic distances at high redshift, and it is shown in

Section 5.2 that there are other extragalactic distance indicators that can reach even

higher redshifts. However, none of these other tools have achieved the precision of

SNe Ia yet.

5.1.1 Standard candles

A standard candle is an object with known intrinsic luminosity. The dilution of this

luminosity from its position to ours is given in an euclidean space-time by the inverse

square law of distances. Assuming isotropic emission, the flux that we receive from

a candel is given by the geometric definition which relates the received flux F with

the absolute luminosity L:

F ≡ L
4πd2

L

. (5.1)

For a known L, the measure of F allows to determine the luminosity distance

to the source. That is only a definition in our four-dimensional Universe. Although

it corresponds to the physical distance in an euclidean space, it loses meaning in

a curved space (the meaning of distances in cosmology and in particular of the

luminosity distance has been explained in detail in Section 2.3.2). The relation is

often defined in astronomy in terms of the apparent magnitude m and expressed as

a function of redshift, z:

m(z, H0, Ω
0
M , Ω0

X) = M + 5 log10

[
H0 dL(z, H0, Ω

0
M , Ω0

X)
]

. (5.2)

That is the magnitude-redshift relation, where terms have been defined in order to

collect all the dependence on the current value of the Hubble parameter into a zero

point

M ≡ M − 5 log10 H0 + 25 . (5.3)
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Notice that the combined expression DL(z, ΩM , ΩΛ) = H0 dL(z, H0, ΩM , ΩΛ) enter-

ing the argument of the logarithm on the r.h.s. of Equation 5.2 is Hubble constant-

free. In this way all the cosmological model dependence is encoded in the luminosity

distance function dL(z, H0, ΩM , ΩΛ) (Eq. 2.51). This fact is important for using a

particular kind of standard candles, Type Ia supernovae, to determine the cosmolog-

ical parameters and test different cosmological models. Actually, we have formulated

the magnitude-redshift relation in the way used for that purpose, but it can be found

in alternative forms when used with other candles.

Before supernovae, in a lower step of the ladder, Cepheid variables are used

to determine distances. They show a period-luminosity relation: shorter period

Cepheids are less bright and vice versa. They are suitable for distances shorter than

∼ 50 Mpc, beyond which they are not visible any more. That corresponds more or

less to a redshift z ∼ 0.01, the redshift at which there already are the sets of nearby

supernovae. Cepheids rely on trigonometric parallaxes, and the next step, SNe Ia,

must rely on distances from Cepheids [9].

5.2 Extragalactic sources as distance indicators

Traditionally, distances have been determined by means of the standard candles just

mentioned, but the yearn for reaching higher redshifts is entailing the use of other

extragalactic sources which are not as well behaved as the previous ones.

Fanaroff-Riley Type IIb radio galaxies (FR IIb ), for instance, can be calibrated

in such a way so that they can be used for cosmological purposes. In Refs. [54, 55],

their dimensionless coordinate distance was calculated together with that of Type

Ia supernovae and both were used as complementary tools. A similar thing happens

with compact radio sources which were analysed in [95, 122] where it was delimited

the suitable range of data to be calibrated.

Higher redshifts can be reached by quasars and gamma-ray bursts, but although

they have also been used as candles, their calibration is still dubious. These objects

are better used for cosmology without the need to be standard candles, such by

means of the Lyman-α forest for quasars [114] or by means of the number of counts

for gamma ray bursts [19].
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As a matter of fact, the calibration of none of the above sources has achieved

a degree of acceptance comparable to supernovae. Type IIP supernovae can be

calibrated via the expanding photosphere method or the luminosity-velocity rela-

tion, but nowadays, the best calibrable standard candles are Type Ia supernovae.

Although SNe IIP can reach higher redshifts their dispersion is wider and less un-

derstood. Due to the importance of SNe Ia in modern observational cosmology, we

dedicate the second part of the chapter to present the behaviour of these objects.

5.3 Key distances for cosmology

Besides the distances measured from extragalactic sources, it is worth mentioning

some distances that for some reason can be especially well measured, and therefore,

can help to constrain the behaviour of the Universe at that point and its evolution.

In this thesis we do not enter the physics behind each method, we just use their

final result to combine it with the one we obtain with SNe Ia. We see that the

complementarity of the results improves the constraints on all the parameters.

5.3.1 Low redshift, 2dFGRS

The 2dF Galaxy Redshift Survey (2dFGRS) [193] was a spectroscopic survey that

observed mainly galaxies up to a redshift of z ∼ 0.2. That allowed to determine

the growth parameter in a mean redshift, z = 0.15, and its dependence on the

cosmological parameters is now used to constrain them.

For a general cosmological model, one has to solve the differential equation for

the linear fluctuation growth factor (see [119] for the methodology). However, for a

constant dark energy equation of state, the growth parameter can be written as

f(zG, Ω0
M) =

(
Ω0

M

Ω0
M + (1 − Ω0

M)(1 + z)3w

)0.6

. (5.4)

The observational result from the 2dFGRS survey is f(z = 0.15) = 0.51 ± 0.11

according to the redshift space distortion parameter obtained in [101] and the linear

bias in [199].
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As it happens with Baryonic Acoustic Oscillations (BAO), the major constraint

on the growth factor goes to the density of matter Ω0
M and not to dark energy.

However, that is interesting when joining this results with SNe Ia, because, as we

will see, the confidence regions are almost perpendicular. But BAO constraints

also go in the same direction and are more precise, so to study the cosmological

parameters we prefer using BAO rather than the growth parameter of 2dFGRS.

5.3.2 Intermediate redshift, BAO

At a slightly higher redshift than 2dFGRS, at a mean redshift of z = 0.35, baryonic

acoustic oscillations have been measured [70]. Their constraints are important for

the equation of state, although up to now, the method used here relies on a constant

equation of state. We use the baryonic acoustic oscillation peak detected in the SDSS

luminous red galaxy survey. A convenient parameter defined in a way independent

from the Hubble constant is A(z). It depends on the dilation DV (z) and is defined

as:

A =
DV (z)

cz

√
Ω0

MH2
0 , (5.5)

where

DV (z) =

(
DM(z)2 cz

H(z)

) 1
3

, (5.6)

and DM(z) is the comoving angular diameter distance given by DM = dA(1 + z).

So, in a FLRW universe, A is written as a function of any given cosmology as:

A(zB, Ω0
M , Ω0

X) =

√
Ω0

M

(H(zB)/H0)1/3

[
1

zB

√
|Ω0

K |
sinn

(√
|Ω0

K |
∫ zB

0

H0 dz′

H(z′, Ω0
M , Ω0

X)

)]2/3

.

(5.7)

The result obtained by Eisenstein et al. in [70] for zB = 0.35 is A = 0.469 ± 0.017.

In the same way, we add future expectations also for BAO. The slope of the
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confidence region changes with redshift: the lower the redshift, the better the deter-

mination of the density of matter, and the opposite happens for the dark energy pa-

rameters. We assume a future survey with a 2% uncertainty in the angular distance

DV at a mean redshift of z = 0.55. Considering a cosmological constant fiducial

model with Ω0
M = 0.3 and Ω0

Λ = 0.7, it is obtained DV (z = 0.55) = 1995 ± 40 Mpc

and therefore A(z = 0.55) = 0.452± 0.009. Confidence regions for both the current

value and the incoming one are shown in Figure 5.1.

Figure 5.1: Confidence regions showing BAO constraints on the cosmological parameter

plane (Ω0
M ,Ω0

Λ) and for a constant equation of state (w0,Ω
0
M ). Dashed lines represent

the current constraint at z = 0.35 from [70], solid lines show future expectations at

z = 0.55 with a 2% uncertainty in the angular distance DV . Filled in blue 1σ, 2σ and

3σ joint confidence regions.

5.3.3 Very high redshift, CMB

CMB fluctuations are produced at very high redshift, z ≈ 1089, so the CMB gives

information about the youth of the Universe. To introduce this information, we use

the shift parameter R which determines the whole shift of the CMB angular power

spectrum [32]. R is given as a function of the cosmological parameters by

R(zC , Ω0
M , Ω0

X) =

√
Ω0

M√
|Ω0

K |
sinn

(√
|Ω0

K |
∫ zC

0

dz′ H0

H(z′, Ω0
M , Ω0

X)

)
, (5.8)
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where zC = 1089. From the observations of CMB including WMAP, CBI and

ACBAR, the shift parameter is constrained to be R = 1.716± 0.062 [184, 202]. The

last constraints of WMAP3 improve this result up to R = 1.70 ± 0.03 [183, 203].

However, due to the precision with which CMB fluctuations favour a flat universe

(or very close to), normally the information from CMB is introduced by assuming

a flat universe. That, of course, breaks part of the degeneracy present among cos-

mological parameters and dark energy, and eases calculations for complex models

where the number of independent parameters is high. Nevertheless, one has to be

conscious of the loss of generality and be cautious about the conclusions.

5.4 Supernovae as standard candles

The use of Type Ia supernovae as standard candles is widely accepted in cosmology.

However, as it will be seen, they are not perfect standard candles and, therefore,

SNe Ia must be calibrated. This section gives an idea about the main physics of

SNe Ia, which is basic to understand their behaviour as standard candles. Also the

chief methods to calibrate the data are shown, and some comments about different

sources of uncertainties and systematics are given, paying special attention to the

treatment of the redshift uncertainty as the analysis of its particular effect is part

of this thesis.

5.4.1 Supernovae

Phenomenologically, a supernova is a stellar explosion that produces a huge lumi-

nosity. During a few days, these kinds of explosions reach the same luminosity as

the whole host galaxy and the closest ones are even observable with naked eye.

Physically, not all supernovae are the same, and behind the same name very differ-

ent processes are hidden. However, the first classification was made not due to the

differences in their nature but by observational criteria.

During the thirties, the study of extragalactic nebulae allowed to discover several

of these blasts. Walter Baade and Fritz Zwicky started using the term supernova

for them [15], and a systematic search began. All of the first observed supernovae

were lacking in hydrogen, but later similar objects with hydrogen lines in their



108 Chapter 5. Cosmic distances and standard candles

Figure 5.2: Classification scheme of supernovae. The main characteristic of each type

is shown in brackets. S indicates that the distinction is in the spectrum and LC in the

light curves.

spectrum were observed. In 1941, Rudolph Minkowski together with Baade classified

supernovae according to that characteristic: Type I SNe are those without hydrogen

whereas Type II SNe show hydrogen features in their spectrum. Afterwards, other

subgroups were made and Zwicky even added new groups (Type III, IV and V)

which had no continuity. Nowadays, the common classification is still based on

Minkowski’s one and can be seen in Figure 5.2. This table shows how different

types of supernovae are related to differences in their spectra or light curves. Also

the intrinsic distinction, that is, the explosion mechanism, is highlighted. A finer

distinction based on that is being revised as new objects are discovered [197].

Most of the supernova types classify core collapse supernovae, which are typically

the death of massive stars (8M⊙ < M∗ < 80M⊙). The life of a star is a succession

of stages of fusion where once an element is exhausted, the core contracts until

the pressure and temperature are sufficient to begin the next stage and halt the

contraction. When all the elements are exhausted and there is nothing else to

be burned exothermically, the core is only supported by the degeneracy pressure
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of electrons. But this pressure is not enough, and the core of the star collapses

homologously. When the density in the inner part is of the order of that of the

atomic nucleus the collapse suddenly stops, but the outer parts are still falling

and bounce against this barrier. Although the exact mechanism is not completely

understood yet, these shock waves make the outer parts to be expelled and the inner

core remains as a compact object.

A crucial fact for the classification of core collapse supernovae is that massive

stars lose a large amount of mass due to stellar winds. Therefore, when a star reaches

the lasts stages of its life, it may have lost some of its external layers. If this is not the

case, Type II supernovae are produced and we can observe hydrogen in the spectrum

close to the explosion epoch. If the object only loses the first layer composed by

hydrogen, the spectrum lacks hydrogen and we have a Type Ib supernova. More

massive stars lose the following layers as well, and so, Type Ic supernovae do not

show helium features in their spectra.

Another relevant aspect that causes differences among the observed explosions

is the fact that stars are not always isolated, but half of them are gravitationally

tied and form binary systems. The evolution of the stars, then, is not identical

to that of an individual object. In a binary system, both members could produce

a common envelope before the explosion, and if so, part of the common envelope

will be lost because of friction. According to the mass of the remaining hydrogen-

rich envelope, we can distinguish three kinds of Type II supernovae: Type IIb SNe

with Menv < 1M⊙, Type IIL SNe with Menv < 2 − 3M⊙ and Type IIn SNe with

Menv > 4− 5M⊙. The first classification was made again through the observational

features, and the letter which indicates the subtype within Type IIs is related either

to the spectrum or the light curve. Type IIL SNe have a L inear ascent in magnitude

during more than two months after the maximum of the light curve and Type IIP

SNe show a P lateau after maximum. The other two subtypes were established later

according to the features in their spectrum. Type IIn SNe have n arrow lines maybe

due to the fact that the stars are embedded in a dense interstellar medium which

absorbs part of the radiation. On the contrary, Type IIb SNe have b road lines and

show almost no hydrogen features, being possibly the evolutive link with Type Ib/c

SNe, since at late times their spectra are similar. Figure 5.3 and Figure 5.4 show

these differences in the spectra and light curves respectively.

The other mechanism to generate supernovae, a thermonuclear explosion, is only
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seen for Type Ia supernovae, which are observed as very bright and homogeneous

explosions without hydrogen in their spectra. These supernovae are the main tool

used in this thesis. Therefore, we use the rest of the chapter to describe in more

detail these explosions.

5.4.2 Physics of Type Ia supernovae

Type Ia supernovae are thought to be thermonuclear explosions in binary systems,

where one of the stars is a carbon-oxygen white dwarf (C-O WD). This star has

burned the hydrogen and when it finishes also the helium, it does not reach a

temperature high enough to initiate the combustion of carbon, becoming a white

dwarf mainly composed by carbon and oxygen. If the mass of the WD is close

to the Chandrasekhar mass1, and if there is any mechanism that makes this mass

exceed the Chandrasekhar limit (as for instance the accretion in a binary system),

the remaining combustions will take place in the degenerate environment in an

explosive way.

It is unlikely that ignition occurs in a core of degenerate helium, since the ob-

served energy and abundances do not agree with predictions. A mix of oxygen,

neon and magnesium is not suitable either: a very high density is needed in order to

start the ignition, and then probably a gravitational collapse would result. A core of

degenerate carbon and oxygen seems to be the most adequate progenitor. However,

as it has been said, this object must add mass to surpass Chandrasekhar’s limit and

hence, it must be part of a binary system. Different scenarios have been proposed

(see for example [103] for a review), mostly belonging to two classes: Single Degen-

erate scenarios [209] where only the C-O WD is degenerate, and Double Degenerate

scenarios [110] where both objects are white dwarfs. In the latter, the two WDs

follow an orbit around the centre of mass which shrinks due to the emission of grav-

itational waves. The most massive white dwarf accretes mass from the less massive

one during the process, and eventually it explodes. However, some simulations show

that although the sum of the masses of both objects is close to the Chandrasekhar

mass, the merging can lead to a collapse instead than to a thermonuclear explosion,

and so nowadays they are not favoured.

1The Chandrasekhar mass is the maximum mass that a white dwarf can have being supported

by the pressure of degenerate electrons.
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Figure 5.3: Composite figure with the spectral templates for all types of supernovae (blue

line), and for real objects (black line). The use of templates is, however, not accurate for

the non-homogeneous groups. Templates have been obtained from Peter Nugent [137]

and the spectra of individual supernovae from the SUSPECT archive [188].

Also recent observations seem to point instead towards a Single Degenerate sce-

nario [165], where there is a wider range of models depending on the companion star

[41]. In these cases two possible ways of starting the ignition are considered:
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Figure 5.4: Schematic light curves for different types of supernovae (Source: Ref. [208]).

• Chandrasekhar explosions, where the WD accretes mass until it reaches the

Chandrasekhar’s limit and explodes,

• and Sub-Chandrasekhar explosions, where the WD also accretes mass from

the companion star but now it forms a layer of helium that, when burning,

can ignite the core of C-O before reaching the limit of mass.

For the normal SNe Ia, the most popular option is a Chandrasekhar explosion

generated by intermediate accretion rates (∼ 10−7M⊙ yr−1). According to simula-

tions, these explosions produce both iron peak and intermediate-mass elements as

observed in the spectra. But not only the progenitor is important to reproduce obser-

vations, and the explosion mechanism is another unknown of the SNe Ia paradigm.

Deflagration models seem not to generate the correct quantity of these elements,

but that could be solved with delayed detonation models [84] which produce the

observed luminosity as well.

If eventually the choice outlined in this section turns out to be the true mech-

anism, it would explain the high similarities in all the observed supernovae, at

least in the normal ones, since all of them would originate from a core with mass
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Figure 5.5: Spectroscopic evolution of a normal SNe Ia, SN1994D, at chosen epochs

from -10 days to 126 days. Spectra have been obtained from the SUSPECT archive

[188].

MCh ≈ 1.4 M⊙. On the other hand, for the subluminous SNe Ia it is sometimes

resorted to sub-Chandrasekhar models of explosion, which would account for the

smaller amount of energy released.

5.4.3 Observational features

The only way to contrast the different scenarios introduced in the previous section is

by using the information coming from the measured energy, either from the spectra

or the light curves. They are also important to characterize the objects, since, in

fact, spectra and light curves hold all the information we can obtain from SNe Ia.

Therefore, these are the only tools we have at our disposal to understand the nature

of the phenomenon.
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5.4.3.1 Spectra

The most distinctive feature of Type Ia supernovae is the SiII absorption line in

the early spectra at a wavelength λ ≈ 6150 Å, together with the lack of hydrogen

that defines all Type Is. An observed supernova is often classified as SNe Ia mainly

because of these lines.

The spectra of SNe Ia evolves as the explosion proceeds. Close to the maximum,

the spectra show important emission and absorption lines. It is easy to see inter-

mediate mass elements such as O, Mg, Si, S, Ca, etc. in neutral or first ionization

states. At short wavelengths, some elements from the iron peak are observed as

well. Figure 5.5 shows that the strongest lines are those of silicon (corresponding

to SiII at 6355 Å in rest frame) and the H and K lines of CaII at 3934 Å and 3968

Å also in rest frame. The P-Cygni profile of these lines allows to obtain the expan-

sion velocity of the photosphere at the time of creation of the line. For the SiII line

velocities of order 10000 Km/s are obtained, and they are even higher for the CaII

lines (v ≈ 13000 Km/s). These high velocities diminish fast as we go farther from

the luminosity peak.

As time goes by, the nucleus of the white dwarf becomes richer in iron, and

therefore, the iron lines become stronger although the intermediate mass elements

are still important. Approaching the nebular phase, the spectra starts to be dom-

inated by forbidden emission lines from first several ionization states of iron, and

cobalt multiplets. The evolution of the latter shows the radioactive decay of cobalt

in the last stages of the supernova. Calcium lines (CaII H & K and the triplet close

to the infrared) are still visible as it happens in all the stages of the evolution of the

supernova.

This is the general behaviour for 80% of SNe Ia, but the remaining 20% can show

different features. Referring to the spectra, some of them do not have the silicon

line, and sometimes, even the calcium and sulphur lines are absent. In these cases,

all the spectroscopic evolution as well as the light curves must be taken into account

to classify the object. Typical examples of that are the superluminous SN1991T and

the subluminous SN1991bg. On the other hand, spectra at low and high redshift do

not differ significantly.
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5.4.3.2 Light curves

Spectra are the key elements to classify supernovae as Type Ia, but the homogeneity

of light curves allows to use them as standard candles, or, at least, as calibrable

standard candles. So, the study of the light curves is of paramount importance in

cosmology.

The common trend for SNe Ia and the comparison with the other types can be

seen in Figure 5.4. In the case of core collapse supernovae, the light curve can dif-

fer appreciably from one object to another, but for these thermonuclear explosions

the shape is standard. After the explosion there is a sudden increase of luminosity,

which, after more than a week, reaches the maximum. The decrease has two differ-

entiated slopes: a first fast one with an increase in magnitude of about 0.1 mag/day,

and less than a month later the slope suddenly changes to 0.01 mag/day. Also the

absolute magnitude at maximum is characteristic. Using 111 SNe Ia from the Asi-

ago Supernova Catalog, the authors in Ref. [157] found a Gaussian distribution with

mean MB = −19.46 and a dispersion of 0.57 for normal supernovae.

These similarities among observations must occur because all of them come from

the explosion of very similar objects. When the C-O WD explodes having a mass

M ∼ MCh, the surface increases fast but the temperature remains almost constant.

At the beginning, the sphere is opaque and the nuclear energy released when explo-

sively burning carbon and oxygen results into the Fe-peak elements. That makes the

object expand, the density diminishes and, therefore, so does the opacity, allowing

every time more flux to leave the supernova. This epoch lasts less than 20 days, and

it appears in the light curve as a very fast increment of luminosity.

The more the ejecta expand, the more transparent they become to the γ-radiation.

Besides, the radioactive decay is also diminishing exponentially, and the light curve

starts to fall. The maximum is usually modelled with a parabola (∝ t2), although

the behaviour is different depending on the energy band. To give an example, the

maximum in the infrared is about five days before the maximum in the B band, and

after it, there is a monotonous decay in ultraviolet and visible, but not in infrared,

where it is produced a second maximum.

The chain 56Ni → 56Co → 56Fe describes the slopes in the observed light curves,

and it can account for the differences observed with different filters. Other radioac-

tive elements synthesized during the explosion and with longer half-lifes (57Co, 55Fe,



116 Chapter 5. Cosmic distances and standard candles

44Ti...) are responsible for the light curve even thousands of days after the explosion,

when, in most of the cases, there are no observations.

From the cosmological point of view, the most important feature in the light

curve is, in principle, its maximum (usually in B). Since it must highly depend

on the quantity of nickel available, the understanding of the model of synthesis

of elements during the explosion is decisive to understand the homogeneity of the

group. Especially, if as we are seeing with the increasing number of observations, by

subluminous and superluminous events are not as rare as they were thought to be.

5.5 Standardizing Type Ia supernovae

As soon as the amount of observed SNe Ia started to be statistically significant, it

became evident that there was a dispersion in the luminosity peak, decline rate,

colour and even spectrum of SNe Ias. This dispersion is not only accounted for

subluminous and superluminous supernovae, but it is also seen among the normal

ones.

It is obvious that all the observed quantities have a dispersion just because

of being measured. However, it was soon realised that there was a correlation

between the luminosity at maximum and the decline rate (as seen in the upper plot

of Figure 5.6). This intrinsic dispersion adds to the statistical one and once it is

understood, the objects can be calibrated and only show the statistical dispersion.

Although during the 70’s such a relation was found observationally [152], it

was in 1993 when Mark M. Phillips established the empirical relation between the

luminosity at maximum and the linear decline rate [149]. He fitted the curve in

three bands (B, V and I) without excluding any peculiar object, and, after applying

the correction

Mmax
corr = a + b∆m15(B) , (5.9)

he found a reduction on the dispersion of the absolute magnitude M of almost a

50%. In the previous equation a and b are free parameters and ∆m15(B) is the

increment in magnitude in B from the maximum up to 15 days after it.
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According to the Phillips relation, brighter SNe Ia are slower (wider light curves),

whereas the dimmer ones show a faster decline (narrower). A naive interpretation of

this result is based on the amount of 56Ni. The more 56Ni synthesized, the higher the

temperature is, and, therefore, the iron peak elements will be in a higher ionization

state. That makes the opacity larger and so, more radiation is trapped. Releasing

all this energy is then slower and the light curve shows wider.

