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Abstract

This document describes the system devel-
oped by the Empirical MT Group at the Tech-
nical University of Catalonia, LSI Depart-
ment, for the Arabic-to-English task at the
2008 NIST MT Evaluation Campaign. Our
system explores the application of discrimi-
native learning to the problem of phrase se-
lection in Statistical Machine Translation. In-
stead of relying on Maximum Likelihood esti-
mates for the construction of translation mod-
els, we use local classifiers which are able to
take further advantage of contextual informa-
tion. Local predictions are softly integrated
into a global log-linear phrase-based statisti-
cal MT system as an additional feature. Auto-
matic evaluation results according to a hetero-
geneous set of metrics operating at different
linguistic levels are presented. These show a
low level of agreement between metrics. Im-
provements over the baseline are either inex-
istent or not significant, except for the case of
semantic metrics based on discourse represen-
tations and several syntactic metrics based on
constituent and dependency parsing.

1 Introduction

This document describes the system developed by
the Empirical MT Group at the Technical University
of Catalonia (UPC), LSI Department for the Arabic-
to-English task at the 2008 NIST MT Evaluation
Campaign. Our system is a phrase-based SMT sys-
tem extended with discriminative phrase translation
models (Giménez and Màrquez, 2007a; Giménez
and Màrquez, 2008).

The paper is organized as follows. In Section 2,
we describe the baseline system. Then, in Section 3,
we describe our approach to Discriminative Phrase
Translation (DPT), and how DPT predictions are
softly integrated into the baseline system. Finally, in
Section 4, internal evaluation results are presented.

2 Baseline System

Our baseline system follows the standard phrase-
based SMT architecture, in which models are com-
bined in a log-linear fashion (Och and Ney, 2002):

ê = argmaxe

{

M
∑

m=1

λmhm(e, f)

}

(1)

This architecture has the main advantage of al-
lowing for considering additionalfeature functions
further than the language and translation probabil-
ity models typically used. Here, we use besides
the language model probabilityP (e) and the max-
imum likelihood estimation both generative and dis-
criminative (PMLE(f |e) and PMLE(e|f)), the lexical
translation probability in both directions (Plex(f |e)
andPlex(e|f)), the distortion modelPdi(e, f), and a
word penalty and phrase penalty models.

We build a 5-gram language model by inter-
polated Kneser-Ney discounting using the SRILM
Toolkit (Stolcke, 2002). As for the translation mod-
els, we use the GIZA++ Toolkit (Och and Ney,
2003) to obtain the alignments, and the tools avail-
able with the Moses package (Koehn et al., 2006;
Koehn et al., 2007) for phrase extraction and esti-
mations of maximum likelihood probabilities.

In order to speed up the translation process, we



have limited the number of candidate translations to
20 and set the distortion limit to 6 positions. Using
these settings, the final search in the space of trans-
lations is accomplished by the Moses decoder.

Finally, we optimize the weights of every prob-
ability table by optimizing translation performance
on a development set. For this optimization we use
a minimum error rate training (MERT) (Och, 2003)
where BLEU is the reference score.

2.1 Data

In order to run our experiments, we compile a train-
ing set from six corpora supplied by the Linguistic
Data Consortium (LDC):

• Arabic English Parallel News Part 1 (61,000
lines)

• Arabic News Translation Text Part 1 (18,000
lines)

• Arabic Treebank English Translation (23,800
lines)

• eTIRR Arabic English News Text (4,000 lines)

• Multiple-Translation Arabic (Parts 1 & 2)
(15,533 lines)

• TIDES MT2004 Arabic evaluation data (1,329
lines)

From the whole corpus, lines1 with a length
shorter than 100 words and not more than nine times
longer in one language than in the other one are used
in the compilation. That is the optimal length for
training with the Moses decoder and the length ra-
tio limit for obtaining the alignments with GIZA++.
With this, 123,662 lines, a99% of the total, have
been obtained. Both the translation model and the
language model are estimated from this compilation.

For the development and test sets we selected
500 lines from the same corpora with the exception
of the Multiple-Translation Arabicand theTIDES
MT2004 Arabic evaluation data. The number of
lines from each corpus is proportional to the one in
the training set.