This is the origin for most of the methods to calibrate SNe Ia. Some of them

describe the light curves as a single parameter family of curves. Others widen

the relation to two or even three parameters, considering for example the colour

as extra parameter. All of the methods introduce a correction to the observed

magnitude which accounts for the difference between the observed supernova and

what is considered a standard one. In the following, a brief explanation for the most

commonly used methods is given, with a special emphasis on the stretch factor

method, which is the one chosen for calculations in this thesis.

5.5.1 ∆m15 template fitting

This method is a straightforward application of the Phillips relation. From a set

of very well measured SNe Ia one can measure ∆m15(B) and obtain two things:

the relation MB–∆m15, and templates for several values of ∆m15 by averaging their

light curves. Then, the observed points of new supernovae can be compared to these

templates, and via a χ2 minimization one finds the ∆m15 and two shifts: one giving

the magnitude of the peak and the other one the phase [98, 99].

The first representative results were obtained from 18 low redshift SNe Ia dis-

covered by the Calán/Tololo survey close to the maximum. The relation between

∆m15 and that maximum was found to be, with respect to a standard supernova

with ∆m15 = 1.1,

MB,corr = −(19.26 ± 0.05) + (0.86 ± 0.21)(∆m15 − 1.1). (5.10)

Therefore, the correction term ∆1.1
B,corr can be written as (−0.86±0.21)(∆m15 −1.1)

and the apparent magnitude should be corrected with [147]:
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mB,corr = mB + ∆1.1
B,corr. (5.11)

5.5.2 Stretch factor

The Supernova Cosmology Project introduced in 1997 another parameterization to

calibrate the supernovae, the stretch factor. In order to represent the faster and

the slower SNe Ia, this method stretches linearly the time axis and transforms all

the light curves into a single standard one (the composite curve) [146, 147]. That

procedure is only valid during the first four weeks and in the B and V bands, since

at other wavelengths there is a secondary maximum about 20 and 40 days after the

absolute one.

The free parameter that represents the method is the width factor w = s(1 + z),

which accounts for the contribution due to the time dilation (factor 1 + z) and for

the stretch factor s itself. Usually, the stretch factor is interpreted as a parameter

that encodes the variation of the opacity with temperature following the explanation

of the Phillips relation given in Section 5.5.

In a similar way as it happened with the ∆m15 template fitting method, one

must construct a series of templates for the light curves in each band. However,

in this case, the templates correspond to a fiducial supernova with s = 1, and the

observed supernova is compared to the template by stretching the time axis. This

comparison allows to determine not only the stretch but also the magnitude of the

peak and the time of the maximum. Peter Nugent’s templates in UBVRIJHK bands

can be found in [137].

The effect of the width of the light curve translates into the magnitude as:

mB,corr = mB + α(s − 1). (5.12)

α is a positive parameter to be determined by minimization of the dispersion to a

given cosmology and is calculated for a set of SNe Ia (see Section 6.1.4), whereas as

it has been seen s is a measured property of each SNe Ia.

Up to now, two methods based in the same principle have been explained. The



5.5. Standardizing Type Ia supernovae 119

Figure 5.6: Light curves of the nearby SNe Ia from the Calán/Tololo survey. In the upper

panel it is apparent the dispersion and the relation between the maximum brightness and

the width of the light curves. The lower panel shows the composite curve after applying

the stretch factor correction.

stretch factor is highly correlated with ∆m15, but yet the two parameters are not

equivalent. In Ref. [9], it was calculated the following relation between both methods

with 58 nearby SNe Ia:

∆m15(B) = (1.98 ± 0.16)(s−1 − 1) + (1.13 ± 0.02) . (5.13)

This dispersion between methods is in general not very important, and the same

cosmological conclusions are obtained after correcting the SNe Ia with any of them,

but one has to be consistent and stick always to the same one.
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5.5.2.1 Adding the extinction correction

As it is explained in Section 5.6.2, the extinction is commonly added to the magni-

tude in a way independent of the standardization. However, it can be included in

the light curve fitting as the Supernova Legacy Survey do by modifying the stretch

correction [97, 14] (see also an alternative method introduced in next section):

mB,corr = mB + α(ŝ − 1) − βc. (5.14)

If one adds this correction to the fit, the obtained stretch factor ŝ can be different

from the one without s-correction because of the addition of the new term, even

though the definition of the stretch is the same. The extinction correction is here a

linear function defined as c = (B − V )Bmax + 0.057, where one measures the colour

excess with respect to a fiducial SN with (B − V ) = −0.057 at the maximum in B

band. This term includes both the host galaxy extinction and any possible intrinsic

colour variation.

Just as before, ŝ and c are characteristics of each supernova, whereas α and β

are obtained from the fit to the light curves.

5.5.3 Multicolour Light Curve Shape (MCLS)

The main contribution of this method developed by the High-Z Team is the use of

different bands and colours to quantify the reddening as well [159, 158]. It incorpo-

rates the observed evidence that fast decliners are usually redder in (B − V ) and

slow decliners are bluer.

The MCLS equations in principle describe the light curves as a linear family of

the peak luminosity. Adding a second order term, it is also described the fact that

a SN fainter is redder than the fiducial one by the same amount as a bright SN is

bluer with respect to the fiducial one.

First order : mV = MV + RV ∆ + µV

mB−V = MB−V + RB−V ∆ + E(B − V )
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Second order : mV = MV + RV ∆ + QV ∆2 + µV

mB−V = MB−V + RB−V ∆ + QV ∆2 + E(B − V ) . (5.15)

Where the parameters of the model to be determined are: ∆ = MV (SN)−MV (SNfid),

the distance modulus µV , the colour excess E(B − V ) and time at maximum t0. As

before one obtains them by an iterative minimization of χ2, considering an initial

value for the correlation values between ∆ and the light curve shape (both the

linear ones R, and the quadratic ones Q), the absolute magnitude MV and the

colours MB−V . Templates giving MV , R and Q to compare with are obtained from

nearby SNe Ia.

Nowadays, an improvement of this method called MLCS2k2 is being used [115].

It generalizes the MCLS equations, improves the treatment of reddening and allows

the use of the U band information. The new equations for each band X (where X

stands for any of UBVRI) are:

mX(t − t0) = M0
X + µ0 + ζX(αX + βX/RV )A0

V + PX∆ + QX∆2 . (5.16)

The method uses information from spectra about the extinction (ζX , αX and

βX), from the photometry (mX(t)), uses the templates (M0
X , PX and QX) and finally

gives t0, RV , A0
V , ∆ and µ0. The correction to the magnitude is then included in

the equations themselves.

5.5.4 Bayesian Adapted Template Match (BATM)

This method [196] is based on the use of a set of nearby SNe Ia with well known light

curves in various colours and for a wide range of luminosities. These light curves

are moved to a determined redshift, with an arbitrary host extinction, and finally

observed trough the filters used in the real observations. In this way, instead of

comparing the observed light curve with the template at the redshift of the template,

is this one that is moved to the redshift of the SNe Ia. This avoids to calculate the

K-corrections for an object which is still unknown or to use the extinction of the

host galaxy which is also a controversial parameter.
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5.5.5 Colour-Magnitude Intercept Calibration (CMAGIC)

If SNe Ia are standard candles, not only the magnitude at maximum should be

characteristic, but also at any other time that can be identified by any reason.

Wang et al. [201] showed that, during more or less the first month past maximum,

the magnitude at a given value of the colour index has a very small dispersion, and,

besides, during this period the relation between the magnitude in B and the (B−X)

colour in an X band (X equals to V, R or I) is linear:

mB = BBX + βBX(B − X) , (5.17)

with BBX and the slope βBX constants for each supernova.

The innovation of CMAGIC is then the working space being the colour-magnitude

plane. The authors claim that that reduces the scatter with respect to the previous

alternatives in a method that, besides, does not need to use any template.

5.6 Uncertainties and systematics

A lot of work is being devoted to calibrate SNe Ia as explained in the previous section.

However, that calibration can be affected by different sources of systematics. At the

time of precision cosmology, when a great amount of data is starting to be collected,

the control of uncertainties and systematics is vital to obtain not only accurate but

also precise results.

Next, a summary of the usually considered systematics is listed, with the inclu-

sion of the treatment of the redshift uncertainty, which is usually underestimated

or just ignored. We show its importance at low redshift and in future photometric

surveys.

5.6.1 Time dilation and K-correction

In this section, we consider the two main corrections that have to be applied to the

raw data in order to transform all SNe Ia into rest frame and be able to compare
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them.

Time dilation is a contribution due to the fact that cosmological redshifts are

produced because of the expansion of the Universe. Then, observed light curves are

dilated by a factor (1 + z) as predicted by General Relativity. The effect acts in the

same way as the stretch factor does.

The K-correction is a more elaborated contribution. It accounts for the differ-

ences between the wavelengths at which the supernova emits and the ones we receive

because of the expansion of the Universe. The correction is needed when one wants

to convert the observed data into rest frame, since there is a difference between the

shape of the filter of the received band and of the emitting band. This is a nonlinear

correction to each point in the light curve, and it is obtained iteratively when fitting

the light curve, since its value depends on the epoch and the stretch. A concrete

method for determining K-corrections is explained in [134].

In general, each point of the light curve is translated into the blue rest frame by

applying:

mB(t) = mX

(
t′

s(1 + z)

)
+ KBX

(
t′

1 + z

)
, (5.18)

where X is the observed band, t is the rest frame time scale, t′ is observed time scale

and z the redshift of the supernova.

5.6.2 Galaxy and host extinction

The reddening in the Galaxy is an additive contribution to the magnitude, and,

contrary to the one in the host galaxy, is considered to be known. The colour excess

due to Galactic extinction can be obtained from the dust map of the Galaxy given

by Schlegel, Finkbeiner & Davis in [170]. Using the interstellar extinction law with

RB = 4.14, RV = 3.1, RR = 2.33 or RI = 1.48, one can calculate the absorption

made by the Galaxy in the direction of the supernova (AX).

The extinction in the host galaxy or even in the intergalactic medium is a more

delicate matter. The absorption of the intergalactic medium is not considered as the

highest redshift SNe Ia do not show specially high colour excesses. The distribution
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of reddenings is more or less the same at low and high redshift, so dispersion in

reddening should be attributed to differences in the host galaxies or the position of

the supernovae within them and not to the intergalactic medium.

The way of treating the host galaxy extinction is not standard, and each col-

laboration does it in a different manner. For most supernovae the colour excess

estimate is compatible with no extinction, so all the analyses make the first calcu-

lations without any host galaxy extinction correction. That is justified for SNe Ia

lying in early-type galaxies, where the amount of gas and dust is much smaller that

in late-type galaxies. Confirming that, Sullivan et al. [187] showed with a set of 39

distant SNe Ia that those hosted in late-type galaxies were 0.14 ± 0.09 mag fainter

than those in early-types.

However, at least spiral and irregular galaxies when used for cosmological pur-

poses should be corrected, but still, the determination of the colour excess E(B−V )

at high redshift is not easy. Future large surveys will allow us to use just clearly

unreddened SNe Ia, but for the moment low extinction subsamples include data

with values as large as E(B −V ) = 0.1, which can dim the supernova by more than

0.4 mag.

A range of possibilities appears when trying to correct from host galaxy extinc-

tion. Some authors correct only for E(B − V ) > 0, which is in fact natural taking

into account that physically dust cannot make a supernova bluer. Others impose a

prior on the extinction and fit its value together with the light curve parameters.

Even other methods fit it without imposing any prior. As already noted in [119], for

instance, different ways of correcting for host galaxy extinction can lead to biases

in the results and differences in the determination of the cosmological parameters.

Therefore, a better understanding of this source of uncertainty is necessary.

As for Galactic extinction, the absorption due to the host galaxy affects the

magnitude in an additive way, the same for all the points of the light curve:

mB = mne
B − AGal. − RB E(B − V )Host , (5.19)

where mne
B is the magnitude in B without considering the effect of extinction, AGal.

is the absorption made by the Galaxy and AB = RB E(B−V )Host is the absorption

of the host galaxy.
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5.6.3 Gravitational lensing

The magnification and demagnification of SNe Ia due to gravitational lensing is

assumed to be compensated for large sets of supernovae. So, its effect is not supposed

to alter the conclusions although there are some individual SNe Ia clearly lensed such

as SN1997ff [116].

In fact, the effect is only significant at high redshift. The dispersion due to lensing

at z = 1.5 is estimated to be a 7% [94]. However, the same authors show a method

to reduce it up to a 3%. On the other hand, the uncertainty has nowadays a very

small repercussion on the cosmological parameters mainly because of two reasons.

First, because most of the data are not at high redshift, and second because current

sets seem to be unbiased and have a magnification distribution compatible with a

mean equal to unity. Therefore, usually there is no correction due to gravitational

lensing.

5.6.4 Sample contamination and selection effects

Obtaining good quality spectra is crucial for avoiding any sample contamination,

since as it has been said, the identification of the silicon, calcium and the lack of

hydrogen lines in the spectra is the main tool to classify supernovae as Type Ias.

Usually, at low redshift, spectra have enough quality. On the other hand, at high

redshift SNe Ia are the brightest observed supernovae, and therefore, the contami-

nation of other objects must be negligible. Problems about sample contamination

could arise in photometric surveys, where spectra will not be available even at low

redshift. This should be prevented by combining this kind of surveys with parallel

observations to obtain spectra.

The Malmquist bias is one of the major selection effects in astronomy (for flux-

limited surveys the detection of brighter objects is favoured). In the case of SNe Ia,

the cosmological parameters are only modified if the Malmquist bias acts in a differ-

ent way at low and high redshift. Of course, that has to be checked for every survey

specification, but with current sets and surveys it has been estimated not to exceed

0.03 mag.
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5.6.5 Redshift uncertainty

Among all the effects that condition the measurement of the magnitude of a su-

pernova, that caused by the uncertainty in redshift is usually the less taken into

account. Nowadays, most of the ongoing supernova surveys obtain redshifts from

the spectrum either of the supernova or of the host galaxy. This is a very precise

measure of the redshift and therefore, for cosmological purposes, usually redshifts

are assumed to have no error. However, in Ref. [107] it was already noticed that,

at low redshift, even small uncertainties are important for the determination of the

cosmological parameters.

In a first approximation at low redshift, the magnitude-redshift relation can be

written as m = M+5 log10(cz). Therefore, an uncertainty δz translates into magni-

tude as δm = 5 log10(e)δz/z. At low redshift, peculiar velocities (v ≈ 300 Km/s ⇒
δz ≈ 0.0001) are more important than the uncertainty in spectroscopic redshifts.

That introduces an uncertainty of δm ≈ 0.005 usually added in quadrature to the

magnitude uncertainty in the χ2 tests.

But that analysis is not enough. Some of the incoming surveys which are sup-

posed to observe a large number of SNe Ia will not be able to obtain spectra for

all of them. In these cases, redshifts are going to be estimated from photometry

(photo-z’s), and therefore redshift uncertainties will be large enough to be taken

into account. Simulations done in Ref. [194] show a scatter of σz < 0.1 in photo-z’s

with respect to the spectroscopic ones for field galaxies. Averaging neural network

and template fitting determinations they obtain a dispersion of σz = 0.073, which

at z = 0.5 could cause an error in the magnitude of 0.3 mag for a concordance

cosmology. It is in these cases that a complete analysis is necessary.

The effect that the uncertainty in the redshift has on the magnitude depends

both on the underlying cosmology and the calibration of the supernova. In [107]

the different contributions were treated separately. However, the most important

contribution comes from the propagation of errors in Equation 5.2, above all at

redshifts lower than 1. That is given by:

δm =
∂m

∂z
δz , (5.20)

and from the theoretical magnitude-redshift relation (Eq. 5.2), the derivative can be
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written as

∂m

∂z
= 5 log e

[
1

1 + z
+

H0

H(z)

√
|Ω0

K | tann−1

(√
|Ω0

K |
∫ z

0

H0

H(z′)
dz′
)]

, (5.21)

where in a similar way as defined in Section 2.3.1:

tann x ≡





tan x for Ω0
K < 0

x for Ω0
K = 0

tanh x for Ω0
K > 0

. (5.22)

This uncertainty is slightly dependent on the underlying cosmology but, of

course, the dominant source is the error in the redshift measure, δz (see Figure 5.7).

For a relatively low error, δz = 0.01, it can be seen that supernovae at z < 0.1 are

very much affected, but the effect is less than 0.05 magnitudes at z > 0.5, much

less than the intrinsic dispersion of SNe Ia. However, as δz increases, also increase

both the redshift under which the propagated error is crucial and the asymptotic

δm at high redshift. At the error level of the expected photo-z’s, δz = 0.08, super-

novae at z < 0.5 have uncertainties larger than 0.4 magnitudes, and even at high

redshift the uncertainty is comparable to the intrinsic dispersion. This could be

an important point limiting the use of photometric surveys for the determination

of the cosmological parameters. Especially, if we consider that the distribution of

photo-z’s is not just Gaussian but has wider tails with catastrophic photo-z’s errors

such as δz/(1 + z) > 0.15.

The effect of this source of error on the cosmological parameters and on the

equation of state of dark energy, together with the importance of catastrophic photo-

z’s and the inclusion of some spectroscopic redshifts in the survey are widely treated

in Chapter 8.

5.7 Data samples

During the elaboration of this thesis the set of SNe Ia data used to estimate the

cosmological parameters has been growing noticeably. However, the size of this

set grows more slowly than new observations do, mainly because different reduction

techniques and template fitting methods prevent a direct combination of the results.
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Figure 5.7: Uncertainty in the magnitude, δm, due to the error in the redshift measure,

δz, as a function of redshift. For each δz three different cosmological constant cosmolo-

gies have been plotted: (Ω0
M , Ω0

Λ) = (0.2, 0.6), (0.3, 0.7) and (0.4, 1.0). This source

of uncertainty is very important at low-z, and also at increasing redshifts for increasing

δz’s.

Chronologically, the first significant set was that of Perlmutter et al. (1999)

for the Supernova Cosmology Project (P99, [145]). For their main fit they used a

set that included 16 low-redshift supernovae from the Calán/Tololo survey and 38

high-redshift supernovae, all of them calibrated via the stretch factor method. By

the same time, also the High-Z Supernova Search Team published a high-redshift

set calibrated via the Multi-Colour Light Curve Shape (MLCS) method (Riess et

al. (1998), R98, [158]). The low-redshift sample was the same in both cases, but

high-redshift samples involved different instruments and methodologies. At the end

of the past century, that led to two independent evidences of the necessity of an

energy component that accelerates the expansion of the Universe.

From that time, both teams have been enlarging those samples and improving

their respective methods; new collaborations have been created to increase the num-

ber of observed SNe Ia as well. The larger sets or new data for the old ones can be

found in:

• The compilation of 230 SNe Ia of Tonry et al. (2003) [196] (T03) (with subsets
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of 172 and 130 data used for the cosmological fits);

• Knop et al. (2003) [119] (K03) with new calibrations for the SNe Ia of P99

plus eleven high redshift SNe observed with the Hubble Space Telescope (65

SNe Ia with a subset of 54 used in the main fit);

• The analysis of 22 new high redshift SNe Ia for a total of 222 objects in Barris

et al. (2004) [21] (B04);

• State of the art at the beginning of 2004 in Riess et al. (2004) [161] (R04). A

gold set with 156 SNe Ia is defined from different sources;

• Nine high redshift SNe Ia from the ESSENCE (Equation of State: SupErNovae

trace Cosmic Expansion) project in Krisciunas et al. (2005) [121] (K05);

• Five new SNe Ia at z ≈ 0.5 in Clocchiatti et al. (2005) [47] (C05); and

• The 73 SNe Ia from the SNLS (SuperNova Legacy Survey) in Astier et al. (2005)

[14] (A05).

At the time of writing the thesis, the largest set of SNe Ia is the gold set from

Riess et al. (2006) [160] (R06). It is a new state of the art with 182 SNe Ia, which,

as in previous compilations, come from various recalibrated and restricted samples

plus 17 new SNe observed with the Hubble Space Telescope. The set covers from

redshift 0.023 (high enough to avoid the possible existence of the Hubble Bubble)

to the highest redshift supernova at z = 1.77, with a mean of < z >= 0.54 ± 0.35.

However, it has been recently claimed in Ref. [131] that this set is not statistically

homogeneous and that a careful analysis of systematics should be done. It is a

set joining two decades of data and the differences in the treatment of systematics

through time may show up.

Also the ESSENCE collaboration has built up a set with their data and the

SNLS supernovae published in Wood-Vasey et al. (2007) [211] (VW07). The full set

has 162 SNe Ia in the redshift range 0.015 < z < 0.96, being in this case the mean

redshift lower than for Riess’ data: < z >= 0.38±0.27. Figure 5.8 shows the Hubble

diagram together with the redshift histogram for the two sets, where one can observe

the difference between both distributions. As it will be seen in next chapters, the

two samples do not lead to compatible results within 1σ intervals. Therefore, some

work in the direction of building a complete homogeneous new sample from these

two is being done [56].
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Figure 5.8: Hubble diagram and redshift histogram for the compilation of 182 SNe Ia

from Riess et al. (2006) [160] (black crosses, R06) and the 162 SNe Ia from Wood-Vasey

et al. (2007) [211] (red diamonds, VW07).

5.7.1 Bootstrap resampling

Before ending this section we present a statistical method used to generate new sets

of data from the original ones just introduced.

The bootstrap method is a Monte Carlo-based method. Its distinctive feature

is that it is aimed to extract statistical information from a data set by generating

different realizations of the original data set, instead of by considering the model

behind the data to be parameterized by random variables.

The generation of each of these distributions of n elements is quite easy: one just

has to generate n random variables distributed as integers, with a flat distribution

from 1 to n. These random integers are the ones which select the members of the
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Figure 5.9: Outline of the generation of 1000 data sets via bootstrap resampling from

the original set, in this case that of Riess et al. (2004) [161].

data set to be considered. In this way, we are sampling with replacement, since some

of the values are taken more than once. The Fortran subroutine bootspbec.f has

been used for that purpose.

Bootstrap resampling is used later in the analysis to estimate 1σ uncertainties

in the equation of state.
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Chapter 6

Looking for the underlying

cosmology

This chapter is dedicated to obtain the most probable values of the cosmological

parameters and of those parameterizing the dark energy density. SNe Ia are used

together with priors coming from different cosmological experiments, to determine

the discrete parameters described in the theoretical part of the thesis, paying special

attention to running cosmological constant models and to common developments of

the equation of state.

6.1 Parameter estimate: the maximum likelihood

method

The maximum likelihood technique developed by R.A. Fisher in the 1920s is one of

the most used methods to estimate parameters given a data set.

The method considers that observations Xi are random variables coming from

an unknown population which can be described via a probability density function

(φ(X, θ), pdf ). This pdf depends on the variables Xi and the parameters θi, and

gives the probability of the data given the parameters. But, in order to estimate the

best set of parameters from the data, it must be interpreted in the opposite way.

Within this interpretation, the function is called likelihood function, because it says

how likely is a set of parameters given the data:

133
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L(θ|X) ≡ φ(X, θ) . (6.1)

From this point of view, the likelihood function cannot be integrated to obtain

probabilities of the parameters, because θi are not random variables as Xi are.

However, even though the likelihood function is not strictly a probability function,

it still has some nice properties. If L(θA|X) > L(θB|X), then θA is more plausible

than θB for the parameter θ. The maximum likelihood method is based on that

property, and it simply looks for the parameters θi which make maximum L(θ|X)

for the observations X.

The concept of likelihood is well understood within a Bayesian framework. Ac-

cording to the Bayes’ theorem, the posterior probability is related to the prior prob-

ability through the conditional probability of the data given the parameters, and

that is nothing but the likelihood:

P (θ|X) =
P (X|θ)P (θ)

P (X)
∝ L(θ|X)P (θ) . (6.2)

This relation is important, since it allows to use the a priori information on the

parameters and marginalize over those without direct interest.

6.1.1 χ2 as a maximum likelihood method

Differences in maximum likelihood methods arise from the choice of the probability

functions used. The χ2 function, defined as the square of the ratio between the true

error and the measured one, showed to be an adequate choice:

χ2 =
∑

i

(
yi − y(xi, θ)

σi

)2

. (6.3)

Let us suppose that a theoretical model relates observations to some unknown

parameters y(xi) = y(xi; θ). One can model the data yi with a Gaussian pdf if

errors on data are independent and normally distributed around the true model

y(xi, θ). Moreover, if data are independent, the joint pdf is given by the product of

the individual probability of each datum:
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φ(Y, θ) ∝
∏

i

exp

(
−1

2

[
yi − y(xi, θ)

σi

]2
)

. (6.4)

The set of parameters maximizing this function maximizes its logarithm as well,

and therefore one can write:

ln φ(Y, θ) ∝
∑

i

(
−1

2

[
yi − y(xi, θ)

σi

]2
)

= −1

2
χ2 . (6.5)

If errors have a constant standard deviation (σi = σ), one obtains the least

squares estimator; for different standard deviations one obtains the χ2 estimator.

Maximizing the likelihood is then equivalent to minimize the χ2.

As for this thesis, observations are mainly pairs of magnitude and redshift values

and parameters are both the cosmological parameters and the ones related to the

dark energy equation of state. The magnitude-redshift relation links the observations

with the unknown parameters (Section 5.1.1).

6.1.2 Goodness-of-fit

The goodness-of-fit in a χ2 fit can be qualitatively estimated by comparing the χ2

value to the number of degrees of freedom. It is expected that for large data sets,

these two terms become equal. However, strictly speaking, the lower χ2 is, the better

the fit, because the difference between the theoretical and observed data is smaller.

On the other hand, one can give the p-value as a quantitative measure for the

goodness of the fit. The p-value is the probability that one obtains a larger χ2 by

chance for that number of degrees of freedom. Usually, one only discards models for

low values of p, let us say p < 0.05 for instance. In our case, this lower limit is not

going to be a problem, since all tested models have much higher probabilities. And

that is the true problem: most of the tested theoretical models are equally good at

modeling the data.
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P(%)
dofs

1 2 3 4

68.27 1σ 1.00 2.30 3.53 4.72

90.00 - 2.71 4.61 6.25 7.78

95.44 2σ 4.00 6.17 8.02 9.70

99.00 - 6.63 9.21 11.3 13.3

99.73 3σ 9.00 11.8 14.2 16.3

99.99 - 15.1 18.4 21.1 23.5

Table 6.1: ∆χ2 as a function of the number of degrees of freedom (dofs) and the desired

level of probability when errors are normally distributed.

6.1.3 Confidence regions

For Gaussian errors, the minimum χ2
min determines the best parameters. Besides,

contours of constant χ2 represent contours of constant probability and ∆χ2 = χ2
level−

χ2
min regions can be interpreted as confidence regions.

In fact, that is true even for non-Gaussian errors, but then the relation between

the value of ∆χ2 and the confidence level should be determined, via Monte Carlo

simulations for instance. On the other hand, normal errors allow a straightforward

integration of the probability:

P [θ1 ≤ θ ≤ θ2] = 1 − α , (6.6)

where 1 − α is the desired percentage of probability for the value of the parameter

θ to lie in the interval [θ1, θ2]. For a single parameter, ∆χ2 = 1 gives 1σ intervals,

i.e., there is a 68.27% of probability that the true parameter lies within this range.

The corresponding values of ∆χ2 for more degrees of freedom and higher probability

levels can be found in Table 6.1.

In our results, only confidence intervals for one parameter or degree of freedom

and confidence regions for two parameters are given. Analysis in a higher dimen-

sional parameter space are unavoidable in cosmology, but we either analytically

marginalize over the nuisance parameters (see Section 6.1.4) or project the higher

dimensional confidence region onto a two-dimensional space of interest (numerical



6.1. Parameter estimate: the maximum likelihood method 137

marginalization). In order to do the projection, one can minimize the χ2 with re-

spect to the extra parameters and use the ordinary ∆χ2 for two degrees of freedom

with the results. In the case of three parameters that just means:

χ2(θ1, θ2) = min
θ3

{
χ2(θ1, θ2, θ3)

}
. (6.7)

6.1.3.1 Monte Carlo errors

It has been seen that the χ2 methodology allows for a direct estimate of confidence

intervals when the observational errors are normally distributed. However, that is

not always true and in those cases different approaches must be considered.

The bootstrap resampling technique introduced in the last chapter gives rise to a

very powerful way (but also very time-consuming) of determining confidence levels.

Once n data sets have been generated, one can find the best parameters for every

set. This samples the parameter space, and for a large enough number of results

one obtains the probability distribution in that space. Confidence intervals are then

calculated just by counting the percentage of results within the interval.

6.1.4 Priors and marginalization

A priori information on the unknown parameters can be easily incorporated into

the information given by the data through the Bayes’ theorem (Eq. 6.2).

Since the likelihood and the χ2 are related via L = exp(−1/2 χ2), the addition of

a Gaussian prior on a parameter L(θ|X)P (θ) simply adds a term to the χ2
0 without

the prior:

χ2 = χ2
0 +

(θ − θprior)
2

σ2
prior

, (6.8)

where the a priori information is θprior ± σprior.

Again according to the Bayes’ theorem, the product of the likelihood and the

prior is a well defined probability and, therefore, one can integrate it over a param-
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eter θ (marginalize) in order to obtain the probability of the other ones regardless

of θ.

That is especially useful for nuisance parameters which are not relevant to the

problem. In the case of cosmology with supernova magnitudes, the zero point M
and the width-brightness parameter α as defined in Equations 5.2 and 5.12 are of

this kind. In Refs. [89, 58], the marginalization over M and α was done analytically

assuming flat priors, and the resulting χ2 was found to be:

χ2
α−int(ΩM , ΩΛ, w) = −2 ln

[∫ ∞

−∞

dα exp

(
−1

2
χ2
M−int(ΩM , ΩΛ, w, α)

)]

= A − B2

C
−
(
F − BE

C

)2

D − E2

C

, (6.9)

A =

n∑

i=1

(5 log10 [dL(ΩM , ΩΛ, w, zi)] − mi)
2

σ2
i

,

B =

n∑

i=1

5 log10 [dL(ΩM , ΩΛ, w, zi)] − mi

σ2
i

,

C =
n∑

i=1

1

σ2
i

,

D =

n∑

i=1

(1 − si)
2

σ2
i

,

E =
n∑

i=1

(1 − si)

σ2
i

,

F =

n∑

i=1

(5 log10 [dL(ΩM , ΩΛ, w, zi)] − mi)(1 − si)

σ2
i

,

where the parameter w represents whatever parameter describing dark energy and

χ2
M−int(ΩM , ΩΛ, w, α) is defined by:

χ2
M−int(ΩM , ΩΛ, w, α) = −2 ln

[∫ ∞

−∞

dM exp

(
−1

2
χ2(ΩM , ΩΛ, w,M, α)

)]
. (6.10)

The zero point in the case one uses distance modulus is encoded in the Hubble

constant. Usually, the standardization correction is already included in the distance
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modulus as calculated via the MCLS2k method [115]: therefore, only H0 must be

marginalized.

6.1.5 Implementation and numerical issues

The most probable parameters are found as those giving the maximum likelihood

or equivalently the minimum χ2. Thanks to the limited number of parameters to

study, there has been no need to use a minimization algorithm that introduces the

danger of getting stuck in a false minimum. The χ2 is calculated in a grid of points

covering the whole space of possible values for the unknown parameters with a

Fortran program. The only numerical issue to worry about is the integration of

the luminosity distance, which is calculated with a ten points Gaussian-Legendre

integration as implemented in the QGAUS() subroutine in [151].

The first order system of ordinary differential equations that conform the set of

cosmological equations in Scenario 1 is solved numerically. For that purpose it has

been used the package RKSUITE [34] based on Runge-Kutta methods.

6.2 Cosmological constant

Now, we use this methodology to estimate various parameters. The cosmological

constant is the simpler source of dark energy and it only introduces one extra pa-

rameter, Ω0
Λ, with respect to a matter dominated universe. Other theoretical models

such as the DGP ones (Section 4.2.4.1) share this characteristic, but in that case it

cannot be considered as a source of dark energy but as a modification of General

Relativity. The cosmological constant deserves, then, a special attention and should

not be discarded in front of more complex models unless it is clearly ruled out by

observations or a better theoretical model is found.

In summary, a universe with a cosmological constant evolves according to three

cosmological parameters: Ω0
M , Ω0

Λ and Ω0
K . The equation of state is fixed to

w(z) = −1. The use of SNe Ia magnitudes introduces two nuisance parameters

in the analysis, M and α; for data sets with distance moduli instead of magnitudes,

the zero point is given by H0. In the following, these are marginalized when nec-

essary, as explained in the previous section. The full dynamics of the Universe is
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Figure 6.1: Confidence regions for the cosmological parameters obtained for a cosmo-

logical constant model from two SNe Ia data sets: R06 [160] and VW07 [211]. (a) 1σ

regions comparing present-day results with those at the end of the 90s (Perlmutter et al.

(1999) [145]). (b) 1σ, 2σ and 3σ regions when joining BAO constraints (dotted black

lines in the plot). Note the scale difference between plots.

in this case described by the three cosmological parameters which are linked by the

cosmological sum rule. If the geometry of the Universe appeared to be flat, only one

independent parameter would be enough to reveal its past and future evolution, a

delight for physics and mathematics!

With almost 200 SNe Ia, the precision on the cosmological parameters is enough

to rule out with high confidence most of the allowed space. However, the accuracy

provided by different data sets makes their results incompatible at the 1σ level.

Figure 6.1 shows the confidence regions for Ω0
M and Ω0

Λ after marginalizing over H0.

In the left panel it is plotted the 1σ contour for two current sets: R06 made of 182

SNe Ia [160] and VW07 built up from 162 SNe Ia [211]. Results with one of the

first supernova data sets used for cosmology (54 SNe Ia in P99 [145]) are included as

well for comparison. The uncertainties in the parameters have diminished a factor

of four since then, but due to the differences between sets, SNe Ia by themselves

cannot elucidate the curvature of the Universe. Besides, whereas one of the sets

favours a low density universe, the other one opts for a high density one. That has
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set Ω0
M Ω0

Λ H0
† χ2 p

– SNe –

R06 0.48+0.06
−0.10 0.94+0.17

−0.19 63.5 156.4 0.89

sR06 0.66+0.17
−0.19 1.18+0.27

−0.31 63.8 129.5 0.93

VW07 0.03+0.21
‡ 0.48+0.32

−0.15 65.3 125.7 0.98

flat curvature

R06 0.35+0.04
−0.04 0.65+0.04

−0.04 62.6+0.9
−0.8 158.6 0.87

VW07 0.22+0.05
−0.04 0.78+0.04

−0.05 65.9+1.0
−0.9 126.6 0.98

– SNe + BAO –

R06 0.30+0.02
−0.03 0.60+0.11

−0.11 62.7 159.9 -

VW07 0.26+0.02
−0.02 0.81+0.09

−0.09 65.8 126.9 -

† [H0] = Km/s/Mpc.

‡ Outside the physically allowed region.

Table 6.2: Cosmological parameters obtained for a cosmological constant model from

two supernova data sets: R06 [160] and VW07 [211], with and without BAO constraints.

sR06 is a subsample of R06 only made of SNe Ia with z < 0.95. 1σ errors are found

after marginalizing over H0, except in the flat case.

consequences not only on the required dark energy content, but also on the amount

of dark matter needed to account for the full Ω0
M .

We homogenize this discrepancy in the matter density by including BAO con-

straints. 1σ, 2σ and 3σ confidence regions can be seen in Figure 6.1 (b), and Ta-

ble 6.2 contains the best fit and 1σ errors for individual parameters. Still, both sets

are not fully consistent with each other but they agree in the 1σ limit around the

concordance model: Ω0
M = 0.28, Ω0

Λ = 0.72.

SNe Ia are not very sensitive to the curvature of the Universe, but other cos-

mological methods such as CMB measurements are. WMAP3 data [183] with a

Hubble constant of 72 ± 8 Km/s/Mpc [79] quantify the curvature of the Universe

to be Ω0
K = −0.014 ± 0.017. In practice, this is small enough to assume a flat

universe when considering a larger number of parameters related to dark energy. In

case one considers a flat universe with a true cosmological constant, the best fit is

Ω0
M = 0.35± 0.04 for R06 data and Ω0

M = 0.22± 0.05 with VW07 set. According to

χ2 values (see Table 6.2) neither the curved fit nor the flat fit are preferred in front
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of the other one.

Discordance among results obtained with the two sets is inherent to these data.

We checked it by constructing a subsample of R06 only made of the 157 SNe Ia with

z < 0.95 (sR06). In this way, the redshift distribution of the new set with mean

< z >= 0.44 ± 0.27 is not so different from that of VW07 (< z >= 0.38 ± 0.27) as

the original R06 sample (< z >= 0.54± 0.35)1. We fit the cosmological parameters

with this subsample and obtain Ω0
M = 0.7 ± 0.2 and Ω0

Λ = 1.2 ± 0.3. These results

agree at 1σ with those of the full sample. However, these are still at a distance of 3σ

from the best fit of VW07. Therefore, we expect the differences between sets not to

be due to differences in redshift distributions, but due to differences in instruments,

calibration or standardization methods. Waiting for the union of both sets with a

single light-curve fitting methodology [56], in the following we continue giving both

results.

Figure 6.2: (a) Confidence regions showing 1σ, 2σ and 3σ contours in the

(Ω0
M ,(1/ρ0

c)dΛ/dz |z=0 ) plane for a general evolving cosmological constant in a flat

universe. Results correspond to the 182 SNe Ia in R06 [160]. Solid red lines include a

prior on the density of matter Ω0
M = 0.27 ± 0.03 as well. (b) The same as (a) but for

the 162 SNe Ia in VW07 [211].

1Histograms for the redshift distributions were shown in previous chapter, Figure 5.8.
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6.3 Running cosmological constant

The current impossibility to justify theoretically the existence of the measured cos-

mological constant has motivated many alternatives. Before digging into those pre-

dicting a running of the cosmological constant it is worth checking whether the

running, or in general the evolution of a dark energy source, is compatible with

observations.

Let us first rewrite the Hubble parameter by introducing a Taylor development

to first order of an evolving cosmological constant:

H2(z) = H2
0

[
Ω0

M (1 + z)3 + Ω0
Λ +

1

ρ0
c

dΛ

dz

∣∣∣∣
z=0

z + Ω0
K (1 + z)2

]
. (6.11)

Next, we restrict ourselves to a flat universe and determine the confidence regions

in the (Ω0
M , (1/ρ0

c)dΛ/dz |z=0 ) space. We would expect the first derivative dΛ/dz to

give us some general hints about the evolution of the dark energy component.

As seen in previous results, the fits for the two data sets are very different, but

both of them are compatible with no evolution at 1σ level. The correlation between

the first derivative and the matter density is high, as observed from the inclination

of the ellipses in Figure 6.2. A prior on Ω0
M improves then the determination of

(1/ρ0
c)dΛ/dz |z=0 . We use a prior of Ω0

M = 0.27 ± 0.03, which is equivalent to the

use of BAO constraints. In this section we use directly the prior on Ω0
M instead

of BAO, since its value was calculated for models of dark energy with a constant

equation of state. Although the cosmological constant is a particular case of those

models, that is not the case of running cosmological constant models. Including

this prior on Ω0
M , 1σ uncertainties diminish by a factor 5, but no better conclusions

can be obtained from current data. Results are still marginally compatible with a

cosmological constant, but now a positive evolution is preferred from R06 data and

a negative one from VW07.

Table 6.3 contains the best fit values for this general evolution and the three

following different scenarios.
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set Ω0
M θ H0

† χ2 p

– General –

R06 0.6+0.2
−0.2 dΛ = −1+1

−1 63.6 156.5 0.89

VW07 0.0+0.3
‡ dΛ = +1.0+0.2

−1.2 65.4 125.7 0.98

prior Ω0
M = 0.27 ± 0.03

R06 0.28+0.03
−0.03 dΛ = +0.2+0.3

−0.2 63.6 159.8 -

VW07 0.27+0.03
−0.03 dΛ = −0.2+0.2

−0.2 65.4 126.8 -

– Scenario 1 –

R06 0.20+0.10
−0.08 τ § = −16+11

−12 63.5 156.5 0.89

VW07 0.37+0.26
−0.17 τ § = +18+24

−21 65.3 125.8 0.98

prior Ω0
M = 0.27 ± 0.03

R06 0.27+0.02
−0.04 τ § = −8+4

−5 63.5 157.1 -

VW07 0.27+0.03
−0.03 τ § = +8+7

−7 65.3 126.1 -

– Scenario 2 –

R06 0.35+0.04
−0.04 η = +11+5

−55 60.4 158.6 0.86

VW07 0.22+0.05
−0.04 η = −6+36

−19 67.2 126.6 0.97

fixed H0

R06 0.35+0.04
−0.04 η = −5+5

−5 63.5 158.6 0.87

VW07 0.22+0.05
−0.04 η = +3+4

−5 65.3 126.6 0.98

– Scenario 3 –

R06 0.22+0.09
−0.07 ν = −0.5+0.3

−0.3 63.5 156.5 0.89

VW07 0.35+0.15
−0.14 ν = +0.6+0.8

−0.7 65.3 125.7 0.98

prior Ω0
M = 0.27 ± 0.03

R06 0.26+0.03
−0.02 ν = −0.3+0.2

−0.1 63.5 156.8 -

VW07 0.27+0.03
−0.03 ν = +0.3+0.3

−0.3 65.3 126.0 -

† [H0] = Km/s/Mpc.

§ [τ ] = 10−9eV 4.

‡ Outside the physically allowed region.

Table 6.3: Best fits for the different models with a running of the cosmological constant

presented in this thesis. See text for the definition of each parameter. Data sets and 1σ

errors as in Table 6.2.
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Figure 6.3: As Figure 6.2 but for a concrete evolution, that of Scenario 1 represented

by τ as defined in Equation 6.12.

6.3.1 Scenario 1

In this scenario, the lightest degrees of freedom are the only ones causing the run-

ning of the cosmological constant. As explained in Section 3.3, only considering

the lightest neutrinos would force a larger cosmological constant in the future. In

order not to be restricted to only this behaviour, an extra scalar field S was intro-

duced. Let us define the parameter τ as the combination of these fields appearing

in Equation 3.16:

τ ≡ 1

2
m4

S − 4
∑

ν

m4
ν . (6.12)

The sign of τ corresponds to the sign of the β-function, and therefore, to the sign

of the running of Λ.

Riess et al. (2006) data, which in general favour a larger amount of dark energy,

support here a cosmological constant decreasing towards the past. With such a

negative β-function, the existence of the S field is not mandatory. The best fit

without this field constrains the mass of the lightest neutrinos to mν = 0.007 ±
0.006 eV with SNe Ia data alone and mν = 0.006 ± 0.005 eV when also using prior

information on the matter density. Of course, any lower value for the neutrino’s
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Figure 6.4: As Figure 6.3 but for the parameter η representing the running in Scenario 2.

Results are highly degenerate with respect to the value of H0; panel (b) shows the

direction of degeneracy. Solid red lines indicate here regions with H0 fixed to the best

fit values in Table 6.2.

mass is allowed as long as one admits the existence of the sterile field.

On the other hand, the underlying running reflected by Wood-Vasey et al. SNe Ia

is positive, meaning a larger cosmological constant in the past and a smaller one

in the future. Being the β-function positive, only the combination of the masses

of the lightest neutrinos and the sterile field can be determined. In this case, the

effective mass represented by τ is of order meff = 0.01 ± 0.01 eV . Therefore,

m4
S = 2(8m4

ν − m4
eff), that allowing a relatively large mass of the S field.

Figure 6.3 shows the confidence regions in the (Ω0
M ,τ) space. As before, the

value of τ highly depends on Ω0
M , and so, the prior knowledge on Ω0

M is important

to break the degeneracy. That constrains the amount of evolution, but as seen

with the quoted masses it translates weakly onto the mass determination due to the

relation τ ∝ m4.

6.3.2 Scenario 2

Within the same context as Scenario 1, Scenario 2 also characterizes a running of the

cosmological constant, but now caused by the heaviest particles. For the Standard
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Model of Particle Physics, the running is fully determined by:

η ≡ 1

2

∑

i

Ni −
5

4
( = 10.75 for SM) . (6.13)

But one can accept modifications to the Standard Model and consider η a free

parameter.

Contrary to Scenario 1, this kind of evolution allows to determine the density of

matter with a precision similar to that obtained with a prior in previous scenarios.

Unfortunately, η is not determined with the same accuracy.

The value of η is highly degenerate with that of the Hubble constant. In fact, for

VW07 data, the χ2 for η = 10.75 (SM value) with the best fit value for the density of

matter is only affected in the third decimal place with respect to the true minimum

for η = −6. The Hubble constant, however, is changed from 67.2 Km/s/Mpc to

63.6 Km/s/Mpc.

With these results there is no need to include any prior on the density of matter,

but prior information on the Hubble constant is necessary to break the degeneracy.

Figure 6.4 shows the confidence regions for this scenario with SNe Ia alone and fixing

H0 as well. H0 is fixed to the best fit values in Table 6.2 for each data set. These

values are common to all the scenarios, and this one is the only one that departs

from the usual values.

Although the η parameter is always compatible with no effective running, fixing

H0 is essential to obtain the same behaviour as with other scenarios: a negative

running for R06 data and a positive one for VW07.

6.3.3 Scenario 3

The last scenario changes the renormalization scale and, although the heaviest de-

grees of freedom cause the running as in Scenario 2, considering H(z) as the renor-

malization scale changes the form of the β-function. Now, the β-function is propor-

tional to the cosmological index introduced in Chapter 3:
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Figure 6.5: As Figure 6.3 but for the cosmological index ν representing the running in

Scenario 3. Panels (c) and (d) show a zoom in the physically acceptable range of ν for

R06 and VW07 respectively.

ν ≡ σ

12 π

M2

M2
P

. (6.14)

As explained in Section 3.4, a natural value for this parameter would be ν0 =

0.026; and the physical range for it |ν| ≪ 1, for example −0.1 < ν < 0.1.

Current data, either of the sets, cannot achieve the precision needed to constrain

this parameter in that interval. As seen in Figure 6.5, the confidence regions fully
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cover its range and, in the range of interest, the density of matter is well determined,

so no prior on it can better constrain ν up to the needed precision. Besides, ν is

very slightly degenerate with H0, and fixing its value does not reduce uncertainties

significantly, but we would pay the price of depending on the H0 value.

VW07 data are compatible at 1σ level with no evolution but prefer positive ν’s.

On the other hand, the absence of evolution is only true at 2σ level and negative

ν’s are preferred with R06 sample. Notice that the absence of evolution does not

necessarily indicate the incorrectness of the model, but it could be a sign of a lack

of particles close to the Planck scale.

These are the general trends for the three scenarios as well: VW07 set is more

conservative with respect to an evolving source than R06 is. In summary, current

SNe Ia data are not able to put serious constraints on particle physics parameters,

and particle physics models with the standard and expected values for the free

parameters do not describe observations satisfactorily.

From the point of view of a χ2 analysis, all those theoretical models are equally

qualified to describe the data, and the p-values shown in Table 6.3 do not suggest

that any model should be discarded by any of the sets. Besides, all of them have

the same number of unknown parameters, and therefore, none of the criteria based

on Ockham’s razor to choose between models can differentiate them. The running

cosmological constant models are in the same situation as dark energy sources with a

constant equation of state, in the sense that two independent parameters are needed

in order to represent their behaviour. Let us see now how well can do SNe Ia with

this other branch of cosmological models.