1Each line corresponds to the minimum aligned unit. The
aligments are given at a fragment level, which is in most cases
larger than one sentence.

2.2 Pre-processing

The input data have been pre-processed and con-
verted to a unique codification. Afterwards, we tok-
enize both of the input languages and annotate them
with the lemma, part-of-speech (PoS) and chunk la-
bel for each word. The concrete tools depend on the
language.

The standard Buckwalter transliteration2 has been
a prerequisite necessary to annotate the Arabic part
of the corpus using the ASVMTools (Mona Diab
and Jurafsky, 2004). This software uses the Yam-
cha SVM tools (Kudo and Matsumoto, 2003) to tok-
enize, PoS tag and Base Phrase Chunk the input text.
The process of tokenization segments the words in
proclitics, stems+affixes, and enclitics, although the
determinerAl- has not been segmentated. Punc-
tuation is considered as an independent token as
well. For PoS tagging, the package uses the 24 PoS
tags from the collapsed tag set of the Arabic Tree-
Bank distribution. For chunking, phrases have been
labeled according to IOB tagging scheme (Inside-
Outside-Beginning). Notice, that we do not obtain
Arabic lemmas with ASVMTools.

English sentences have been lowercased and to-
kenized. Lemma and PoS have been obtained with
SVMTool (Giménez and Màrquez, 2004), and Yam-
cha (Kudo and Matsumoto, 2003) has been used af-
terwards for BP chunking. PoS labels correspond
to full tagset from the Wall Street Journal with 36
labels, and, as before, chunk labels follow the IOB
tagging scheme.

3 Dedicated Discriminative Phrase
Selection

In standard phrase-based SMT systems, like that de-
scribed by Koehn et al. (2003), translation models
are built on the basis of relative frequency counts,
i.e., Maximum Likelihood Estimates (MLE). Thus,
all the occurrences of the same source phrase are
assigned, no matter what the context is, the same
set of translation probabilities. For that reason, re-
cently, there is a growing interest on the construction
of dedicated discriminative models to the problem
of lexical selection which are able to take into ac-
count a wider feature context (Vickrey et al., 2005;

2http://www.ldc.upenn.edu/myl/morph/
buckwalter.html



AlElm

flag knowledge science mind the flag

+ - ---

Figure 1: Phrase Translation. An Example

Giménez and Màrquez, 2007a; Carpuat and Wu,
2007; Bangalore et al., 2007; Stroppa et al., 2007;
Giménez and Màrquez, 2008). Lexical selection is
addressed as a multi-class classification task. For
each possible source word (or phrase) according to
a given bilingual lexical inventory (e.g., the trans-
lation model), a distinct classifier is trained to pre-
dict lexical correspondences based on local context.
Thus, during decoding, for every distinct instance of
every source phrase a distinct context-aware transla-
tion probability distribution is potentially available.

As an illustration, in Figure 1, we show an exam-
ple of Arabic-to-English phrase translation, in which
the source phraseAlElm, in this case translated as
flag, has several possible candidate translations such
asknowledge, scienceor mind. This is an example
where the lack of diacritics in written texts causes
a unique transliteration to have different meanings.
The context of the phrase is then important to dis-
ambiguate the meaning, and that will be used when
training the classifiers.

3.1 Learning

There exist a wide variety of learning algorithms
which can be applied to the multiclass classification
scenario defined. In this work we have focused on
local linear binary Support Vector Machines3 (Vap-
nik, 1995; Cristianini and Shawe-Taylor, 2000)4.
We have applied a simpleone-vs-all binarization
scheme, i.e., a binary classifier is learned for every
possible translation candidateej in order to distin-
guish between examples of this class and all the rest.
Training examples are extracted from the same train-
ing data as in the case of conventional MLE-based

3SVMs have been learned using the SVMlight package
by Thorsten Joachims, which is freely available athttp:
//svmlight.joachims.org (Joachims, 1999).

4Because adjusting theC parameter for each binary clas-
sifier was impractical, it has been set to the default value,
P

( ~xi ~xi)
−1

N
, where ~xi is a sample vector andN corresponds

to the number of samples.