6.4 Constant dark energy source

The cosmological constant is a constant dark energy source with w0 = −1, but as

seen in Section 2.3.3 other kinds of sources have a constant barotropic index too.

For these models, w(z) = w0 is not a parameterization nor an approximation, it is

a true value. However, it has the meaning of an effective value at z = 0 for any

evolving model.

SNe Ia data by themselves do not constrain w0 with great accuracy. The con-
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Figure 6.6: (a) Confidence regions showing 1σ, 2σ and 3σ contours in the (Ω0
M ,w0)

plane for a constant equation of state in a flat universe. The results correspond to

the 182 SNe Ia in R06 [160]. Solid red lines enclose the same probability regions when

joining SNe results with BAO constraints. (b) The same as (a) but for the 162 SNe Ia

in VW07 [211].

fidence region surface diminishes the closer we approach the cosmological constant

value, but still the 1σ uncertainty on w0 as obtained from current SNe Ia data is

almost a 50% of its value.

However, the banana-like shape of the confidence regions (see Figure 6.6) reveals

that, for low matter densities, the prior knowledge on Ω0
M can break part of the

degeneracy. Even more, BAO constraints, which have been specifically calculated

for these models, are nearly perpendicular to SNe regions, being both methods great

partners for the study and determination of w0.

Figure 6.6 with its counterpart Table 6.4 shows 1σ, 2σ and 3σ confidence regions

in the (Ω0
M ,w0) space for the two sets of SNe Ia: BAO as reported in Ref. [70] and

the combination of both. Just like for the running cosmological constant models,

we consider a flat universe so that results are comparable. With the inclusion of

BAO constraints (red solid contours in the plot) the uncertainty on w0 falls down

to a 10% and the cosmological constant stays in the 1σ limit for both SNe sets. In

Scenario 1, 2 and 3, the cosmological constant was at most at 2σ of the best fit;

the uncertainty on τ , η and ν (θ in general) never approached this 10% and in most
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set Ω0
M w0 H0

† χ2 p

– SNe –

R06 0.46+0.05
−0.08 −1.7+0.5

−0.7 63.8 156.6 0.89

VW07 0.0+0.2
‡ −0.65+0.05

−0.40 65.3 125.7 0.98

– SNe + BAO –

R06 0.29+0.02
−0.02 −0.88+0.11

−0.10 62.7 159.7 -

VW07 0.26+0.02
−0.02 −1.08+0.10

−0.08 65.8 126.9 -

† [H0] = Km/s/Mpc.

‡ Outside the physically allowed region.

Table 6.4: As in Table 6.2 but parameters correspond to a constant dark energy equation

of state. A flat universe is assumed.

cases was of order 100%. With these sets then, SNe Ia determine w0 much better

than the running parameters, θ, do.

The selected region in the (Ω0
M ,w0) plane is still wide enough to allow for most

of the theoretical models discussed in previous chapters. Only cosmic strings and

textures (w = −1/3) are clearly ruled out already with SNe alone. The remaining

topological defect, domain walls, is at 2σ level when combining BAO constraints with

R06 and at more than 4σ with VW07 instead. Quintessence, k-essence, phantoms,

Cardassian, DGPs and the remaining evolving models can all have an effective w0

close to −1, and therefore thery can be accommodated with this results. However,

this effective value hides all the information on the evolution with the integration

through redshift. As for the running cosmological models, there is still no direct

correspondence between w0 and the θ parameter for each of them. In both cases,

the evolution is encoded in one single parameter, w0 or θ, but a constant θ behaves as

an evolving w(z). This is clearly seen in Equation 4.14, where the pseudo-equation

of state for Scenario 3 is detailed for a flat universe as a function of ν.

The form of w(z) is essential then to improve our knowledge on the theory

behind dark energy. With the determination of a constant w0, one can only rule out

models with a constant equation of state; not much or nothing can be said about

the evolving ones.
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6.5 Evolving equation of state

We have seen in Chapter 4 how different can be the evolution of the equation of

state through redshift depending on the underlying theoretical model. Figure 4.2,

extracted from Ref. [206], is a clear example and it does not include w(z) < −1

models yet.

Those behaviours are impossible to parameterize with few parameters, and lots

of parameters cannot be determined without excessive degeneracy with current ob-

servational data. That is the trade-off we were talking about in Section 4.3. The

most one can aspire to is to try to know the global slope of the function and that is

represented by its first derivative. However, the linear development on z increases

(or decreases) indefinitely and that is not the desired behaviour at high redshift.

As we also argued in Section 4.3, this thesis uses Equation 4.38, that is, a linear

development on the scale factor a, although this parameterization is not free from

criticisms [160]. A best choice, a continuous fit, is left to next chapter.

The parameterization in the scale factor with only two parameters is still not

well determined by SNe Ia. In order to constrain the (w0,wa) space, one has to

impose some priors on the remaining parameters. In the following, we assume a

flat universe as done for a constant equation of state and fix the Hubble constant

to the best fit value in Table 6.4. Each set of SNe Ia has its own zero point, and a

similar value of H0 is repeatedly found for all the tests: 63.5 Km/s/Mpc for R06

and 65.3 Km/s/Mpc for VW07. Therefore, it seems justified to fix this value to

improve the knowledge on the others. A prior on the density of matter diminishes the

uncertainties as well. Note that in this case we are not using the BAO constraint but

the Gaussian prior Ω0
M = 0.27 ± 0.03. As it happened with a running cosmological

constant, BAO constraints are not explicitly calculated for an evolving equation of

state, and so, we add this information directly on the matter density.

With these premises, one obtains the probability contours displayed in the top

panel of Figure 6.7 for R06 (a) and VW07 (b) data. Again, almost every model with

wa < −4(1 + 2w0) is allowed by SNe Ia data alone, and both w0 and wa are badly

constrained. The addition of the extra parameter wa is not rewarded by a gain in

information, because current data cannot constrain w0 and wa at the same time.

That makes that w(z)s covering all the physically accepted plane are permitted

(Fig. 6.7 (c), (d)).
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Figure 6.7: (a) Confidence region in the (w0,wa) plane for an evolving equation of

state in a flat universe for the 182 SNe Ia in R06 [160]. The Hubble constant is fixed

to the best fit value in Table 6.4 and the density of matter has been marginalized.

Solid red lines show the contours when a prior Ω0
M = 0.27 ± 0.03 is included before

marginalizing. (b) The same as (a) but for the 162 SNe Ia in VW07 [211]. (c) and (d)

Representation of the 1σ results in the above panel for the full parameterized function

w(z) ≃ w0 + wa z/(1 + z). Blue solid regions are determined by SNe Ia alone and red

lines include the prior on the matter density.

Table 6.5 shows 1σ determinations for the equation of state parameters from

which the evolutions in Figures 6.7 (c) and (d) have been obtained. The cosmological

constant is only ruled out (just at 1σ!) when R06 data are used in combination with
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set w0 wa χ2 p

– SNe –

R06 −0.9+0.1
−0.9 2+2

‡ 156.5 0.88

VW07 −0.64+0.13
−0.34 0+1

−3 125.7 0.96

– SNe + Ω0
M = 0.27 ± 0.03 –

R06 −1.3+0.2
−0.2 +2.5+1.1

−1.6 156.6 -

VW07 −0.8+0.3
−0.3 −1.7+2.0

−2.3 126.4 -

‡ > 30.

Table 6.5: Best fit values for the parameters of an evolving equation of state w(z) =

w0 + waz/(1 + z). It has been assumed a flat universe and the Hubble constant fixed

to the best fit value in Table 6.4. 1σ errors are found after we marginalize over Ω0
M .

the prior on the matter density. In spite of the lower mean redshift of the VW07 data

distribution, this set is able to better constrain the w(z) space due to the smaller

amount of evolution it demands. Within its 1σ limits, one can accommodate the

running cosmological constant Scenario 3 with the natural value ν0, or a Chaplying

gas model with a large range of parameters As and n, for instance. On the other

hand, R06 data together with BAO constraints seem more likely to be described by

a DGP model or a modification to gravity with a moderate n. However, 1σ intervals

are wide enough to be consistent with almost all of them and, of course, with a

constant dark energy source. Rapidly evolving sources such as sinusoidals are not

well parameterized by this kind of development.

6.6 Near future results

In the previous sections we showed results from two sets in parallel, R06 and VW07.

Both of them have different redshift distributions and lead to different conclusions,

but also have been obtained and reduced in a different manner. Their union would

increase the number of SNe Ia at intermediate and high redshift, and that would

surely settle and improve our knowledge.

A naive join of both sets by scaling the two samples to the same zero point
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Figure 6.8: Dark energy parameters obtained with the data compilation in Ref. [56] (see

text). Contours as in previous figures.
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has been done in Ref. [56], but still light curve fitting methodology and calibration

differ. The same authors are working on that direction. In this section, results for

this full set of 192 SNe Ia are given, but maybe when you are reading these lines the

two data sets are already homogeneously joined. Results are, then, just a measure

of the improvement we will get, but should not be interpreted as serious constraints

to the cosmological parameters and the equation of state.

In Figure 6.8 there is a summary of all the parameters reported from Section 6.2

to Section 6.5 for this last sample. As a general trend, results are halfway between

R06 and VW07. The dominating set is VW07, but the area of the confidence region

diminishes with respect to this set due to the extra high redshift supernovae. From

these results, there is no observational necessity of any running, evolution or even

a departure from a w0 = −1. Even though confidence regions are still large enough

not to clearly point out a single model, if the final combination of data sets results

in agreement with the current compilation, indications would be symptomatic of a

cosmological constant. Estimates for the parameters of the most promising dark

energy models have been reported by Davis et al. (2007) in [56].

The size of the confidence regions depends on the number of data, their redshift

distribution and the best fit position on the plane. For these data sets, the differences

due to the number of data are not significant. The full compilation has sacrificed

the increment on the number of data to a stricter selection of the supernovae to

be used for cosmology. This increases the confidence in the results: there is a gain

in accuracy and a small loss in precision. The improvement in precision can be

obtained by enlarging high redshift samples.



Chapter 7

Reconstructing dark energy with

an inverse method

After estimating the parameters of an evolving equation of state, the next step is

to consider the evolution in a non-parametric way. In order to recover w(z) it is

introduced a minimization algorithm, being the approach in this chapter completely

different from the one in the previous analysis. The same methodology is applied

to the running cosmological constant as well.

7.1 The problem

Science meets two kinds of problems: forward and inverse problems. Given a com-

plete theory, the prediction of data is what is called the forward problem. The

opposite direction, i.e., having some data try to guess an underlying theory, is the

inverse problem.

Just for illustration purposes, one can consider General Relativity. A logical

deduction is that the elliptical orbit followed by a planet is altered because of the

curvature of space-time. Einstein calculated that its effect on the shift of the peri-

helion precession of Mercury should be of about 43 seconds of arc per century [67].

That was the difference between the result of Newton’s theory and observations,

and therefore it was a crucial test which General Relativity passed. The prediction

of the perihelion shift is a typical example of a forward problem.

157
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The main problem treated in this thesis is quite different: we face an inverse

problem. We have some data, let us say SNe Ia magnitudes for definiteness, and we

want to know what makes the observed values of those magnitudes be so. That is to

say, which model of Universe would allow us to measure that amount of light from

a supernova explosion produced at a given redshift.

In the previous chapter, we somehow mixed both problems. We defined a grid of

possible models of the universe, and for each of them we calculated the magnitude

that it would produce for each supernova. These results are then compared with

observations, and the model which is more similar to observations is chosen as the

model which best describes our Universe. So, we generated n forward problems to

solve an inverse problem.

However, already with a χ2 methodology as it was used, one can directly solve the

inverse problem by minimizing the χ2 function. This alternative procedure, which

can be done in several different ways, does not need to solve n forward problems,

but just to find any smart form of minimizing the function given the nature of

the problem, and it is the one used when the previous trick is not computationally

possible. And that happens when we want to fit a function in a non-parametric

way. In the following section, it is introduced a minimization method developed to

reconstruct the dark energy equation of state as a continuous function [73, 74].

7.2 Inverse problems

The approach to dark energy via the solution of the inverse problem is the usual

way of attacking it. But one should take into account that inverse problems are

usually ill-posed or ill-conditioned [189], that is:

• The solution does not necessary exist.

• The solution is not unique.

• The solution is not stable and small differences in data cause large differences

in the result.

It has been shown in Section 4.4 that the determination of the equation of state of

dark energy is an extremely degenerate problem. It is besides a non-linear problem



7.2. Inverse problems 159

with an unknown function that, although normally parameterized for simplicity,

should be determined in a non-parametric way. One can try to dodge all these

difficulties by regularizing the problem, for example by adding a priori information

or demanding a smooth solution. To do this, the use of probabilistic techniques is

required.

7.2.1 A non-parametric non-linear inversion

A correct treatment of an inverse problem provides a powerful way to determine the

values of functional forms from a set of observables. This approach is useful when

the information along a certain coordinate, in our case information on w(z), emerges

in observables coupled with information at all other z. Dark energy is here addressed

using a non-linear non-parametric inversion. Most frequently, when the parameters

to be determined are a set of discrete unknowns, the method used is a least squares.

One can minimize the χ2 via methods based on singular value decomposition, gradi-

ent descents, Newton-like methods, conjugate gradient, Levenberg-Marquardt, etc.

These possibilities are exact for linear problems and quite good for most linearizable

problems which are not very far from linearity and do not have local minima. But

the continuous case, where functional forms are to be determined, requires a general

inverse problem formulation. The inverse method used here is a Bayesian approach

to this generalization [189, 191].

For simplicity and according to recent observations, we consider a flat universe

with only two dominant constituents (at present): cold matter and dark energy.

Therefore, we characterize the cosmological model by the density of matter, Ω0
M ,

and by the index w(z) of the dark energy equation of state. The vector of unknowns

M has then a discrete and a continuous component:

M =

(
Ω0

M

w(z)

)
. (7.1)

On the other hand, the observational data are mainly SNe Ia magnitudes. We have a

finite set of N magnitudes, mi, and consider the magnitude-redshift relation (Eq. 5.2)

in a flat universe relating the unknowns to the observational data:
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mth(z, Ω0
M , w(z)) = M + 5 log[DL(z, Ω0

M , w(z))] . (7.2)

All parameters and functions are defined as in previous chapters, but now the func-

tional form of w(z) and the assumption of a flat universe imply:

H(z, Ω0
M , w(z)) = H0

√
Ω0

M (1 + z)3 + Ω0
X(z) , (7.3)

Ω0
X(z) = Ω0

X exp

(
3

∫ z

0

dz′
1 + w(z′)

1 + z′

)
. (7.4)

We redefine our data and convert the original SNe magnitudes to dimensionless

distance coordinates y:

yi ≡
10(mi−M)/5

c(1 + zi)
=

∫ zi

0

dz′√
Ω0

M (1 + z′)3 + Ω0
X(z′)

, (7.5)

σyi
=

ln 10

5
yiσmi

. (7.6)

With this definition we deal directly with a function y(Ω0
M , w(z)), the only part

which depends on the cosmological model. To convert our mi data to yi, we can

adopt the value obtained from low redshift supernovae and use M = −3.40 ± 0.05.

Defined in this way, yi is used in other analyses [55].

After the corresponding transformations, the observables are now described by

a vector of N components, yi, and by a covariance matrix (Cy). This method can

handle correlated measurements, where non-diagonal elements Cyiyj
are different

from zero (observations i and j being correlated). But, at present, those have not

been estimated for the composite samples of distance indicators. We would then

use:

Cyiyj
= σ2

yi
δij . (7.7)

Similarly, the unknown vector of parameters is described by its a priori value,

M0, and the covariance matrix (C0). The function describing w(z) should be
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smooth, both for regularizing the solution and for having a physical sense. This

leads to non-null covariance between neighbouring points in z for w(z). Thus, the

covariance matrix C0 has the form:

C0 =

(
σ2

Ω0
M

0

0 Cw(z),w(z′)

)
, (7.8)

where a choice is made for the non-null covariance between z and z′, Cw(z),w(z′). This

choice is taken to be as general as possible. It would define the smoothness required

in the solution by setting the correlation length between errors in z and z′ (this

gives the length scale in which the function can fluctuate between redshifts). The

amplitude of the fluctuation of the function is given by the dispersion σw at z. In

the Gaussian choice for Cw(z),w(z′), σw is the 1σ region where the solution is to be

found.

Thus for a Gaussian choice, Cw(z),w(z′) is described as

Cw(z),w(z′) = σ2
w exp

(
−(z − z′)2

2∆2
z

)
, (7.9)

which means that the variance at z equals σ2
w and that the correlation length between

errors is ∆z. Another possible choice for Cw(z),w(z′) is an exponential of the type:

Cw(z),w(z′) = σ2
w exp

(
−|z − z′|

∆z

)
, (7.10)

while no difference in the results is found for those different choices of Cw(z),w(z′).

In both functions, the amplitude σw could be considered to be redshift-dependent.

However, the large ignorance associated with dark energy makes it absurd to focus

on its uncertainty since, for instance, a large variation of w(z) at high redshift would

invalidate our current (and small) knowledge of its present-day value.

This is all the information we have beforehand, and with that we are interested

in determining the best estimator M̃ for M. The probabilistic approach we use

incorporates constraints from priors through the Bayes’ theorem, i.e., the a posteriori

probability density fpost(M|D) for the vector M containing the unknown model
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parameters given the observed data D, is linked to the likelihood function L and

the prior density function for the parameter vector as:

fpost(M|D) α L(D|M) fprior(M) . (7.11)

The theoretical model described by the operator yth, which connects the model

parameters M with the predicted data Dpredicted = yth(M), is to agree as closely as

possible with the observed data y. Assuming that both the prior probability and the

errors in the data are distributed as Gaussian functions, the posterior distribution

becomes:

fpost(M|y) α exp
[
− 1

2

(
y − yth(M)

)∗
C−1

y

(
y − yth(M)

)

−1

2
(M −M0)

∗ C−1
0 (M− M0)

]
, (7.12)

where ∗ stands for the adjoint operator. The best estimator for M, M̃, is the most

probable value of M, given the set of data y. The condition is reached by minimizing

the misfit or objective function:

S ≡ 1

2

(
y − yth(M)

)∗
C−1

y

(
y − yth(M)

)
+

1

2
(M −M0)

∗ C−1
0 (M− M0) , (7.13)

which is equivalent to maximize the Gaussian density of probability when data

and parameters are treated in the same way. According to the philosophy of the

method, they are all parameters, whether directly measurable and described by their

measured values and their uncertainties, or not directly measurable and described

by a priori information. Note that the first term in the previous equation is exactly

the misfit function in the χ2 method, where the gaussianity assumption was made

as well, and the second term is adding the a priori information on the parameters.

Therefore, the usual least squares method does not consider this information on the

non-measured parameters, although through the Bayes’ theorem it can be easily
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included. In our case, this Bayesian approach helps to regularize the inversion, and

sometimes it is only due to the incorporation of the a priori information that one

can obtain a solution. In general, one starts with scarcely restrictive priors but

they become stricter if the algorithm does not converge. However, too strict priors

compared to the a priori knowledge lead to biased results, and this fact must be

always considered before choosing the priors.

The minimization of S has been done using a Newton method. That kind of

methods use to define the direction of search as not only the direction of steepest

ascent but also by the curvature defined by the Hessian of Equation 7.13. This

allows a faster convergence of the algorithm at the cost of the difficulty to calculate

the Hessian for large-sized inverse problems [189]. However, it is not necessary to

know the Hessian exactly and in the following we will make the approximation

Hk =

(
∂2S

∂M2

)

k

≃ G∗
kC

−1
y Gk + C0 , (7.14)

where it has been used that the second derivatives of Equation 7.5, ∂2yth/∂Mi∂Mj ≡
∂Gj/∂Mi, are negligible in front of the first ones, Gj.

Despite this approximation, the problem of Eq. 7.2 or equivalently Eq. 7.5 is non-

linear in the parameters, so the solution of the problem is reached iteratively. Before

introducing the solution, let us define the operator G represented by the matrix

of partial derivatives of the dimensionless distance coordinate, which will simplify

subsequent notation. Its kernel is denoted by g as defined in the next equations.

G =




∂yth
1

∂Ω0
M

∂yth
1

∂w(z)
∂yth

2

∂Ω0
M

∂yth
2

∂w(z)

: :
∂yth

N

∂Ω0
M

∂yth
N

∂w(z)




, (7.15)

with

∂yth
i

∂Ω0
M

= −1

2

∫ zi

0

(1 + z′)3dz′

H3(z′)
≡
∫ zi

0

gΩM
(z′)dz′ , (7.16)
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∂yth
i

∂w(z)
= −1

2

∫ zi

0

3Ω0
X(z′) ln(1 + z′)dz′

H3(z′)
≡
∫ zi

0

gw(z′)dz′ . (7.17)

With this definition, the solution is implemented as an iterative procedure where

[189, 191]:

M̃[k+1] = M0 + C0 G∗
[k] (Cy + G[k]C0 G∗

[k])
−1

(
y − yth(M̃[k]) + G[k] (M̃[k] − M0)

)
. (7.18)

Since we are working in a Hilbert space with vectors containing functional forms,

the above operator products give rise to scalar products of the functions integrated

over the domain of those functions. The expressions transform into having the

products rewritten in terms of the kernels of the operators [190].

We indicate the scalar product by “ · ” and it is defined as it can be seen from this

example:

Cw ·
∂yth

j

∂w(z)
=

∫ zj

0

dz′Cw(z, z′)gw(z′) . (7.19)

The components of the vector of unknowns M̃, which in our case are both Ω0
M

and w(z), are then obtained in an explicit form from:

M̃[k+1](z) = M0(z) +

N∑

i=1

Wi[k]

∫ zi

0

C0(z, z
′)gi[k](z

′)dz′ , (7.20)

where

Wi[k] =
N∑

j=1

(
S−1

[k]

)
i,j

Vj[k] , (7.21)



7.2. Inverse problems 165

V = y + G (M− M0) − yth(M)

Vi[k] = yi +

∫ zi

0

gi[k](z)
(
M[k](z) − M0(z)

)
dz − yth

i (zi, Ω
0
M , w(z)) , (7.22)

S = Cy + G C0 G∗

Si,j[k] = (Cy)i,j +

∫ zj

0

∫ zi

0

gi[k](z) C0(z, z
′) gj[k](z

′) dz dz′ . (7.23)

In the case of the dark energy equation of state and the matter density the

expressions reduce to:

Ω0
M [k+1] = Ω0

M0
+ σ2

Ω0
M

N∑

i=1

Wi [k]
∂yth

i

∂Ω0
M [k]

, (7.24)

w[k+1](z) = w0(z) +

N∑

i=1

Wi [k]

∫ zi

0

Cw(z, z′)gw[k](z
′)dz′ , (7.25)

where it is denoted Cw(z, z′) ≡ Cw(z),w(z′)(z, z
′) and Wi [k] is given by the product

(7.21) with:

Vi = yi +
∂yth

i

∂Ω0
M

(Ω0
M − Ω0

M0
) +

∂yth
i

∂w(z)
· (w − w0) − yth

i (zi, Ω
0
M , w(z)) (7.26)

Si,j = δi,jσiσj +
∂yth

i

∂Ω0
M

CΩ0
M

∂yth
j

∂Ω0
M

+
∂yth

i

∂w(z)
·
(

Cw ·
∂yth

j

∂w(z)

)
. (7.27)

7.2.1.1 Control of the results

In order to test the accuracy of the inversion we use the a posteriori covariance

matrix. It can be shown (see [190, 192]) that for the linear inverse problem with

Gaussian a priori probability density function, the a posteriori probability density

function is also Gaussian with mean Eq. 7.18 and covariance Eq. 7.28. Although

its value is only exact in the linear case it is a good approximation here, since the

luminosity distance is quite linear on the equation of state w(z) at low redshift.



166 Chapter 7. Reconstructing dark energy with an inverse method

CM̃ = (G∗ C−1
y G + C−1

0 )−1 ≡ C0 −C0 G∗ S−1 GC0

= ( I− C0 G∗ S−1 G )C0 . (7.28)

In an explicit form, the standard deviations from this covariance read:

σ̃Ω0
M

=
√

CΩ̃0
M

= σΩ0
M

√√√√1 −
∑

i,j

∂yth
i

∂Ω0
M

(S−1)i,j

∂yth
j

∂Ω0
M

σ2
Ω0

M
, (7.29)

σ̃w(z)(z) =
√

Cw̃(z)(z) =

√√√√σ2
w(z) −

∑

i,j

Cw · ∂yth
i

∂w(z)
(S−1)i,j

∂yth
j

∂w(z)
· Cw , (7.30)

where the symbols with tilde are the a posteriori values, whereas the symbols without

it represent the a priori ones. It must be stressed that the uncertainty in the final

w(z) does depend on the a priori assumption of the uncertainty. In fact, the very

w(z) could depend on the prior. We go into that using Monte Carlo methods later

in the analysis.

There are other parameters which help to interpret the results. From the form of

Eq. 7.28 we see that the operator C0G
∗S−1G is related to the obtained resolution.

This is usually called the resolving kernel K(z, z′). The more this term resembles

the δ-function the smaller the a posteriori covariance function is. In fact, in the

linear case, the resolving kernel represents how much the results of the inversion

differ from the true model. It represents the filter between the true model and its

estimated value [18, 189]. In a useful way, it can also be expressed in terms of the

a priori and the a posteriori covariance matrices:

K = I − CM̃ C−1
0 . (7.31)

This expression is evaluated numerically to quantify the resolution and information

generated in the inversion.
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7.2.2 Discrete parameters: the parametric non-linear inver-

sion

In the previous section we have obtained the results for a set of a continuous function

and a discrete parameter, but we can also consider the case of various discrete

parameters. It was pointed out that a successful parameterization for modeling a

large variety of dark energy models is obtained by considering w(z) expanded around

the scale factor a. Assuming a moderate evolution in the equation of state, we use

the most simple and adequate (two-parameter) description of w(z), Equation 4.38.

With this particular form for the function w(z), commonly used to study the

behaviour of dark energy, one can solve iteratively for w0 and wa following the same

methodology as before:

w0[k+1] = w0
0 + σ2

w0

N∑

i=1

Wi [k]
∂yth

i

∂w0 [k]

, (7.32)

wa[k+1] = w0
a + σ2

wa

N∑

i=1

Wi [k]
∂yth

i

∂wa [k]

, (7.33)

where

∂yth
i

∂w0
= −1

2

∫ zi

0

3ΩX(z′) ln(1 + z′)dz′

H3(z′)
, (7.34)

∂yth
i

∂wa

= −1

2

∫ zi

0

3ΩX(z′)[ln(1 + z′) − z′

1+z′
]dz′

H3(z′)
. (7.35)

The general a posteriori variance is also the same as in the continuous case, and

for these parameters the explicit form reads:

σ̃w0 =
√

Cw̃0 = σw0

√√√√1 −
∑

i,j

∂yth
i

∂w0
(S−1)i,j

∂yth
j

∂w0
σ2

w0
, (7.36)

σ̃wa =
√

Cw̃a = σwa

√√√√1 −
∑

i,j

∂yth
i

∂wa
(S−1)i,j

∂yth
j

∂wa
σ2

wa
. (7.37)
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The equations for Ω0
M are those of Section 7.2.1 (Eqs. 7.24, 7.16 and 7.29).

7.2.3 Implementation and numerical issues

Two main programs in Fortran have been developed in order to implement the set

of equations in Section 7.2: EoScont and EoSdisc for the continuous and discrete

cases respectively. The algorithm is just an iterative calculation of the set of equa-

tions with a collection of functions to calculate the cosmological magnitudes. These

functions are the same as the ones used in the χ2 program.

The method itself is a minimization method, so we do not have the problem

of choosing an adequate minimization algorithm. The only numerical issues to be

concerned about are then numerical integration, interpolation and matrix inversion.

For numerical integration it has been used the same Fortran routine as for the

χ2 program: a ten points Gaussian-Legendre integration as implemented in the

QGAUS() subroutine in [151]. On the other hand, the best option for interpolating in

the continuous case appeared to be the simplest one, a linear interpolation. Finally,

the inversion of the matrix S and the one appearing in the covariance CM̃ has been

done with another Fortran subroutine (INVERT() subroutine in [151]) based on LU

Decomposition. When using these programs within a Monte Carlo setting, random

numbers were generated with the simple RAND() intrinsic function of Fortran.

7.3 Determination of a continuous w(z)

In this section we study the evolution of the dark energy equation of state in a

generic way, and we do it by taking advantage of the ability of the method to

reconstruct functions in a non-parametric form. Other methods to reconstruct w(z)

from the dimensionless coordinate distance, y(z), have been already used [168].

Their ground is the fact that w(z) can be expressed in terms of y(z) and its first

and second derivatives [109]. So if we can obtain y(z), dy(z)/dz and d2y(z)/dz2

from objects at cosmological distances [109, 87, 55] we also have the function w(z).

To do this it is necessary to fit, usually by bins, y(z) using a polynomial or a Padé

approximant. So, with this method it is needed a basis to expand the function y(z)

and then calculate the derivatives from the obtained coefficients. The uncertainties
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can be large, because a function which fits well y(z) does not need to have the same

derivatives as the physical y(z).

The principal component analysis (PCA) has been used as well to fit w(z) [108,

106, 160]. This is a discrete reconstruction of w(z) at different redshifts which allows

to see its evolution. By binning the data the method retrieves an uncorrelated

measure of w(z) at each bin.

Finally, a recent analysis used a maximum entropy reconstruction technique

(MaxEnt) [213]. Like for PCA, there is a binning, w is assumed constant at each

bin and w(z) is decomposed into a sum of orthogonal functions. However, this is

a Bayesian approach that shares some characteristics with the inverse method and

adds a priori information on the equation of state through the Bayes’ theorem. In

their case, the prior is given by the information entropy of w relative to the model.

The smoothness of the reconstruction is controlled by a regularization parameter.

As we have seen, our method is a Bayesian approach too. With the solution to

a continuous inverse problem we have obtained a way to calculate the value of w at

each redshift, so we must repeat the iterative process for every redshift where we

want the solution. Several stopping criteria for the iterations have been tested:

• Based on the stability of the solution. One can stop the iterative process

when the difference between iterations is |wk(z) − wk−1(z)| < ǫ. However,

that should be true at every calculated redshift, and, in practice, it is not the

most efficient method when the number of points is large, for example the 31

redshifts used in our results.

• Minimum of S. Since one wants to minimize the misfit function S, a natural

way of stopping the iterations is once Smin is reached. The possible criticism

to this method is that one can get stuck in a local minimum. The probability

of this happening can be minimized by starting from different points, which

in our case is equivalent to choose different priors.

• Minimum of χ2. Finally, one could control the convergence by monitoring the

χ2. Since this does not solve the objection made in the previous point, in our

context it seems more reasonable to focus on S.

To reach the minimum of S with the settings described in the following, the number

of iterations has been typically less than 10.
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The next issue is to choose the prior. Using Ockham’s razor one could take the

cosmological constant as a start. The ideal uncertainty on it would be to take the

latter as wide as possible, but, of course, that complicates (or even makes impossible)

the convergence. We have seen in Chapter 4 that the classical energy conditions

limit the range of the equation of state to −1 ≤ w ≤ −1/3. However, we admit that

they are not necessarily fulfilled and we widen the range to −1.5 ≤ w ≤ −0.5 (or

−3 ≤ w ≤ 1 in the Monte Carlo exploration) and so we include phantom fields as

the possible source of dark energy. This is in fact necessary, since some observations

favour w < −1. Also remark here that this is only a 1σ interval, and therefore, there

is a 32% of probability that the prior lies outside the range. The a priori space is

then larger than the 1σ region chosen. For the covariance function we use one of the

form of Eq. 7.9 with the moderate variance σw = 0.5−1.0 and a correlation length of

∆z = 0.05 − 0.10 (see below). Larger covariances and/or larger correlation lengths

cause the non-convergence of the algorithm. We have also tried other functional

forms for the covariance, such as the one in Eq. 7.10, but no significant change or

improvement has been found.

In the case of Ω0
M , we always suppose a good knowledge, Ω0

M = 0.27 ± 0.03.

Large uncertainties complicate global convergence, but including this prior is sim-

ilar to include BAO constraints. The geometry of the Universe is assumed to be

flat, as equations have been deduced under this assumption. Its generalization is

straightforward, but this way the dimension of the parameter space is reduced, in a

way compatible with CMB results [183].

The last point to take into account is the number of redshifts where to give the

solution. This number is limited by the resolution allowed by the data. Since all

the used data sets have the same order of magnitude of supernovae, we can make

a direct comparison with the same resolution in redshift. Redshift intervals have

been chosen to be of δz = 0.06, then, w(z) is calculated in 30 points in the interval

0 < z < 1.8 according to the equations of Section 7.2 (Eqs. 7.24, 7.25, 7.29 and 7.30).

7.3.1 Current data

On the basis of the previous considerations, we apply the inverse method algorithm

to two of the latest SNe Ia data sets already used in the χ2 analysis: the gold set

of Riess et al. (2006), R06 [160] and the compilation of Wood-Vasey et al. (2007),
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Figure 7.1: Reconstruction of w(z) using 182 SNe from the gold set of Ref. [160], R06.

These results are obtained using Gaussian a priori covariances with amplitude σw = 0.5

and ∆z = 0.08. For the density of matter the prior is set to Ω0
M = 0.27 ± 0.03. This

fine grid calculation is plotted at redshift intervals of δz = 0.06. The left panel shows

w(z) (solid line) and the 1σ confidence interval (dashed shadow). On the right, different

resolving kernels at z = 0, 0.24, 0.48, 0.84, 1.20 are shown. The resolving kernels at high

z show that there is no information to conclude on the evolution of the equation of

state.

VW07 [211] (see Section 5.7).

In Figure 7.1(a) we have plotted the evolution of the barotropic index of the

equation of state for R06 together with 1σ intervals as given by Eq. 7.30; the (b)

panel shows the resolving kernels at some representative redshifts z = 0, 0.24, 0.48,

0.84, 1.20. The resolving kernel becomes flatter at higher redshift, where the number

of data is smaller, and so is the amount of information. At these redshifts, we recover

exactly the prior, and the inverse method does not improve our a priori knowledge.

At low and intermediate redshift, the slope of w(z) is positive in a way consistent

with results in Section 6.5. Due to the prior of Ω0
M = 0.27 ± 0.03, this plot must

be compared to w0 = −1.3 ± 0.2, wa = +2.5 ± 1.4 from Table 6.5. Obviously, the

two results cannot be compared in a straightforward manner: w(z) only follows a

function with a behaviour w0 + waz/(1 + z) at low and intermediate redshift. At

higher z, the descent towards the prior w(z)0 = −1 alters the form of the evolution.

This is why the discrete parameterization shows a steeper evolution. The recovered
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Figure 7.2: Reconstruction of w(z) (as in Figure 7.1) but with the 162 SNe compiled

by the ESSENCE team ([211, 56]), VW07. Resolving kernels reflect the differences in

the redshift distribution: higher at low redshift and lower at high with respect to R06,

meaning a gain in information at low-z but a loss at mid-z.

w(z) is compatible at 1σ with a cosmological constant everywhere except in the

interval 0.5 < z < 0.8 where the effect of the high redshift supernovae indicate a

larger w. However, we discuss 1σ intervals later with Monte Carlo errors.

Once again, R06 and VW07 results describe different behaviours. Through the

ESSENCE compilation, the reconstruction is almost constant around w(z) = −1.

The mean redshift of this data set is smaller than for R06 and so, resolving kernels

tend to be flatter at lower redshift than before, but are slightly better at low redshift

(Figure 7.2). There, the phantom divide crossing effect disappears, but the equation

of state enters into the phantom regime at z > 0.6, where R06 data showed a bump

towards positive w. The evolution at higher redshifts should not be trusted, since

there are not enough data to improve the prior as firstly indicated by the shape

of the resolving kernels. Anyway, the trend at low and intermediate redshift is the

opposite in both cases, being in the VW07 reconstruction always 1σ compatible with

a cosmological constant.

As it has been mentioned when introducing the method, the 1σ intervals given

up to now do depend on the a priori chosen, σw. The maximum uncertainty is going

to be the prior, so this σw must be interpreted as absolute ignorance. However, for
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Figure 7.3: (a) Mean (solid line) and 1σ Monte Carlo errors obtained from 1000 inver-

sions of R06 data with random priors between −3 < w(z)0 < 1. The dotted black line

shows the inversion with a lowest S. (b) The same as (a) but now the 1000 sets are

generated by bootstrap resampling from the original R06 set.

the convergence of the algorithm, one cannot set arbitrary high values for σw. To

overcome this problem we have explored the w space of physical solutions, setting

the prior on w(z) randomly between −3 < w(z)0 < 1. After 1000 inversions with

different priors in that range, we determine the absolute minimum and calculate the

mean of those inversions and 1σ intervals as the zone where 68.27% of the solutions

lie. We checked that increasing the number of inversions does not change the results.

The final reconstruction can be seen in Figure 7.3 (a) for R06 data and in Fig-

ure 7.4 (a) for VW07. The inversions with a minimum S (dotted line) have priors

close to w = −1: −0.83 and −1.05 respectively, and so, best fits are close to those in

Figure 7.1 and Figure 7.2. The (b) panels in both figures add another contribution

to the uncertainty. In these cases, reconstructions are made using 1000 data sets

generated via bootstrap resampling of the original ones.

Within the Monte Carlo and bootstrap errors both sets are compatible at 1σ

with a cosmological constant. Although we get now some improvement, that was

already observed in Figure 6.7 (c) and (d). With that parameterization, we obtained

the best fit values at present, and the error propagation at higher redshift made the

confidence intervals huge. With this continuous determination, the best constrained
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Figure 7.4: As in Figure 7.3 but for VW07 SNe Ia. The two data sets show its maximum

discrepancy in the range 0.5 < z < 1.0.

zone is that at intermediate redshift where the method exploits the larger number of

supernovae. Therefore, the statement about the cosmological constant result should

better be addressed using a reconstruction along redshift.

Results in Figure 7.3 agree with other reconstructions with R06 data such as

the maximum entropy approach in [213] or the principal component analysis in

[160]. In all cases the results are compatible with a cosmological constant, but

the trend towards a higher w at z ≈ 0.5 is always present. The maximum entropy

approach of Zunckel and Trotta (2007) shows a closer agreement with a cosmological

constant for the SNLS data set (Ref. [14]). This sample is part of VW07, for which

our inverse approach favours lower w as well. In our results, there is a departure

from the cosmological constant towards the phantom side between 0.5 < z < 1.0

(Figure 7.4 (b)) and even in a smaller range for the best inversions, but we have

seen that the kernels in this interval indicate a bad resolution in the reconstruction.

Anyway, the departure is at most 0.25 σ, and, therefore, not significant in a similar

way as for R06 but with larger ws.

As it happened with the discrete parameterizations from previous chapter, we

find no serious evidence for an evolving equation of state. On the light of current

data sets, the cosmological constant is still the best bet, although lots of alterna-

tive dark energy models (too many!) cannot be discarded. Besides all the other
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Figure 7.5: Reconstruction of w(z) (as in Figure 7.1) but with the 192 SNe from Davis

et al. (2007) [56].

degenerate models which will never be ruled out, an evolving cosmological con-

stant, quintessence fields, Cardassian models, DGPs, an others can be accommo-

dated within 1σ confidence intervals in the redshift range where there are enough

data.

7.3.2 Near future results

Just as it was done in Chapter 6, we also include the confidence intervals obtained

with the full compilation of SNe Ia of Ref. [56].

The presence of the highest redshift supernovae in R06 is enough to keep the

ascent towards a larger w in the best inversion when only one realization of the data

set is used (see Figs. 7.5 and 7.6 (a)). However, the bootstrap resampling of the set

makes stronger the dominant sample, VW07, and for the mean of all the inversions

the trend disappears (Fig. 7.6 (b)). In all the cases, the ascent is not significant

within 1σ intervals.

The reconstruction, then, resembles even more that of a cosmological constant

than the ones for previous data sets, as it is expected from the separated behaviour.

But the inclusion of more SNe Ia and the elimination of those with less credibility
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Figure 7.6: The same as in Figure 7.3, for the compilation in Ref. [56].

does not improve the size of the confidence intervals around the best w(z). So, even

though the combination of both samples does not help to obtain a more precise

result, it is necessary to gain in accuracy given the difference in the general trends

reflected by the two data populations.

7.4 Determination of a parameterized w(z)

Now, we leave the continuous reconstructions of w(z) to analyse the commonly used

parameterization w(z) = w0 + waz/(1 + z). Although the present method has not

been designed to perform parameterized fits, where other methodologies are more

adequate, it can be easily extended to do that (Section 7.2.2).

The incorporation of priors on the equation of state, which are vital to regularize

the inversion in the continuous case, loses part of its meaning now but they are still

used in the same way they were used to include additional information in the χ2

analysis.

As a first test, we directly apply Equations 7.32 and 7.33 to obtain the values

which minimize the misfit function S. Table 7.1 shows the results for different

choices of the a priori models. The uncertainties are given by Equations 7.36 and

7.37 as obtained with the inverse method. These are still dependent on the a priori
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Ω0
M w0 wa Smin

Prior 0 .27 ± 0 .03 −1 ± 10 0 ± 0

R06 0.24 ± 0.02 −0.94 ± 0.12 0 86.47

VW07 0.28 ± 0.02 −1.09 ± 0.12 0 67.64

D07 0.29 ± 0.02 −1.01 ± 0.12 0 81.47

Prior 0 .27 ± 0 .03 −1 ± 10 0 ± 10

R06 0.25 ± 0.02 −1.6 ± 0.2 +4 ± 1 79.09

VW07 0.27 ± 0.02 −0.7 ± 0.3 −3 ± 2 66.83

D07 0.29 ± 0.02 −1.1 ± 0.3 +0.4 ± 1.5 81.45

Table 7.1: Priors, results and 1σ errors for Ω0
M , w0 and wa as obtained from the inverse

method in the discrete case and for three different SNe Ia data sets: R06 [160], VW07

[211] and D07 [56].

uncertainty, but we are able to set much larger priors in the discrete case than

before and, therefore, the dependence is less important. Together with the best fits

for the parameters, we also include the value of Smin. This number is only useful for

comparisons between inversions of different sets using the same priors, but it does

not provide statistical information for the same reason we could not give p-values

when adding a prior in the χ2 analysis.

On the contrary than for the equation of state parameters, the inversion showed

to be sensitive to the value of Ω0
M , and large covariances for its prior caused the non-

convergence of the algorithm. This is why we used very strict priors in comparison

to the ones for w0 and wa; we use Ω0
M = 0.27 ± 0.03 as it is being done throughout

the thesis.

Results for a constant equation of state with such a density of matter are com-

patible at 1σ level with a cosmological constant, in a similar way as it happened

with the χ2. However, when allowing an evolution, R06 data still prefers a positive

evolution whereas it is negative for VW07. Notice that results with the same prior

(Tables 6.5 and 7.1) do not lead exactly to the same minimum. We attribute this to

the fact that the minimum valleys are extremely flat in some cases, and secondary

minima close to the absolute one can appear. In any case, results for the equation

of state of the two methods agree at 1σ level.

The size of the uncertainties is of the same order of magnitude here and in



178 Chapter 7. Reconstructing dark energy with an inverse method

Figure 7.7: (a) Evolution of the cosmological constant along redshift obtained from R06

data. 1000 inversions with random priors in the range −0.2 < ∆Ω0
Λ(z) < 0.2 and a fixed

Ω0
M = 0.27 have been used. The mean (solid line) and the inversion with a minimum

S (dotted line) are almost superposed. (b) As (a) but with a softer prior on the matter

density Ω0
M = 0.27 ± 0.03.

the χ2 estimation, proving that, for wide enough priors, errors obtained with this

methodology are independent of the a priori uncertainty. We also checked the effect

by doubling the nominal value of σ = 10 and obtain no change.

7.5 A running cosmological constant as an inverse

problem

To finish this chapter, we return to continuous reconstructions and use the power of

the inverse method to detect an evolution of the cosmological constant. Due to the

context of this thesis, we interpret the unknown function as a running cosmological

constant as introduced in Chapter 3, but it is, in fact, a general function which

accounts for the dark energy density.

In Chapter 3, we showed equations for a running lambda in three different scenar-

ios, but all of them were parameterized and depended only on discrete parameters.

Here, we fit a general function for all the scenarios in a similar way as we did in
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Figure 7.8: Evolution of the cosmological constant as in Figure 7.7 but for the VW07

data set.

the previous chapter (Eq. 6.11), but now there is no need to be content with a Tay-

lor development to first order. Therefore, we want to determine a general function

∆Ω0
Λ(z) such that

H2(z) = H2
0

[
Ω0

M (1 + z)3 + Ω0
Λ + ∆Ω0

Λ(z)
]

, (7.38)

where we assume a flat universe (notice that in a flat universe ∆Ω0
Λ(z = 0) ≡ 0).

Following the notation of Part I the sum is Ω0
Λ(z) = Ω0

Λ + ∆Ω0
Λ(z). The expression

7.18 can be used to iteratively calculate the form of the best Ω0
Λ(z) by substituting

∂yth/∂∆Ω0
Λ(z).

In a flat universe, the value of the cosmological constant Ω0
Λ is fully determined

by Ω0
M . In the following, we test two different situations: one with a fixed Ω0

M =

0.27 and, therefore, a fixed Ω0
Λ = 0.73; and another one allowing a small variation

Ω0
M = 0.27 ± 0.03 as in previous sections. If we knew the true density of matter,

fixing its value would really allow us to see the evolution ∆Ω0
Λ(z) alone. However,

that is nowadays a too severe assumption and the small uncertainty at least must

be considered.

The setup for the inversion is the same as for the barotropic index of the equation

of state with two modifications related to the function. The uncertainty on the prior
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Figure 7.9: Reconstruction of Ω0
Λ(z) using 1000 sets as in Figure 7.7 and 7.8. The data

compilation in D07 is used.

on ∆Ω0
Λ(z) is set to σ(z) = 0.1, unless in the case of a fixed Ω0

M where we force the

first point at redshift zero to have no uncertainty σ(z = 0) = 0. The Monte Carlo

exploration of the Ω0
Λ(z)-space is made in the range −0.2 < ∆Ω0

Λ(z) < 0.2. Since we

are using the same data sets as in previous sections, we expect the same resolution,

calculate the same number of points and obtain a similar interval where data can

shed light into the problem.

With the 182 SNe Ia in R06, one recovers the strongest evolution (Fig. 7.7) as

we already noticed in the reconstruction of the equation of state. However, fixing

Ω0
M = 0.27 proves to be a too strict prior. The best fit for the density of matter in the

discrete χ2 test was found in Chapter 6 to be Ω0
M = 0.35, and this difference creates

a jump between the first fixed point at z = 0 and the first free point at z = 0.06

in our reconstruction. As a matter of fact, this is the only data set which favours a

model far from the conservative prior. Rather than a forced evolution, the inversion

opts for a constant Ω0
Λ(z) but at a higher density of matter. This is represented in

Figure 7.7 (b), where there is more freedom for Ω0
M and the reconstruction with the

minimum S is found for a larger value of Ω0
M (dotted line in the plot).

For the other two samples, VW07 and D07, the result of the inversion is quite

similar. A constant density cannot be discarded although at intermediate redshifts

there is a soft trend with negative slope. As for the equation of state, one cannot
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trust the reconstruction further in redshift than 0.6, since there the prior is recovered.