Sentence:
w tAbE mr$d AlIxwAn “ In AlElm AlmTlwb fy dyn
nA hw kl Elm nAfE tbqY l AlnAs vmrt h , swA’ kAn
ElmAF $rEyAF Ow ElmAF tjrybyAF .

Phrase features:
wordn-grams AlElm
PoSn-grams NN
coarse PoSn-grams N
chunkn-grams B-NP

Sentence features :
word (AlmTlwb)1, (fy)2, (dyn)3, (nA)4, (hw)5,
n-grams (” In)−2, (AlIxwAn)−3 , (mr$d)−4, (tAbE)−5,

(AlmTlwb fy)1, (fy dyn)2 , (dyn nA)3, (nA hw)4,
(In AlmTlwb)−1, (AlIxwAn ”) −3,
(mr$d AlIxwAn)−4 , (tAbEmr$d)−5

(AlmTlwb fy dyn)1, (fy dyn nA)2, (dyn nA hw)3,
(In AlmTlwb fy)−1, (” In AlmTlwb)−2 ,
(AlIxwAn ” In) −3, (mr$d AlIxwAn ”)−4,
(tAbE mr$d AlIxwAn)−5

PoS (JJ)1, (IN)2, (NN)3, (PRP$)4 , (PRP)5,
n-grams (PUNC IN)−2, (NN)−3, (NN)−4, (VBD)−5

(JJ IN)1, (IN NN)2, (NN PRP$)3, (PRP$ PRP)4,
(IN JJ)−1, (NN PUNC)−3, (NN NN)−4,
(VBD NN)−5

(JJ IN NN)1, (IN NN PRP$)2, (NN PRP$ PRP)3,
(IN JJ IN)−1, (PUNC IN JJ)−2,
(NN PUNC IN)−3, (NN NN PUNC)−4,
(VBD NN NN)−5,

coarse PoS (J)1, (I)2, (N)3, (P)4, (P)5, (P I)−2, (N)−3,
(N)−4, (V)−5

n-grams (J I)1, (I N)2, (N P)3, (P P)4, (I J)−1,
(N P)−3, (N N)−4, (V N)−5

(J I N)1, (I N P)2, (N P P)3, (I J I)−1,
(P I J)−2, (N P I)−3, (N N P)−4, (V N N)−5

chunk (I-NP)1, (B-PP)2, (B-NP)3, (I-NP)4, (B-NP)5,
n-grams (O B-SBAR)−2, (B-NP)−3, (B-NP)−4, (B-VP )−5

(I-NP B-PP)1, (B-PP B-NP)2, (B-NP I-NP)3,
(I-NP B-NP)4,
(B-SBAR I-NP)−1, (B-NP O)−3,
(B-NP B-NP )−4, (B-VP B-NP )−5

(I-NP B-PP B-NP)1, (B-PP B-NP I-NP)2,
(B-NP I-NP B-NP)3,
(B-SBAR I-NP B-PP)−1, (O B-SBAR I-NP)−2,
(B-NP O B-SBAR)−3, (B-NP B-NP O)−4,
(B-VP B-NP B-NP )−5

bag-of-words left: AlIxwAn, mr$d, tAbE
right: $rEyAF, AlmTlwb, AlnAs, Elm, ElmAF, dyn,

kAn, kl, nAfE, swA’, tbqY, tjrybyAF, vmrt

Table 1: Phrase Translation Features. An Example



models, i.e., a phrase-aligned parallel corpus (see
Section 2). Each occurrence of each source phrase
fi is used to generate a positive example for the ac-
tual class (or classes) corresponding to the aligned
target phrase (or phrases), and a negative example
for the classes corresponding to the other possible
translations offi.

3.2 Feature Engineering

We have built a feature set which considers different
kinds of information, always from the source sen-
tence. Each example has been encoded on the ba-
sis of thelocal contextof the phrase to be disam-
biguated and theglobal contextrepresented by the
whole source sentence.

As for the local context, we usen-grams (n ∈
{1, 2, 3}) of: word forms, parts-of-speech, and base
phrase chunking IOB labels, in a window of 5 tokens
to the left and to the right of the phrase to disam-
biguate. We also exploit part-of-speech and chunk
information inside the source phrase, because, in
contrast to word forms, these may vary and thus
report very useful information. Text has been au-
tomatically annotated as explained in Section 2.2.
However, for the case of parts-of-speech, because
tag sets take into account fine morphological distinc-
tions, we have additionally defined several coarser
classes grouping morphological variations of nouns,
verbs, adjectives, adverbs, pronouns, prepositions,
conjunctions, determiners and punctuation marks.

As for the global context, we collect topical in-
formation by considering content words (i.e., nouns,
verbs, adjectives and adverbs) in the source sentence
as a bag of words. We distinguish between words at
the left and right of the source phrase being disam-
biguated.

As an illustration, Table 1 shows the feature rep-
resentation for the example depicted in Figure 1.
At the top, the reader may find the source sentence
containing the phraseAlElm which has been anno-
tated at the level of shallow syntax. The correspond-
ing source phrase and source sentence features are
shown below.

3.3 Soft Integration of DPT Predictions

We consider every instance offi as a separate classi-
fication problem. In each case, we collect the classi-
fier outcome for all possible phrase translationsej of

fi. However, SVMs outcomes are not probabilities
but unbounded real numbers. We transform them
into probabilities by applying thesoftmax function
described by Bishop (1995).

At translation time, we do not constrain the de-
coder to use the translationej with highest prob-
ability. Instead, we make all predictions available
and let the decoder choose. We have avoided imple-
menting a new decoder by pre-computing all DPT
predictions for all possible translations of all source
phrases appearing in the test set. The input text is
conveniently transformed into a sequence of iden-
tifiers5, which allows us to uniquely refer to every
distinct instance of every distinct word and phrase in
the test set. Translation tables are accordingly mod-
ified so that each distinct occurrence of every single
source phrase has a distinct list of phrase transla-
tion candidates with their corresponding DPT pre-
dictions.

fi ej PDPT (e|f) PMLE(e|f)
...
AlElm1 flag 0.1986 0.3241
AlElm1 the 0.0419 0.0207
AlElm1 mind 0.0401 0.0620
AlElm1 the flag 0.0397 0.0414
AlElm1 flag during 0.0394 0.0138
AlElm1 knowledge 0.0392 0.1103
AlElm1 flag caused 0.0387 0.0138
AlElm1 science 0.0377 0.1793
AlElm1 education 0.0377 0.0138
AlElm1 in mind 0.0371 0.0138
...

Table 2: Translation table. An Example

As an illustration, Table 2 shows a fragment of
the translation table corresponding to the phrase
“AlElm” in the running example. Notice how this
concrete instance has been properly identified by in-
dexing the phrase (“AlElm”→ “AlElm 1”). We show
DPT predictions and MLE-based (columns 3 and
4, respectively) for several phrase candidate trans-

5In our case a sequence ofwi tokens, wherew is a
word and i corresponds to the number of occurrences of
word w seen in the test set before the current one. For in-
stance, the source sentence in the example depicted in Fig-
ure 1 is transformed into” wywm AlAHd8 ,371 $hdt3
Edp8 mdn1 AfgAnyp tZAhrAt AHtjAj ElY456

Alrswm39 Alms}yp l873 Alnby (186 S )186 ,372 Hyv28

tm22 AHrAq AlElm1 AldnmArky .1128” .



lations sorted in decreasing DPT probability order.
The first observation is that both methods agree on
the top-scoring candidate translation, “flag”. How-
ever, the distribution of the probability mass is sig-
nificantly different. While, in the case of the MLE-
based model, there are three candidate translations
clearly outscoring the rest, concentrating more than
60% of the probability mass, in the case of the DPT
model predictions give a clear advantage to the top-
scoring candidate although with less probability, and
the rest of candidate translations obtain a very simi-
lar score.

4 Internal System Evaluation

In the following, we will evaluate two systems that
include DPT predictions and compare them with
the baseline which only considers MLE estimations.
These three system are identified as:

SMT baseline system.

DPT baseline system in which discriminative prob-
abilities based on MLE are replaced with DPT
predictions.

DPT+ baseline system extended with DPT predic-
tions as an additional feature.