These reconstructions can be compared to the behaviour of the cosmological

constant in the running scenarios. All models predict a smooth and monotonous

evolution (see Figures 3.1 (b) and 3.2 (b)1) which need reliable reconstructions to

higher redshifts so as to be tested. Up to now, the obtained smooth evolutions

down to redshifts lower than 1 are compatible with the three scenarios of Chapter 3

as well as with most of dark energy models. Of course, an abrupt change in the

equation of state would be much more informative, but after the results we have

obtained in the two last chapters it seems that if we are not living in a Universe

with a cosmological constant it at least behaves as if it were. So, in order to improve

our knowledge we do need to improve our current data. We devote the following

chapter to see which are our future perspectives according to the already planned

supernova new experiments.

1A one to one comparison must be done after changing the y-axis to Λ/ρ0
c.
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Chapter 8

Future perspectives

As a final application of the methodology used throughout the thesis, this chapter

exploits the higher quality of oncoming surveys’ data for the study of dark energy.

The degradation of the results due to photometric redshifts is especially analysed

as a common drawback of most of future experiments, and some indications to

minimize its effects are given.

8.1 Oncoming surveys

After the discovery of the accelerated expansion of the Universe [145, 158] a new

satellite observatory (SuperNova Acceleration Probe, SNAP [179]) was proposed

to determine the nature of the dark energy that causes the acceleration. That

was in 1999, and, since then, the number of proposed SNe Ia surveys has grown

exponentially, and SNAP is now one of the competing missions to be launched

within JDEM (Joint Dark Energy Mission).

Some of the experiments are designed as ground telescopes and can observe

supernovae at low and intermediate redshift. For really high redshifts, where objects

are too weak and redshifted to be seen from the Earth, satellites must be launched

to space. Observing from space is a way to lower systematics as well, and some

of the projects combine ground and space observations. In fact, these surveys are

already reaching the time when the precision in the results is limited by systematics,

hence the necessity of the improvement. Considering systematics and the intrinsic

183



184 Chapter 8. Future perspectives

dispersion of SNe Ia as two independent error sources, they sum up quadratically,

σ =

√
σ2

intr

N
+ σ2

sys , (8.1)

where it has been assumed that systematic errors between supernovae are only

correlated for supernovae in the same redshift bin:

σ2
sys, i,j =

{
σ2

sys for i, j ∈ bin k

0 otherwise
. (8.2)

Since the intrinsic error diminishes with the number of supernovae, its effect is going

to be negligible just with a few tens of objects per bin.

The assortment of acronyms in current literature is extensive: SNFactory [180],

CSP [53], SDSSII [172], SNLS [181], ESSENCE [76], PANS [141], DES [59], LSST

[126], Pan STARRS [140], SNAP [179], DESTINY [60], JEDI [113], ADEPT [2],

DUNE [63], ALPACA [7], etc. Due to the importance of using complementary

probes for cosmology, experiments are usually designed to combine two or more

of the crucial tests. All of the above surveys have SNe Ia as one of the main sci-

ence objectives, but usually they join SNe Ia with lensing or with baryonic acoustic

oscillations.

We do not simulate all of the planned experiments, but select the most repre-

sentative ones. As an archetype at high redshift we consider SNAP for tradition;

LSST is taken as the ground-based experiment, because of the large amount of data

it will gather (∼ 250000/yr).

One can see that the order of magnitude of observations in SNe Ia surveys is

increasing tremendously and that has deep consequences into the treatment and

analysis of the data. The first generation of surveys only compiled a few supernovae,

which were analysed by hand taking care of every single detail. Ongoing experiments

already reaching a few hundreds of objects recur to automatic methods to classify,

calibrate the light curve, treat the extinction, etc. Future massive surveys will need

a completely automated process and even the storage of data will be complicated.

That impressive amount of information assures very rich statistics so that only the

best and selected objects will be used for cosmology.
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Figure 8.1: Uncertainties for different surveys as a function of redshift. Red solid lines

indicate two different assumptions for systematic uncertainties. Dashed lines show the

variation in the uncertainty due to the intrinsic dispersion according to the number of

SNe Ia of each survey. When two lines for the same mission are shown, the one with a

larger uncertainty includes photo-z’s errors as well (see text for values).

8.1.1 Generating data distributions

In order to simulate observations for the chosen experiments we generate Gaus-

sian distributions in the redshift ranges announced by the collaborations. Data are

binned in intervals of width ∆z = 0.1 and each interval is characterized by its mean

redshift. Then, we calculate the magnitude for these supernovae within a given

cosmological model. In each case, observational Gaussian errors are added to these

values taking into account the systematic uncertainties and the intrinsic dispersion

for SNe Ia. After the corresponding calibrations, the intrinsic dispersion of super-

novae is σintr = 0.15. For systematics, we either consider a constant σsys or a linear

increment such as for instance [206]: σsys = z (0.02/1.7). In some cases such as for

low redshift samples systematics are ignored. The behaviour of other observational

uncertainties, i.e., photo-z’s in our case, is the same as for the intrinsic one. In the

following, the specifications of the surveys are outlined.
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N(z)

< z >bin SNFactory LSSTwide LSSTdeep SNAP

0.05 285 15785 90 0

0.15 15 23258 172 35

0.25 0 30733 344 64

0.35 0 36113 556 95

0.45 0 38351 832 124

0.55 0 36224 1132 150

0.65 0 30412 1269 171

0.75 0 23023 1312 183

0.85 0 16098 1286 179

0.95 0 0 1099 170

1.05 0 0 800 155

1.15 0 0 574 142

1.25 0 0 338 130

1.35 0 0 196 119

1.45 0 0 0 107

1.55 0 0 0 94

1.65 0 0 0 80

# SNe 300 250000 10000 2000

< z > 0.05 0.45 0.75 −
σ<z> 0.03 0.30 0.30 −
limit z < 0.9

Table 8.1: Number of SNe Ia per bin for the surveys analysed in this chapter. Redshifts

correspond to the centre of the bin. All distributions are drawn from a Gaussian with

parameters as indicated in the bottom lines. The proposed SNAP distribution can be

found in Ref. [118].

SNFactory

The Nearby Supernova Factory is an ongoing survey at low redshift with expecta-

tions of discovering around 300 SNe Ia at 0.03 < z < 0.08 [5]. Besides of being an

experiment designed to improve the calibration of SNe Ia, it will be the low redshift

sample for some of the high redshift missions. In this case, we assume it is free of

systematics, although peculiar motions or a different photometric calibration with

respect to the high redshift set could damage the results. It has been simulated as
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a Gaussian with mean < z >= 0.05 and σ<z> = 0.03. As for all the other cases, the

number of supernovae per bin can be read in Table 8.1.

LSST

The Large Synoptic Survey Telescope is a 8.4 m ground telescope with a 6.5 m

effective diameter which will scan the sky continuously [195]. That will allow to

detect around 250000 SNe Ia per year and get a photometric point every five days

in r band and every fifteen days in g, b and i. Only 10000 objects with z < 0.17

and 10000 more with z < 0.30 can be expected to have spectroscopic redshifts for

this wide search. The enormous number of data is more than enough to use only

selected objects for cosmology and to choose various subsets. The mean redshift of

this survey is specified to < z >= 0.45 and it will detect supernovae at z < 0.9

although its deep search will reach 1.4 with a mean of 0.75. The dispersion of the

distribution is set to σ<z> = 0.30.

SNAP/JDEM

The SuperNova Acceleration Probe collaboration aims to obtain spectra and pho-

tometry for 2000 supernovae within two years of mission [179]. The distribution

of supernovae will have a maximum in the interval 0.2 < z < 1.2 where according

to the present observed rates around 1800 supernovae should be found. A smaller

number of data is expected to be gathered up to a redshift of 1.7 (see more details

in [179]). In all the calculations we consider the fiducial SNAP simulation to be that

of Ref. [118].

8.2 The best perspectives from Earth

Ground surveys encompass a wide redshift range, from the low redshift campaigns

to the ones reaching redshift one, where the redshifted light meets with a too bright

sky in the red.

A low redshift sample is always necessary to fix the zero point, and then a higher

sample is needed in order to check the cosmology. The design of the surveys is of

course different for different redshift ranges and, therefore, at least two different

surveys are usually needed. In that case, we take SNFactory as the low-z sample
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for the study of the equation of state. As an exception, the LSST wide survey with

more than 15000 SNe at z < 0.1 does not need an independent survey, in spite of

the increment in the uncertainty due to photo-z’s at low redshift.

8.2.1 LSST wide survey

Such a massive survey as LSST will be then self-sufficient and will obtain a low red-

shift anchor with an unprecedented quality without the necessity of an independent

low-z sample. However, not every supernova will have a spectroscopic redshift: the

instrument itself could measure about 10000 spectra per year at z < 0.17 if a fiber

spectrograph were attached, and one could measure another 10000 at z < 0.30 with

LAMOST (Large sky Area Multi-Object Spectroscopic Telescope) for instance. We

call such a distribution wideA. A distribution with all 20000 SNe Ia with spectro-

scopic redshifts at low-z (z < 0.12) is also used and referred to as wideB. For the

remaining supernovae, only the photometric redshift will be available.

As seen graphically in Figure 8.1, the error in the magnitude for an spectroscopic

survey (δz = 0) with the characteristics of the LSST wide survey falls down to zero.

Therefore, one obtains the minimum confidence regions for a survey reaching z = 0.9

with this configuration. But that cannot be taken as a realistic result because of

two reasons: photo-z’s worsen the uncertainty on magnitudes, above all at low-z,

and systematics cannot be zero for a real experiment. The observational challenge

is then to minimize both quantities.

Table 8.2 shows the uncertainties on the cosmological parameters and on the

parameters describing the dark energy equation of state according to the accuracy

in photo-z’s determination. For an ideal error-free photo-z, both of the cosmological

parameters are determined with a 1% precision. The precision is good enough so

that BAO constraints cannot improve the results. The same happens for a constant

equation of state. The maximum difference between dark energy models close to a

Λ-CDM where data have been simulated and those without dark energy is found

at z ≈ 0.5. Therefore, the large concentration of data around this redshift allows a

precise determination of w0 as well as that of the combination of w0 and wa. Even

with this maximum precision, a small evolution cannot be discarded when pointing

to a cosmological constant.
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LSSTwide

Uncertainty: Priors σΩ0
M

σΩ0
X

σw0 σwa

σintr=0.15, CC 0.004 0.008 - -

δz = 0.00 CC + BAO 0.004 0.008 - -

CC + BAO2 0.004 0.008 - -

flat 0.005 - 0.013 -

flat + BAO 0.005 - 0.013 -

flat + BAO2 0.004 - 0.012 -

flat + σΩ0
M

- - 0.02 0.32

σintr=0.15, CC 0.018 0.049 - -

δz = 0.08 CC + BAO 0.013 0.035 - -

CC + BAO2 0.008 0.023 - -

flat 0.021 - 0.081 -

flat + BAO 0.015 - 0.051 -

flat + BAO2 0.009 - 0.033 -

flat + σΩ0
M

- - 0.08 0.60

σintr=0.15, CC 0.017 0.042 - -

δz = 0.08, CC + BAO 0.012 0.032 - -

20000 SNe δz = 0 CC + BAO2 0.008 0.021 - -

flat 0.020 - 0.072 -

(wideA) flat + BAO 0.012 - 0.048 -

flat + BAO2 0.009 - 0.032 -

flat + σΩ0
M

- - 0.07 0.58

σintr=0.15, CC 0.012 0.018 - -

δz = 0.08, CC + BAO 0.010 0.015 - -

δz = 0 @ z < 0.12 CC + BAO2 0.007 0.012 - -

flat 0.012 - 0.031 -

(wideB) flat + BAO 0.010 - 0.027 -

flat + BAO2 0.008 - 0.020 -

flat + σΩ0
M

- - 0.03 0.36

Table 8.2: 1σ uncertainties in the determination of the cosmological parameters and

the dark energy equation of state according to the error in photo-z’s for the LSST wide

survey in a universe filled with cosmological constant. See text for the description of the

four cases.
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Photo-z’s uncertainty degrades the results. For δz = 0.08 the uncertainty on a

constant equation of state increases from a 1% to an 8%, but the inclusion of current

BAO constraints diminishes the error to 5%. Notice that this BAO constraint is that

measured from observations in Ref. [70], therefore the underlying model does not

need to be the same as that of the simulation, the result being an upper limit. BAO2

is a future expectation to be obtained at z = 0.55 (see Section 5.3.2) calculated for

the same fiducial model. The addition of BAO2 improves up to a 3% for σw0, still

more than doubling the results with δz = 0. These variations can be seen graphically

in Figure 8.2. As for the variation of the equation of state, the uncertainties are

doubled too. Hence the importance of the determination of photo-z’s.

The value for δz = 0.08 is that given through simulations for the DES survey

[194] which is supposed to be LSST’s precursor. However, the exact value can vary

and improve with the experience gained with surveys previous to LSST. On the other

hand, the error on photo-z’s is less significant in the LSST wide survey than in more

limited ones such as DES which has just a hundredth of LSST’s data. Photo-z’s

uncertainties are random errors that reduce as a whole with an increasing number

of supernovae. They are still important at low-z where they can alter more than one

magnitude the measured value of an individual object. The obtention of spectro-

scopic measurements randomly along redshift or only at high redshift to complement

the survey does not improve the uncertainty on the unknown parameters. The best

improvement is reached by measuring spectroscopic redshifts for the nearest SNe Ia.

As explained above, current plans aim to obtain spectra for 20000 supernovae with

z < 0.3. That only represents a 30% of the objects in that interval. But, at z = 0.3,

the effective uncertainty due to the sum of the intrinsic dispersion and photo-z’s is

just σ = 0.005, well below systematics. When concentrating the efforts to measure

spectra for supernovae at really low-z were σ > 0.01, uncertainties in the parameters

should decrease. That can be seen by comparing the results retrieved with distribu-

tion wideA and wideB (Table 8.2). 20000 spectroscopic redshifts distributed as in

wideA do almost not improve determinations with respect to the whole sample with

δz = 0.08. On the other hand, wideB reduces uncertainties to one half. It does not

fully compensate the effect of photo-z’s and results do not reach the precision of an

equivalent spectroscopic survey. However, given the impossibility to obtain such a

large number of spectra, wideB results demonstrate that efforts must be made in

order to at least measure spectra in the low-z range. Given this fact, we checked

whether the inclusion of the SNFactory SNe Ia could help, but even with photo-z’s

with δz = 0.08 results were exactly the same because there are 50 times more SNe Ia
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Figure 8.2: 1σ, 2σ and 3σ confidence regions in the (ΩM , w0) plane with the addition of

different sources of uncertainty related to photometric redshifts (see text). Systematics

are not included. Results are obtained with 250000 LSST wide SNe Ia. 1σ intervals for

the individual parameters can be read in Table 8.2.

at z < 0.1 with photometric redshift than with spectroscopic redshift.

The same argument of the number of supernovae per bin is valid for catastrophic

errors as well. Its effect should be more important in a smaller survey such as DES,

but even in that case there is no damage in the equation of state for a 2% of redshifts

with catastrophic errors, and one needs a 10% to worsen w0 a 6%. Nevertheless,

10% is a big number compared to what is observed through simulations, and besides,
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LSSTwideA LSSTwideB

Uncertainty: Priors σΩ0
M

σΩ0
X

σw0 σwa σΩ0
M

σΩ0
X

σw0 σwa

σsys = 0.02 CC 0.120 0.26 - - 0.083 0.12 - -

CC + BAO 0.019 0.07 - - 0.019 0.03 - -

CC + BAO2 0.014 0.06 - - 0.010 0.02 - -

flat 0.153 - 0.43 - 0.087 - 0.21 -

flat + BAO 0.020 - 0.08 - 0.019 - 0.05 -

flat + BAO2 0.013 - 0.06 - 0.011 - 0.03 -

flat + σΩ0
M

- - 0.38 1.68 - - 0.14 0.94

σsys = 0.04 CC 0.230 0.48 - - 0.150 0.18 - -

CC + BAO 0.023 0.12 - - 0.020 0.05 - -

CC + BAO2 0.020 0.11 - - 0.012 0.04 - -

flat 0.210 - 0.70 - 0.190 - 0.42 -

flat + BAO 0.023 - 0.12 - 0.020 - 0.06 -

flat + BAO2 0.018 - 0.11 - 0.012 - 0.05 -

flat + σΩ0
M

- - 0.68 3.03 - - 0.28 1.79

Table 8.3: Uncertainties in the determination of the cosmological parameters and the

dark energy equation of state adding systematic uncertainties to a LSST deep survey

set with both distributions wide A and wide B. The intrinsic dispersion σintr = 0.15 is

included as well.

catastrophic errors can be easily detected in a Hubble diagram, and so, most of these

supernovae could be excluded beforehand.

The other factor to be concerned about when using a specific survey to constrain

dark energy is systematics. A reasonable value for systematics on a ground survey

is to take σsys = 0.02, although reaching this value is a technical challenge. We

also check the precision of the determinations for the more conservative value of

σsys = 0.04. Results for these two assumptions are tabulated in Table 8.3. Of

course, the final uncertainty does depend on photo-z’s as well. At low-z, they are

the dominant source of uncertainty, and for z < 0.2 they still affect the result. This

is evident for wideA distribution, but for wideB the improvement is due to the only

contribution of systematics.

The addition of systematics worsens the determinations of the raw sample up

to an order of magnitude. For the moderate value, the cosmological parameters are
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Figure 8.3: (a) Effect of photo-z’s and systematics on 1σ, 2σ and 3σ confidence regions

for the parameters describing the evolution of the equation of state as retrieved from

the LSST wide A survey data. The contours have been obtained imposing a prior

σΩ0
M

= 0.03 before marginalizing over. Solid filled regions add σsys = 0.04 to results

with wide A configuration. The solid red lines reduce systematics to σsys = 0.02. (b)

The same as (a) with the addition of the 20000 spectroscopic redshifts for SNe Ia with

z < 0.12 (wide B).

determined with a precision close to that obtained with current data sets reaching

much higher redshifts1. A similar thing happens with a constant equation of state,

just the wideB configuration appreciably improves the determination of w0. That

is worse for the widest systematic uncertainty σsys = 0.04. However, even if the

precision were not better than our actual knowledge, such a survey would let us

gain in accuracy given the selfconsistency of the data. The parameter accounting

for the evolution, wa, is the most favoured by the high density of data, and using

information about Ω0
M allows to obtain σwa = 0.94. That is doubled with systemat-

ics, but keeping systematics around σsys = 0.02 and taking care of photo-z’s would

be enough to diminish almost a factor two the current state of the art. In fact, the

determination of all the parameters showed to be very sensitive to the distribution

of spectroscopic redshifts even when systematics are added. The improvement of

LSST wideB with respect to LSST wideA is close to divide by two the uncertainties

for both levels of systematics before applying BAO constraints. Once they are used

1Notice that we are comparing current results where only statistical errors were given.
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too, photo-z’s are equally important for the parameters related to dark energy, but

the determination of the density of matter is mostly conditioned by BAO.

The power of the LSST wide survey given an error model is limited by its red-

shift extent. This is why the deep configuration reaching z = 1.4 with a careful

determination of photo-z’s is supposed to improve these results.

8.2.2 LSST deep survey

Figure 8.4: (a) Confidence regions for a constant equation of state. Blue filled contours

make use of the LSST deep data with δz = 0.01 and σsys = 0.02. Red lines include

BAO constraints. (b) The same as (a) for the SNAP survey assuming σsys = 0.02 z/1.7.

The deep survey will obtain a smaller but not small number of supernovae with

an expected uncertainty for photo-z’s of δz < 0.01. That diminishes the difference

between the uncertainty in the magnitude with and without photo-z’s. However, the

ground for the uncertainty is higher due to the more reduced number of data. The

low-z anchor is not completely determined by the survey itself now, and the inclusion

of SNFactory triples the number of supernovae with δz = 0 at the beginning of the

Hubble diagram.

In compensation for the smaller number of data, the survey reaches a higher

redshift. In fact, results without systematics and without any effort to get spectro-

scopic redshifts give uncertainties of the same order of magnitude for both surveys.
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LSSTdeep SNFactory + LSSTdeep

Uncertainty: Priors σΩ0
M

σΩ0
X

σw0 σwa σΩ0
M

σΩ0
X

σw0 σwa

σsys = 0.00 CC 0.010 0.05 - - 0.010 0.04 - -

CC + BAO 0.009 0.04 - - 0.009 0.04 - -

CC + BAO2 0.007 0.03 - - 0.007 0.03 - -

flat 0.017 - 0.07 - 0.015 - 0.06 -

flat + BAO 0.010 - 0.06 - 0.012 - 0.05 -

flat + BAO2 0.010 - 0.04 - 0.010 - 0.04 -

flat + σΩ0
M

- - 0.11 0.70 - - 0.07 0.68

σsys = 0.02 CC 0.032 0.12 - - 0.029 0.08 - -

CC + BAO 0.015 0.07 - - 0.015 0.05 - -

CC + BAO2 0.011 0.05 - - 0.015 0.04 - -

flat 0.105 - 0.21 - 0.040 - 0.14 -

flat + BAO 0.020 - 0.08 - 0.015 - 0.06 -

flat + BAO2 0.012 - 0.06 - 0.010 - 0.05 -

flat + σΩ0
M

- - 0.24 1.06 - - 0.14 0.85

σsys = 0.04 CC 0.058 0.22 - - 0.053 0.13 - -

CC + BAO 0.019 0.10 - - 0.018 0.06 - -

CC + BAO2 0.015 0.07 - - 0.011 0.05 - -

flat 0.095 - 0.37 - 0.073 - 0.23 -

flat + BAO 0.018 - 0.10 - 0.017 - 0.07 -

flat + BAO2 0.015 - 0.09 - 0.013 - 0.05 -

flat + σΩ0
M

- - 0.41 1.55 - - 0.22 1.10

Table 8.4: Uncertainties in the determination of the cosmological parameters and the

dark energy equation of state adding systematic uncertainties to the raw LSST deep

survey both with and without the SNFactory set. Photo-z’s with δz = 0.01 and intrinsic

dispersion σintr=0.15 are included as well.

The improvement is only seen when considering systematics too. When adding sys-

tematics, those dominate over the statistics and the lower floor of statistics of the

wide survey is hidden and surpassed by the higher redshift to be reached by the

deep survey.

For a reasonable value of systematics, σsys = 0.02, the cosmological parameters

are measured with two times more precision than with R06 data and more than
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three times with respect to VW07. There is still room for improvement and the

combination with BAO constraints divides the error by two both with and without

the contribution from SNFactory.

The effect on a constant equation of state is more important. Already without the

low-z sample the uncertainty on w0 falls down to σw0 = 0.21 as it also happened with

the LSST wideB distribution, but the inclusion of SNFactory supernovae diminishes

the error to σw0 = 0.14. As seen in Figure 8.4 (a), the perpendicularity between the

SNe Ia and BAO contours still allows for a reduction of three times that value.

As for the evolution of dark energy, wa is the hardest parameter to determine.

The best configuration of LSST wideB reaching z = 0.9 achieves σwa = 0.94, in-

creasing the limiting redshift up to z = 1.4 improves its precision a 10%, and we

see in the next section that a survey till z = 1.7 would only go from σwa = 0.85 to

σwa = 0.81 if there is not a simultaneous improvement on systematics. The blue

confidence regions in Figure 8.5 represent 1σ, 2σ and 3σ regions in this case, when

the prior σΩ0
M

= 0.03 is included as well. That can be compared to Figure 6.7 where

red solid lines were calculated under the same assumptions for current data without

the inclusion of systematics. The orange contours in the same plot are a first in-

Figure 8.5: Confidence regions for the parameters describing the equation of state

for LSST deep survey with δz = 0.01 and σsys = 0.02 (blue) and for SNAP with

σsys = 0.02 z/1.7 (orange). In both cases a prior σΩ0
M

= 0.03 has been included before

marginalizing over.
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dication that this announced improvement with the future most ambitious ground

survey can be surpassed.

Table 8.4 summarizes the uncertainties for these cases and the degradations due

to higher systematics. Note that also for σsys = 0.04 the addition of an error-free

low redshift sample (SNFactory with δz = 0) represents in general a reduction of

the uncertainty by half. That could be further reduced by obtaining spectroscopic

redshifts for z < 0.2 where statistical uncertainties dominate over systematics. Since

that would represent less than 300 spectra for this configuration, results highly

recommend the effort: for an evolving dark energy source and σsys = 0.02, the

improvement provided by these 300 spectroscopic redshifts is equivalent to remove

systematics.

8.3 Standard cosmology with space surveys,

SNAP/JDEM

During the last years, SNAP has been a reference point for testing different theo-

retical models of dark energy and studying the discernability among them in the

future. Therefore, the capabilities of the survey are widely known and we only intro-

duce them here for completeness and in order to use the set later on to recover the

continuous form of w(z) and determine the parameters in the running cosmological

constant scenarios.

SNAP has at least three points in favour with respect to the ground surveys: the

higher limiting redshift, the obtention of spectra for all its SNe Ia observations and

the lowering of systematics from space.

Results without systematics almost reproduce those for LSST deep survey be-

cause the higher ground floor for the uncertainty on the magnitude due to the smaller

number of data is compensated by the higher limiting redshift of the survey. For

the same level of systematics, σsys = 0.02, SNAP is already slightly better: when

systematics dominate over statistical uncertainties it is the higher redshift that de-

termines the power of the data set. But the true strength of the survey lies on

the capability of improving systematics for observations from space. Whereas we

considered σsys = 0.02 to be an acceptable floor for systematics, the SNAP team
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expects to diminish it, at least at low redshift, being a target to reach a limit such

as σsys = 0.02 z/1.7.

The differences between SNAP and LSST deep, both with the inclusion of SNFac-

tory data, have been reflected in Figures 8.4 and 8.5 for a constant and an evolving

equation of state, respectively. The constant value of w with SNAP is an order of

magnitude better constrained than with R06 data, diminishing by a half the uncer-

tainty achieved with LSST deep. Similarly, the evolution wa is improved by dividing

by two its uncertainty. Once again, priors reduce the difference between surveys and

this is why the gain in wa is not so spectacular as for w0 when a prior on the density

of matter is used. The same happens when adding BAO constraints to a constant

equation of state: the improvement between both future surveys is only 1%.

All these results can be read from Table 8.5. Although most cosmologists are cur-

rently more concerned about dark energy than about the cosmological parameters,

it is worth to point out as well the precision to be obtained with the new generation

of experiments. According to the SNAP simulation, it will achieve σΩ0
M

= 0.01 and

σΩ0
X

= 0.04 even with systematics. Cosmological parameters are vital to test flat-

ness with SNe Ia and to obtain a measurement independent from CMB. This quality

of the determination with present-day data would clearly indicate a closed spatial

geometry with R06 data and an open geometry with VW07. Nowadays, both sets

are at 1σ compatible with a flat universe, as seen in Chapter 6.

In the following sections, we apply the standard survey’s specifications:

• LSST deep: σintr = 0.15, δz = 0.01 and σsys = 0.02.

• SNAP: σintr = 0.15, δz = 0.00 and σsys = 0.02 z/1.7.

8.4 The continuous determination of the equation

of state

After having seen the power of LSST and SNAP, we use these data so as to re-

construct w(z) in a continuous form, as done for current samples with the Inverse

Method introduced in Chapter 7. In order to determine the uncertainty on the

solution and at the same time check the strength of the method, we invert data
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SNFactory + SNAP

Uncertainty: Priors σΩ0
M

σΩ0
X

σw0 σwa

σsys = 0.00 CC 0.010 0.033 - -

CC + BAO 0.009 0.031 - -

CC + BAO2 0.007 0.025 - -

flat 0.015 - 0.059 -

flat + BAO 0.012 - 0.046 -

flat + BAO2 0.008 - 0.033 -

flat + σΩ0
M

- - 0.07 0.65

σsys = 0.02 z/1.7 CC 0.015 0.041 - -

CC + BAO 0.012 0.035 - -

CC + BAO2 0.008 0.027 - -

flat 0.021 - 0.074 -

flat + BAO 0.015 - 0.050 -

flat + BAO2 0.009 - 0.034 -

flat + σΩ0
M

- - 0.08 0.69

σsys = 0.02 CC 0.019 0.054 - -

CC + BAO 0.013 0.041 - -

CC + BAO2 0.009 0.030 - -

flat 0.028 - 0.098 -

flat + BAO 0.016 - 0.054 -

flat + BAO2 0.009 - 0.037 -

flat + σΩ0
M

- - 0.10 0.81

Table 8.5: Uncertainties in the determination of the cosmological parameters and the

dark energy equation of state for three different levels of systematics in the SNAP survey.

generated from two fiducial models, one of them degenerate with the cosmological

constant. One can show that the method can reconstruct solutions which are de-

generate with the cosmological constant at some z, having a relative difference in

luminosity distance ∆dL(z) lower than 1% there, but differing from it at other z.

In Figure 8.6 (b), the short dashed line shows the equation of state of the fiducial

dark energy model w(z) = −1.5 + 1.0z/(1 + z). The reconstruction has been over-

plotted together with 1σ uncertainties as given by the inversion (Eq. 7.30), and it

can be seen that we obtain an improvement over the prior at intermediate redshift.
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Figure 8.6: Reconstruction with SNAP and SNFactory data set. Gaussian covariance

is as in Figure 7.1 and 7.2. In the upper panels it is shown the deviation in luminosity

distance between model and the cosmological constant. The recovered w(z) is shown

in the middle panels and the resolving kernels in the lower ones. On the left plots, the

dot-dashed line is the fiducial dark energy model with w(z) = −1.5 + 1.0z/(1 + z).

On the right plots the fiducial model is w(z) = −1.2 + 0.8z/(1 + z) and is closer in

luminosity distance to the prior (dotted line), taken to be the cosmological constant.

See text for more comments.
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The reconstruction differs from the cosmological constant at more than 1σ. The

resolving kernels also show that the intermediate z is the best resolved redshift

range and it is so much more than for current data: at z = 0.5 the kernel has grown

from 0.2 to 0.4. As it happens for all data sets, redshift z = 0 is worse determined

than higher z. Multiple peaks appear in the resolving kernel and the kernel is wide

at some z, which results in a degree of degeneracy of the function at those redshifts.

This is a result to be expected as the dependence between the equation of state and

the luminosity distance (as we have seen, w(z) is hidden within a double integral in

redshift, and thus, its variation with redshift is smoothed) eludes the uniqueness of

the result.

In Figure 8.6 (e), the synthetic sample corresponds to an equation of state w(z) =

−1.2+0.8z/(z+1). The corresponding difference in the luminosity distance between

this model and the a priori one (cosmological constant) is less than a 2%, and despite

this, the method is able to recover the real model at intermediate redshift, where

the degree of information in w(z) is higher but also where the luminosity distance

difference is larger than 1%. However, although the best inversion reconstructs the

correct model, the cosmological constant is within 1σ uncertainty along all z due to

the closeness of the models. At high redshift, where there are fewer data and very

small deviations in the luminosity distance, the prior is not improved. There, the

SNAP sample meets its systematic error of 0.02 mags, and the limit of discernability

of the models is shown in the impossibility to find variations in w(z) implying less

than 1% in ∆dL. However, we can discriminate models against the cosmological

constant which are 1% above the discernability at some z, while they might fall

below it at other z.

As it was done in previous chapter, we complement the results obtained in a

straightforward manner by the method with a Monte Carlo exploration of the space

of solutions, in order to study the uncertainty on the result. To restrict ourselves to

the equation of state, a prior on the density of matter σΩ0
M

= 0.03 is being imposed

as well. Figure 8.7 shows the best inversion (dotted line) among 1000 with priors

ranging −3 < w(z) < +1 for the two data sets analysed in the sections above: LSST

deep survey with δz = 0.01 and σsys = 0.02 and SNAP data with σsys = 0.02 z/1.7.

In both cases, the intrinsic dispersion of SNe Ia is σintr = 0.15 and the 300 SNFactory

SNe Ia are added.

The solution is well determined up to z = 0.7 for LSST and up to z = 0.9 for
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Figure 8.7: Reconstruction of w(z) and Monte Carlo errors obtained after 1000 inversions

of LSST deep survey with δz = 0.01 and σsys = 0.02 (a) and SNAP data with σsys =

0.02 z/1.7 (b). In both cases SNFactory SNe Ia are added. The solid line shows the

mean of all inversions and the dotted line the inversion with minimum S.

SNAP. From there on, the uncertainty on w(z) is highly asymmetric. Whereas the

uncertainty remains moderate till z = 1.2 (LSST) or z = 1.5 (SNAP) for the positive

side of the solution (w > −1), the negative one (w < −1) grows around z ≈ 1 and

reaches σ−
w = 2.4 for SNAP.

This asymmetry is also found in the discrete parameterization and has a physical

underlying reason. The dark energy density is a constant value when the dark energy

source is a cosmological constant. In this case, the higher the redshift, the smaller

and insignificant the dark energy density is as compared to the matter density. For

w > −1, the density grows with redshift and the point where the matter density

clearly dominates is delayed. On the contrary, for w < −1, the dark energy density

decreases and it is negligible at a nearer redshift. This key redshift where dark energy

starts to be insignificant can be determined via observations. However, once the

matter density dominates, all the models with w < −1 produce the same luminosity

distance. At z = 1, the normalized values already are Ω1
M ≈ 2.4 vs. Ω1

X ≈ 0.7 and

the variations of w get hidden behind Ω0
M .

In the plots, it seems that there is just a bump around z ≈ 1. However, that is

only the effect of the decrease of data at high redshift. The inversion recovers the

prior where there is no enough information from SNe Ia. That occurs around z = 1.2
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SNFactory + LSSTdeep SNFactory + SNAP

Priors σΩ0
M

σθ σΩ0
M

σθ

- Scenario 1 -

flat 0.055 στ = 4.0 10−9 0.028 στ = 2.1 10−9

flat + σΩ0
M

0.032 στ = 2.6 10−9 0.023 στ = 1.8 10−9

- Scenario 2 -

flat + ZP fixed 0.012 ση = 1.8 0.007 ση = 1.1

flat + ZP fixed + σΩ0
M

0.012 ση = 1.7 0.007 ση = 1.1

- Scenario 3 -

flat 0.045 σν = 0.12 0.023 σν = 0.06

flat + σΩ0
M

0.020 σν = 0.09 0.020 σν = 0.05

Table 8.6: 1σ uncertainties for the free parameters appearing in the running cosmological

constant scenarios obtained with LSST and SNAP. For both data sets, the low-z sample

SNFactory is included.

for LSST and z = 1.5 for SNAP, points where the uncertainty in the positive part,

σ+
w , tends to fill the 68% of the explored area.

8.5 The running of the cosmological constant

Finally, we make use of the simulations for LSST and SNAP to determine the

precision with which the parameters of the running cosmological constant models

can be measured. The first results are obtained from the two samples generated

from a theoretical model without any running.

Figure 8.8 shows the confidence regions for the parameters of the three scenarios

and for the density of matter. The parameter related to the neutrino’s mass in

Scenario 1, τ , is three times better determined with LSST than with R06, the

current data set with minimum error. This improvement grows to six times when

SNAP supernovae are used. The constraint on the density of matter is three times

tighter as well, and that can be improved with the prior σΩ0
M

= 0.03. For SNAP,

there is almost no room for improvement, since the uncertainty on Ω0
M is already of

the same order of magnitude as the prior. For LSST, however, the prior diminishes
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Figure 8.8: 1σ, 2σ and 3σ confidence regions for the distinctive parameters θ of the

running cosmological constant scenarios (θ ≡ τ for Scenario 1, η for Scenario 2 and

ν for Scenario 3) in the (Ω0
M ,θ) space. Blue contours enclose the probability regions

obtained with the LSST wide survey and the orange ones correspond to SNAP.

by a half the uncertainties on both Ω0
M and τ (see Table 8.6 for the concrete values).

The main problem of Scenario 2 was the degeneracy of η with the Hubble constant

H0. The degeneracy is not broken with the higher quality of the data and one must

fix the zero point of the magnitude to constrain η. That, of course, relates the

knowledge of η to the knowledge of H0. Here, the inclusion of the prior σΩ0
M

= 0.03

is not necessary, and fixing H0 is enough to constrain η and reduce from 5 to 1 its
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Figure 8.9: Deviations of the distance modulus m − M with respect to the case of a

standard cosmological constant with Ω0
M = 0.3, Ω0

Λ = 0.7. Two fully academic situations

are shown: (Ω0
M , Ω0

Λ) = (0, 0) –Milne’s open universe– and a pure de Sitter’s universe

(0, 0.5), both with no matter, in order to show the scope of the effects. Important

differences appear for z & 0.5. The other curves in the graphic show the case of

Scenario 3 for various values of ν. Differences become important at z & 1.

uncertainty (SNAP). For the standard model of particles, though, η is fixed and one

just has to check whether η = 10.75 agrees with observations. In a universe filled

with a constant cosmological constant, both LSST and SNAP are capable of clearly

ruling out this kind of running caused by the particles of the standard model. In the

same way, the standard running of Scenario 2 rules out the constant cosmological

constant.

The third Scenario described the running of the cosmological constant via the

parameter ν. The SNAP survey data can be fit to obtain σν = 0.06. As we said,

a typical value for ν would be ν0 = 0.026 and even smaller values are needed to

be compatible with complementary observations [136, 77]. So, a strong evolution

would be needed in order for it to be ruled out by SNAP in front of the cosmological

constant. However, larger values such as ν = 0.1 cannot be theoretically discarded.

If the universe behaves as experiencing a running proportional to ν = 0.1 for exam-

ple, it could be detected by this survey and would be in the limit of detection of a

large ground survey such as LSST.
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SNFactory + SNAP

Priors Fiducial (Ω0
M , θ) σΩ0

M
σθ

- Scenario 1 -

flat (0.2, τ = −5.0 10−9) 0.025 στ = 2.5 10−9

flat (0.3, τ = 0.0 10−9) 0.028 στ = 2.1 10−9

flat (0.4, τ = +5.0 10−9) 0.042 στ = 2.5 10−9

- Scenario 2 -

flat + ZP fixed (0.2 η = −2.25) 0.006 ση = 1.1

flat + ZP fixed (0.3 η = 0) 0.007 ση = 1.1

flat + ZP fixed (0.4 η = +1.25) 0.010 ση = 1.2

- Scenario 3 -

flat (0.2 ν = −0.2) 0.020 σν = 0.08

flat (0.3 ν = 0.0) 0.023 σν = 0.06

flat (0.4 ν = +0.2) 0.033 σν = 0.06

Table 8.7: 1σ uncertainties for the parameters of the three running cosmological constant

scenarios as a function of the position of the underlying model in the parameter space.

The SNAP data set with σsys = 0.02 z/1.7 is used.

We must take into account, however, that the SNAP distribution of data is

optimized in order to distinguish models that have their maximum difference at

redshifts closer than 1. Models with a running cosmological constant differ from the

ones without such running at higher redshift (z > 1) and the difference grows with

z. For evolving equation of state models, we saw that than the maximum variation

from a cosmological constant can be seen at z ≈ 0.5 (Figure 4.8 (d)). Thus, as we

see in Figure 8.9, we need a sizeable group of supernovae at the highest redshift

reachable by SNAP while the strong concentration of data around z = 1 is needed

to distinguish models with and without cosmological constant.

We can, therefore, try other distributions designed from the idea that the dif-

ference between models grows with redshift, as it indeed happens in the present

case. For testing, we generate a distribution with 2000 SNe Ia such as SNAP, but

now most of them (1750) are equally distributed between 1 < z < 2, and only 250

SNe Ia (plus the SNFactory) are used at z < 1. The uncertainty on ν diminishes

with this modified distribution to σν = 0.02, showing the importance of the very

high redshift supernovae. Increasing the number of data with z > 1, by using three



8.5. The running of the cosmological constant 207

Figure 8.10: As Figure 8.8 but data simulations use fiducial models other than a cos-

mological constant without evolution. See Table 8.7 for the concrete values.

years of SNAP observations for example, improves the determination too, but not

in such a spectacular way. With those 6000 SNe Ia one gets σν = 0.04.

The improvement with very high redshift objects is shared by the three running

scenarios, but not by other dark energy models. A (moderate) growing cosmological

constant can be detectable up to a higher redshift, but as commented before, some

dark energy sources are already negligible at redshifts close to z = 1. A data

distribution such as the one introduced before would be useless in theses cases.

As a last point, we check the stability of the uncertainties given. All the previous
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results correspond to a fiducial model of cosmological constant. But the size of the

confidence regions, and, therefore, the uncertainty on the individual parameters can

depend on their position in the parameter space. We calculated the determination

of the three parameters θ in other points as shown in Figure 8.10. The obtained

variations are not very important, but the ellipse’s surface tends to be minimum for

models without evolution. The values for each fit and the fiducial models used in

the simulations are shown in Table 8.7. For models close enough to a cosmological

constant to be consistent with current observations, the uncertainty on the recovered

parameters is not going to improve or worsen in a significant way with respect to

the assumption of a cosmological constant.



Chapter 9

Conclusions

A journey of a thousand miles begins with one small step.

Chinese proverb

This thesis tries to be a contribution to the solution of the dark energy problem. The

name itself, dark energy, shows the nature of the problem: complete lack of knowl-

edge. By dark, one means to describe something which seems to fit observations

but that we neither see nor know its nature. Usually, it is treated as a new energy

contribution. Why not? Everything seems to be energy. Our mind is prepared

and willing to know new kinds of energy. However, this is not the only possible

explanation. Other parallel approaches such as modifications to gravity should not

be discarded at our current level of knowledge. And other more exotic, or easier, or

revolutionary alternatives should be proposed and tested. There currently are lots

of different ways being travelled towards the desired answer, but we seem to be still

far from the end of the way. Maybe we have not found the correct way yet. But in

this thesis we follow one of them and try to take a step.

In the theoretical part at the beginning of the thesis, we introduced Einstein’s

field equations with special attention to the role of the cosmological constant and

to the possibility that this is a time dependent term. The Friedmann equations

are deduced and all the machinery is prepared and adapted to include an evolving

cosmological constant as a source of dark energy.

Having the standard background adapted, the first step has been to motivate a

209
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family of models for which the cosmological constant naturally arises as an evolving

term. This gives us the chance to justify why the current value of the cosmological

constant is precisely so, provided that one finds the reason for its initial value. This

justification would solve one of the open problems in cosmology.

In the framework of a quantum field theory with fields on a curved space-time

(semiclassical approximation), the action of the theory includes a term of interaction

with the gravitational field. In order for the theory to be renormalizable, this term

adds a cosmological constant Λvac in the Hilbert-Einstein action, and new terms on

higher order derivatives of the metric. After the regularization process, the initial

scale invariance is broken, and the dependence of the theory from the scale is encoded

in the renormalization group equations. The β-function in particular is the equation

giving the evolution of the cosmological constant (and Newton’s constant) with the

renormalization scale µ.

Calculations of the β-function proved to be difficult in a curved space-time,

and the attempts made up to now have proceeded perturbatively on the metric of

a flat space-time. Therefore, the approach followed has been to calculate βΛ via

the MS scheme with the corresponding difficulty in its physical interpretation, and

afterwards to pose hypotheses about the meaning of the renormalization scale and

the decoupling process of the massive degrees of freedom. That makes us consider

three main different cosmological scenarios:

Scenario Active dof Particles µ

1 mi < µ neutrinos ρ
1/4
c (t)

2 Mi > µ SM ρ
1/4
c (t)

3 Mi > µ Plank H(t)

The domination of the massive degrees of freedom Mi is possible in the case of

the cosmological constant because, thanks to its dimensionality, it experiences the

so-called soft decoupling.

The consequences of Scenario 3 have been specially worked out as a part of the

thesis. The cosmological equations depend on an extra single parameter function of

the masses M close to the Plank scale: ν = σM2/12 πM2
P . The evolution of ρ(z; ν)

and Λ(z; ν) depends on it, and so does the luminosity distance. For these parameters

to be compatible with observations and the Big Bang model, the cosmological index
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ν must be limited to the range |ν| ≪ 1, being ν0 = 1/12π ≈ 0.026 a natural value

obtained for M ∼ MP .

Within this range, one can see that for a negative cosmological index the density

of matter grows faster towards the past, whereas for a positive value, the growth is

slower than for a standard cosmological model with ν = 0. The distinction will not

be appreciable in the future: the density of matter tends to zero regardless of the

value of ν. For the cosmological constant density the behaviour is the opposite. It

is for a positive ν (negative) that the cosmological constant increases (decreases) to-

wards the past, whereas it reaches a constant positive value in the future. Evidently,

the change on ρ(z; ν) and Λ(z; ν) with respect to the standard case causes variations

on other related parameters such as the Hubble parameter, the deceleration param-

eter and the transition redshift where the Universe goes from being dominated by

matter to being dominated by the cosmological constant. All of them parameters

which should help to detect observationally the running from close measurements.

On the other hand, tests of these models should not be restricted to small red-

shifts. An unexplored consequence of this work is the possibility that the high order

terms added to the action for renormalizability reasons (Eq. 3.2) would be the cause

of inflation. That would complete a very elegant manner of generating inflation and,

at the same time, explain the current accelerated expansion. However, we did not

work on that aspect, but only on using mainly SNe Ia observations to study close

redshifts (0 < z < 2) and compare this family of theoretical models with other kinds

of dark energy sources.

A dark energy component is usually characterized by its equation of state, gen-

erally p(t) = w(t)ρ(t). That accounts for quintessence, the archetype we use to

represent a dark energy source. But mathematically, most sources can be rewritten

as a perfect fluid component with a pseudo-equation of state of the form p = w̃(z)ρ.

This allows to treat every model in a single Friedmann equation with the dark energy

density defined by w̃ (Eq. 4.10). We have deduced or compiled the quantity w̃(z)

for some of the most promising dark energy candidates: a Chaplygin gas, Cardas-

sian models, modifications to General Relativity including braneworld cosmologies,

loop quantum cosmology models and running cosmological constant models. This

is expected to make easier the task of identifying the true model from observations.

But it is too a first indication of the large degeneracy problem we meet with dark

energy: if every model can be expressed as a perfect fluid with w̃, any quintessence
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model having w = w̃ is degenerate with all other models characterized by the same

w̃.

The degeneracy of w(z) has other contributions as well. The mathematical form

with which the equation of state is related to the luminosity distance (a double

integral) smooths the possible evolution. On the other hand, when determined

jointly with other unknowns, the correlations among them increase the degeneracy

of the equation of state with changes in the cosmological parameters. The latter is a

common problem addressed by including priors and combining determinations from

different methods. The former is characteristic of using extragalactic distances and

affects our results from SNe Ia. Besides, the dispersion of supernovae or the level of

systematics in future surveys will limit the detectable discernability among models

and thus define the practical meaning of degeneracy.

Taking all these limitations into account, we use two current SNe Ia data sets to

determine the best values for the cosmological parameters and those related to dark

energy: 182 SNe Ia from Riess et al. (2006) [160] (R06) and 162 SNe Ia from Wood-

Vasey et al. (2007) [211] (VW07). Both sets differ in their mean redshift and the

calibration applied to SNe Ia. Because of this, the global conclusions obtained with

both samples are mostly inconsistent at 1σ level before adding complementary priors,

and whereas R06 favours a high density universe, VW07 favours a low density one.

When a flat universe is imposed following CMB results, the discrepancy translates

into dark energy. R06 tilts towards a universe filled with a vanishing dark energy

source in the past, but VW07 prefers an increasing energy density. We showed

that the difference in the mean redshift (< zR06 >= 0.54 ± 0.35 vs. < zV W07 >=

0.38± 0.27) is not responsible for this difference in the results. Hence, we attribute

the discrepancies to the variety of calibration techniques used, not only between

both sets but also among subsamples of a same set as it happens in R06.

For completeness we use both samples. The parameters for a standard cosmology

with a constant equation of state or an evolving one parameterized by w0 and wa have

been determined by several methods in papers from the collaborations publishing

the data, for instance. Some alternative theories for dark energy have been tested

as well and compared with the standard parameterization. Here, we pay special

attention to running cosmological constant models. Parameter τ of Scenario 1 is

marginally compatible at 1σ with no running, being results with VW07 data closer

to a cosmological constant and results with R06 favouring a negative evolution. This
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negative evolution allows to put an upper limit to the mass of the lightest neutrinos

of mν = 0.007 ± 0.006 eV . For the positive evolution, the dominant mass must

be the scalar field and the evolution behaves as produced by an effective mass of

meff = 0.01±0.01 eV . The degeneracy of τ with Ω0
M is important, and the addition

of the prior Ω0
M = 0.27±0.03 diminishes the uncertainty to a half. Although the best

fit for τ is now closer to no evolution than without the prior, the true cosmological

constant or the absence of an effective running is at more than 1σ from the best fit.

In Scenario 2, the parameter accounting for the running, η, is highly degenerate

with the Hubble constant (in general with the zero point magnitude). That makes

information necessary on H0 to break the degeneracy. Fixing its value, the cosmo-

logical constant stays within 1σ intervals, but the value predicted by the Standard

Model of particle physics, η = 10.75, is out by more than 2σ with R06 and at the

limit with VW07. That makes this scenario observationally less appealing than the

other two.

For Scenario 3, things are very similar to Scenario 1. The behaviour of ν and τ

is exactly the same, but τ encodes the information as τ ∝ m4 and the knowledge on

τ allows to put informative constraints on the mass. In the case of ν, the theoretical

model predicts a value ν0 very close to zero, and current data do not reach the

precision needed to point out this value in front of no running, for instance. R06

data rule out ν0 = 0.026 at more than 1σ and negative evolutions are preferred.

For VW07, that ν0 is perfectly compatible, but uncertainties of more than 10 times

its value make it hard to constrain it. Anyway, a positive but stronger evolution

is favoured by this set. Notice that even a clear obtention of ν = 0 could not be

indicating the incorrectness of the theory, but just a lack of particles close to the

Planck scale.

We see that, overall, current SNe Ia data are not able to put serious constraints

on particle physics parameters, and particle physics models with the standard and

expected values for the free parameters do not fully describe those observations

satisfactorily and that opens the possibility of some new physics. Nevertheless, even

the obtained sign of the running depends on the data set, and one must wait for

future surveys to pin it down from accurate results. For the time being, a naive

combination of the two data samples (Davis et al. (2007), D07, [56]) is also used to

gain a more general view of the problem. Results in this case are halfway between

R06 and VW07. From them, there is no observational necessity for any running,
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evolution or even a departure from a w0 = −1. If it is not cosmological constant,

it must behave, at least effectively, as if it were. Actually, the running must exist if

the cosmological constant is considered within a quantum field theory, but its effect

would be now very small. However, confidence regions are still far from being narrow

enough to obtain the desired precision and future surveys are needed in order to give

informative results on the running.

When comparing these results to the ones obtained for a constant equation of

state, we realise that present-day data lead to much tighter constraints for w0 than

for θ. Both R06 and VW07 together with the BAO prior constrain w0 with a

precision of 10% and the cosmological constant always stays within the 1σ interval.

In Scenarios 1, 2 and 3, the cosmological constant is sometimes at 2σ of the best fit

and the uncertainty on τ , η and ν never approaches 10%; it is, in most cases, of the

order of 100%. The justification lies on the behaviour of the dark energy density.

For the two families of models, the evolution is encoded in one single parameter,

but the physics are different because a constant θ behaves as an evolving w(z). This

fact makes that differences due to the running with respect to the true cosmological

constant to become important at high redshift. On the other hand, the differences

can be seen already at redshift zero for a constant equation of state. Therefore, much

higher redshift data are needed in order to detect the former models as compared

with the latter ones.

Before addressing how our constraints on the dark energy representations can

improve with future samples, we found it worth to check if a continuous determina-

tion of Λ(z) and w(z) can give more information, at least on the general trends, than

the discrete developments. Besides w(z), commonly retrieved by other methods, we

also reconstruct Λ(z) in order to directly accommodate the running cosmological

constant models. To do that, one needs a mathematical method that allows to re-

cover continuous functions from a finite set of discrete data. Inverse methods usually

address these problems, and here we adapt a non-linear non-parametric Bayesian

approach for the reconstructions.

This inverse method considers data and unknown parameters or functions in the

same way. Data are directly measurable and described by their measured values and

their uncertainties; unknowns are not directly measurable and described by a priori

information. If both quantities are assumed to be gaussianly distributed, the misfit

function to minimize is composed of two terms representing Gaussian probability
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densities. One of them corresponds to the information given by the data and it is the

same as in the χ2 minimization. The second one introduces the a priori information

on the unknown parameters, as done before in the discrete parameterizations via

the Bayes’ theorem. This is why it is a Bayesian approach, necessary in this case

to regularize the inversion. The minimization of the misfit function has been done

using a Newton method with an approximation to the Hessian that neglects the

second order terms. That leads to an iterative equation for every parameter or

function to be determined and an expression for its uncertainty once the minimum

has been reached.

Priors always play a role within this method. The solution and its uncertainty

do depend on the prior, but the dependence weakens for wide priors. However, wide

priors do not always allow the convergence of the algorithm. This difficulty must

be overcome by a Monte Carlo exploration of the space of solutions whenever strict

priors are used. For the barotropic index of the equation of state, we use −1.5 ≤
w(z) ≤ −0.5 and extend the range to −3 ≤ w(z) ≤ 1 in the Monte Carlo exploration.

When reconstructing Λ(z) we use an a priori variation of −0.1 < ∆Ω0
Λ(z) < 0.1 and

increase the explored space of solutions to −0.2 < ∆Ω0
Λ(z) < 0.2.

With this set-up and the R06 sample, w(z) grows from a phantom value towards

w(z = 0.6) & −0.5. At higher redshifts, one recovers the prior or the mean of the

a priori range depending on the case. A function called resolving kernel tells us

about the zone where data are capable of improving the information over the prior.

For R06 data, kernels are almost flat at z & 0.6 − 0.7 indicating the absence of

information. The same occurs at z = 0. In the range of interest, the method retrieves

a positive evolution as obtained in the discrete parameterization. However, Monte

Carlo errors make the result compatible with a cosmological constant at 1σ almost

over the whole redshift range. That is more restrictive for VW07 supernovae and

the reconstruction only shows oscillations around a constant value of the equation

of state of w(z) = −1.

Under the point of view of the cosmological constant density (or dark energy

density) the same results are reproduced. For VW07, a constant density cannot be

discarded although at intermediate redshifts there is a soft trend with negative slope

hidden within 1σ uncertainties and the degeneracy with respect to Ω0
M . The positive

evolution of Ω0
Λ(z) is seen for R06 data as in all the other checks we are doing with

them. For this function, results depart from the prior only at z . 0.6−0.7 too. The
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changes in the slope at higher redshifts are then meaningless as they only appear to

allow the function to tend to the prior. Therefore, it is very difficult to detect any

of the running cosmological constant scenarios from these results, since their effect

only becomes important at higher redshifts.

The precision allowed by present-day data does not permit to identify clearly a

characteristic behaviour of any single dark energy model. With discrete parameter-

izations, we are limited to determine the functions from their current values and, at

most, a first derivative at redshift zero. Part of the improvement of the continuous

method is to really calculate the value of the function at other redshifts where data

can be more sensitive and obtain different precisions at different ranges according

to the amount of information there. Each supernova is used in the calculations at

every redshift, having more weight on the result those closer to that redshift. This

is why there is no gain in information at z & 0.7. The lack of large samples at high

redshift not only affects the determination at those points, but at lower redshifts

as well, because the contribution of extra data close to them is scarce. And this is

why functions are much better determined at z = 0.2 than at z = 1.2 even if both

points are gaps in the density of data. Of course, this is also why z = 0 is worse

determined than intermediate redshifts.

In order to extend the redshift range where SNe Ia contribute to a gain in in-

formation, supernova samples should significatively increase at high redshift. And,

even then, the determinations will not be as good as at low and intermediate red-

shifts because dark energy itself is less relevant to the contents and dynamics of the

Universe. With future samples, uncertainties will globally decrease though, because

the number of data will proportionally increase along z. So as to quantify the im-

provement, we use simulations for two oncoming surveys: LSST as a leading survey

from Earth and SNAP from space.

Even though LSST is going to observe 250000 SNe per year (around 10000 in the

deep survey), it is a photometric survey and only photo-z’s will be available for most

of the data. That is a common drawback for the majority of the massive ground

surveys, and the uncertainty due to photo-z’s really damages the determination of

the cosmological parameters and dark energy. The redshift uncertainty translates

into the magnitude as a decreasing function of the redshift (Fig. 5.7). At low-z, the

uncertainty on the magnitude can be larger than 1mag, and the redshift at which it

becomes negligible depends on the dispersion of photo-z’s. Therefore, to minimize
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the effect of photo-z’s, one must reduce the dispersion of photo-z with respect to

the spectroscopic redshifts and, besides and more importantly, fully eliminate the

lowest redshift photo-z’s in favour of spectroscopic redshifts.

Making this effort on the photo-z’s treatment, LSST deep survey would improve

current determinations on the evolution of the dark energy equation of state, wa,

reducing in two (R06) or three (VW07) times its uncertainty and reach σwa = 0.7.

This result would be of the same order as with SNAP, which, although reaching a

higher redshift, has a smaller number of data. Without any guarantee of measuring

spectra for the low-z subsample, SNAP gets better results, not only because of the

higher redshift but because of the better control of systematics as well. Therefore,

a constant equation of state can be measured with a precision of σw0 = 0.07 and an

evolving one up to σw0 = 0.08 and σwa = 0.7. One can compare these uncertainties

with those to be obtained with LSST wideB configuration: σw0 = 0.14 and σwa =

0.94, very similar to those with LSST deep. In all the cases, these uncertainties are

appreciably reduced when adding BAO constraints to the constant equation of state

parameterization.

As for the running cosmological constant models, the best results are obtained

with SNAP data, almost dividing by two the uncertainties corresponding to LSST

deep. For SNAP, the uncertainty on the θ parameters for the three scenarios are:

στ = 2.1 10−9 for Scenario 1, ση = 1.1 for Scenario 2 and σν = 0.06 for Scenario 3.

That improves current determinations between 5 and 10 times, depending on the

scenario and on the data set. However, as we have said, this family of models

differs from a true cosmological constant only at high redshift, because evolutions

are soft and small. Other data distributions which take this fact into account and

have most of the data at z > 1 would improve the determinations significatively.

For example, Scenario 3 with a moderate running given by ν0 = 0.026 cannot be

detected even with SNAP (σν = 0.06). However, such alternative distributions could

reach σν = 0.02, allowing an observational distinction between the running model

and a true cosmological constant at more than 1σ level. Otherwise, only stronger

runnings could be detected. We checked whether the size of the confidence region

around the best fit depends on the position in the plane, and, although the point

representing no effective evolution has the minimal uncertainty, changes are not

important enough so as to make that small runnings can be detected with SNAP

alone.
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Finally, but not less important, the continuous determination of w(z) takes ad-

vantage of the higher limiting redshift and density of data of the oncoming surveys.

The reconstruction is well determined up to z = 0.7 for LSST and up to z = 0.9

for SNAP. From there on, the uncertainty on w(z) is highly asymmetric. Whereas

the uncertainty remains moderate for the positive side of the solution till z = 1.2

(LSST) or z = 1.5 (SNAP), where data still improve the a priori information, the

negative one grows significatively. This is due to the large degeneracy among models

with w < −1 at high redshift. Further than this point, even these large surveys are

not able to improve the a priori knowledge.

With the simulations of LSST and SNAP, we have reproduced (preproduced in

fact) the best expectations one can have for the study of dark energy with SNe Ia

within the next ten years. Waiting for new alternative methods both physical and

mathematical, the gain in precision and accuracy will allow us to limit the possible

values for w or Λ, but that is not going to answer the question of what dark energy

is, if results are so close to a cosmological constant as it seems. We are very far

from being able to learn the form of the function in a similar way to that of the

spectrum of the CMB radiation which univocally determines a blackbody emission

with a temperature of 2.725K. For dark energy, neither the determinations can

achieve this degree of precision nor there is a real physically motivated theory behind.

Tight results departing from a cosmological constant would be easier to interpret,

and maybe they would fit one of the proposed theories and they would surely rule

out most of the existing ones. Tight results around a cosmological constant get us

into trouble: we have no idea of what the cosmological constant is physically, at

least not if it does not change by 1055 orders of magnitude.

That opens three possible lines of work. (i) Work on theories to understand

the meaning of the cosmological constant since it is the most reasonable answer

given by observations. (ii) Test departures from the cosmological constant with

alternative theoretical models or validate them with an unquestionable agreement

with observations. (iii) Address the accelerated expansion through new ideas other

than dark energy and attack the problem from another side.

Of course, all of them should be followed, as only time will tell us if we are

in the correct way. Perhaps we are about to correctly interpret the meaning of

the cosmological constant. Or maybe we are now just like Ptolemy tuning the

untunable to describe through the epicycles that which is otherwise easily described
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when changing the perspective. Let us just hope that we do not need 15 centuries

to realise that we are in the wrong way... in case we are!
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Appendix A

Notation

In the following, we include a list with the notation used in the thesis. It has

been divided according to the part it belongs to, and distinguished between symbols

and abbreviations and acronyms. A change in the chapter is indicated within each

section with a wider line spacing. Besides, as a general convention we use:

µ, ν Greek indexes (integers from 1 to 4)

i, j, k Latin indexes (integers from 1 to 3)

Latin indexes (integers from 1 to n)

∼ Same order of magnitude

≈ Truncation or rounding in numbers

≃ Approximation in formulae

A.1 Part I

Symbols

ds Line element
gµν Metric

x Temporal and spatial coordinates

φ Gravitational field (Einstein equations)

Scalar field
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Gµν Einstein’s tensor

GN Newton constant
ρ Density

Tµν Energy-momentum tensor

R Scalar of curvature

Rµν Ricci tensor

Rµναβ Riemann tensor

λ Constant (original cosmological constant)

Wavelength

Λ Cosmological constant

Λind Induced cosmological constant

Λvac Vacuum cosmological constant

Λeff Effective cosmological constant

VH Higgs potential

Q Quintessence field

V (Q) Quintessence potential

K K-essence field

V (K) K-essence potential

P Phantom field

V (P ) Phantom potential

t Time coordinate

c Speed of light

r Radial comoving coordinate

θ Polar comoving coordinate

ϕ Azimuthal comoving coordinate

χ Physical comoving coordinate

dΩ Angular differential

k Curvature

a Scale factor

H0 Hubble constant

h0 Dimensionless Hubble constant

H Hubble parameter

q0 Deceleration parameter

z Redshift

ν Frequency

dprop Proper distance
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dL Luminosity distance

dA Angular distance

F Flux

L Luminosity

E Energy

p Pressure of a perfect fluid

ρ Density of a perfect fluid

Uµ Quadrivelocity

w Barotropic index

ρ0
c Present-day critical density

ρc Critical density

Ω0 Present-day normalized density with ρ0
c

Ω0(z) Normalized density with ρ0
c

Ω(z) Normalized density with ρc(z)

ηµν Minkowsky metric

hµν Perturbation Metric

S Action

ai Constants

m Mass/Renormalized mass

λ Coupling constant/Renormalized coupling constant

m0 Naked mass

λ0 Naked coupling constant

Λ Regularization parameter

µ Renormalization scale

Z Renormalization constant

G Green function

G0 Naked Green function

GR Renormalized Green function
pi Momentum of the i particle

β Beta function
γm Anomalous mass dimension
γφ Anomalous field dimension

ξ Constant
g∗ Number of degrees of freedom for relativistic particles

Fixed point
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λ∗ Fixed point

mi Masses of the light degrees of freedom

Mi Masses of the heavy degrees of freedom

Mi Masses of the light and heavy degrees of freedom

A, B... Constants

J Spin

σ Sign related to bosonic/fermionic domination

MP l Planck mass
mS Scalar field mass
mν Neutrino mass
mH Higgs mass

mW Wino mass
mZ Zino mass
η Defined constant

ν Constant: cosmological index

ν0 Cosmological index with M = MP l and σ = +1

κ Constant related to curvature
ztr Transition redshift (from positive to negative cosmological constant)

z∗ Transition redshift (from positive to negative acceleration)

δΛ Variation of Λ with respect to a constant cosmological constant

δH Variation of H with respect to the standard Hubble parameter

w̃(z) Effective barotropic index

A, As Constants

C Constant

lP l Planck length

L(ρ) Correction function (braneworlds)

n(ρ) Index function (braneworlds)

χ Scalar field
rc Scale at which gravity changes its behaviour

σ Brane tension

B, D Constants

D(a) Quantization of the operator a−3 (LQC)

ai Below this scale factor space-time is discrete (LQC)

a∗ Scale factor at which classical equations are recovered (LQC)

l Quantum number
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w0 Constant or average barotropic index

wc w̃0 Alternative symbols for the constant or average barotropic index

w′ Derivative with respect to z of the barotropic index

wa Derivative with respect to a of the barotropic index in a linear expansion

wl The same but for a logarithmic expansion

w1 Early value of the barotropic index

zt Redshift at which there is the transition from w0 to w1

Abbreviations and acronyms

CMB Cosmic Microwave Background radiation

COBE Cosmic Background Explorer

WMAP Wilkinson Microwave Anisotropy Probe

CDM Cold Dark Matter

WIMP Weakly Interactive Massive Particles

SNe Ia Type Ia Supernovae

BAO Baryonic Acoustic Oscillations

ISW Integrated Sachs Wolfe effect

SDSS Sloan Digital Sky Survey

GUT Grand Unified Theory

FLRW Friedman-Lemâıtre-Robertson-Walker

M Matter

R Radiation

S Cosmic strings

W Domain walls

T Textures

Q Quintessence

K K-essence

Curvature

Ph Phantom

Ca Cardassian

ν Neutrino

X Unknown dark energy component
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QFT Quantum Field Theory

HE Hilbert-Einstein

vac Vacuum

MS Minimal subtraction scheme

MS Modified minimal subtraction scheme

RGE Renormalization Group Equations

F Fermi epoch

CE Conservation equation

FE Friedmann equation

WEC Weak energy condition

NEC Null energy condition

DEC Dominant energy condition

NDEC Null dominant energy condition

SEC Strong energy condition

SUSY Supersymmetry

PNG Pseudo Nambu Goldstone bosons

SUGRA Super Gravity

DGP Dvali-Gabadadze-Porrati

LQC Loop quantum cosmology

A.2 Part II

Symbols

M Zero point magnitude in the blue band

M Absolute magnitude

dL Luminosity distance

DL Hubble constant free luminosity distance

f(z) Growth parameter

A(z) Dimension less parameter measured by BAO
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DV (z) Dilation

DM(z) Comoving angular diameter distance

R(z) Shift parameter

λ Wavelength

v Velocity

∆m15(B) B magnitude increment from the maximum up to 15 days after it

a b Free parameters in Phillips relation

MB Absolute magnitude in B band

s ŝ Stretch factor

w Width factor

α Free parameter in stretch correction

c Colour excess in the extinction correction

α β Free parameters

∆ Difference in magnitude with respect to a fiducial SN

µ Distance modulus

t0 Time at maximum of the light curve

R Linear correlations in MCLS method

Q Quadratic correlations in MCLS method

ζX αX βX Extinction parameters in an X band

BBX βBX Constants in CMAGIC method

KBX K-Correction from B to X band

RX Slope of the extinction law in an X band

AX Absorption in an X band

AGal Galactic absorption

Xi Random variables

θi Unknown parameters

φ(X, θ) Probability density function

L(θ|X) Likelihood function

P Probability

p p-value

M Vector of unknowns in the inverse methodology

y Dimensionless distance coordinate
σy Uncertainty on the dimensionless distance coordinate
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Cyiyj Covariance components of data

M0 A priori vector of unknowns

C0 A priori covariance matrix

Cw(z),w(z′) Covariance of w(z) between redshifts

∆z Correlation length

S Misfit or objective function

H Hessian

G Matrix of partial derivatives of the dimensionless distance coordinate

g Kernel of G

K(z, z′) Resolving kernel

σ A priori uncertainty

σ̃ A posteriori uncertainty

Abbreviations and acronyms

SN Supernova

FR IIb Fanaroff-Riley Type IIb radio galaxies

CRS Compact radio sources

2dFGRS 2dF Galaxy Redshift Survey

CBI Cosmic Background Imager

ACBAR Arcminute Cosmology Bolometer Array Receiver

WD White dwarf

Ch Chandrasekhar

MCLS Multicolour Light Curve Shape

BATM Bayesian Adapted Template Match

CMAGIC Colour-Magnitude Intercept Calibration

DES Dark Energy Survey

ESSENCE Equation of State: SupErNovae trace Cosmic Expansion

SNLS SuperNova Legacy Survey

pdf Probability density function

dof Degree of freedom

MC Monte Carlo
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SNAP SuperNova Acceleration Probe

JDEM Joint Dark Energy Mission

CSP Carnegie Supernova Project

SDSS Sloan Digital Sky Survey

PANS Probing Acceleration Now with Supernovae

LSST Large Synoptic Survey Telescope

Pan-

STARRS Panoramic Survey Telescope And Rapid Response System

DESTINY Dark Energy Space Telescope

JEDI Joint Efficient Dark-energy Investigation

ADEPT Advanced Dark Energy Physics Telescope

DUNE Dark UNiverse Explorer

ALPACA Advanced Liquid-mirror Probe for Astrophysics, Cosmology and

Asteroids
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Hendry, J. S., Hennessy, G., Ivezić, Z., Kent, S., Knapp, G. R., Lin,

H., Loh, Y.-S., Lupton, R. H., Margon, B., McKay, T. A., Meiksin,



246 BIBLIOGRAPHY

A., Munn, J. A., Pope, A., Richmond, M. W., Schlegel, D., Schnei-

der, D. P., Shimasaku, K., Stoughton, C., Strauss, M. A., Sub-

baRao, M., Szalay, A. S., Szapudi, I., Tucker, D. L., Yanny, B.,

and York, D. G. Detection of the Baryon Acoustic Peak in the Large-Scale

Correlation Function of SDSS Luminous Red Galaxies. ApJ 633 (Nov. 2005),

560–574.

[71] Elizalde, E., and Neves, R. Modified gravity on the brane and dark

energy. Gen. Rel. Grav. 38 (2006), 1367–1377.

[72] Elizalde, E., Nojiri, S., and Odintsov, S. D. Late-time cosmology

in a (phantom) scalar-tensor theory: Dark energy and the cosmic speed-up.

Phys. Rev. D 70, 4 (Aug. 2004), 043539.

[73] España-Bonet, C., and Ruiz-Lapuente, P. Dark Energy as an Inverse

Problem. hep-ph/0503210 (Mar. 2005).

[74] España-Bonet, C., and Ruiz-Lapuente, P. Tracing w(z) with the latest

high redshift supernovae. Submitted to JCAP (2007).

[75] España-Bonet, C., Ruiz-Lapuente, P., Shapiro, I. L., and Solà, J.
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