4.1 Settings

We have focused on the Arabic-to-English task. The
training set consists of 123,622 parallel sentences.
After performing phrase extraction over the train-
ing data, and discarding source phrases ocurring
only once, translation candidates for 585,307 source
phrases were obtained.

All of these phrases are used to construct the
translation tables by frequency counts, but we con-
sider only those appearing more than 100 times in
the corpus to be representative enough to train the
classifiers. That represents about1% of the total
amount of phrases, but since they are the most fre-
quent ones they will cover most of the test set if
it belongs to the same domain. Besides, because
phrase alignments have been obtained automatically
and, therefore, include many errors, source phrases
may have, in their turn, a large number of associ-
ated possible phrase translations, most of them oc-
curring very few times. We have discarded many of

them by considering only as possible phrase transla-
tions those which are selected more than 0.5% of the
times as the actual translation. The resulting training
set consists of 5,321 Arabic source phrases.

Let us note that, because not all phrase pairs
which have a MLE-based prediction have also a
DPT prediction, but only those with a sufficient
number of training examples, in order to provide
equal opportunities to both models, we have incor-
porated translation probabilities for these phrases
pairs into the DPT model. Up to now, this incorpo-
ration has been done in a naı̈ve way by duplicating
the MLE probability.

4.2 A Heterogeneous Set of Metrics for
Automatic MT Evaluation

Most existing metrics limit their scope to the lexical
dimension. However, recently, there have been sev-
eral attempts to take into account deeper linguistic
levels. For instance,ROUGE (Lin and Och, 2004)
andMETEOR(Banerjee and Lavie, 2005) may con-
sider stemming. Additionally,METEOR may per-
form a lookup for synonymy in WordNet (Fellbaum,
1998). We may find as well several syntax-based
metrics (Liu and Gildea, 2005; Amigó et al., 2006;
Owczarzak et al., 2007; Mehay and Brew, 2007),
and even metrics operating at the level of shallow
semantics (Giménez and Màrquez, 2007b) and se-
mantics (Giménez, 2007). These metrics have been
showed to produce more reliable system evaluations
than metrics based on lexical similarity alone.

For the purpose of performing heterogeneous au-
tomatic MT evaluations, we use the IQMT package
(Giménez and Amigó, 2006), which provides a rich
set of more than 500 metrics at different linguistic
levels6. We have selected a representative set of met-
rics, based on different similarity criteria:

• Lexicaln-gram similarity (on word forms).

• Shallow-syntactic similarity (on part-of-speech
tags and base phrase chunks).

• Syntactic similarity (on dependency and con-
stituent trees).

• Shallow-semantic similarity (on named entities
and semantic roles)

6The IQMT software is available athttp://www.lsi.
upc.edu/∼nlp/IQMT.



• Semantic similarity (on discourse representa-
tions).

A deeply detailed description of the metric
set may be found in the IQMT technical manual
(Giménez, 2007).

4.3 Results

Level Metric SMT DPT DPT+

1-PER 0.5248 0.5224 0.5221
1-WER 0.3166 0.3075 0.3081
1-TER 0.3679 0.3606 0.3613
BLEU 0.2388 0.2387 0.2396
NIST 6.4044 6.3263 6.3225
GTM (e=1) 0.5708 0.5730 0.5705
GTM (e=2) 0.2166 0.2154 0.2161

Lexical GTM (e=3) 0.1756 0.1743 0.1750
RG-L 0.5290 0.5305 0.5276
RG-S⋆ 0.3442 0.3443 0.3410
RG-SU⋆ 0.3634 0.3635 0.3604
RG-W-1.2 0.3085 0.3111 0.3091
MTR-exact 0.4948 0.4991 0.4974
MTR-stem 0.5142 0.5164 0.5153
MTR-wnstm 0.5183 0.5207 0.5193
MTR-wnsyn 0.5396 0.5430 0.5413
SP-Op-⋆ 0.4150 0.4218 0.4185
SP-Oc-⋆ 0.4193 0.4237 0.4214

Shallow SP-NISTl 6.5745 6.4771 6.4790
Syntactic SP-NISTp 5.6618 5.6225 5.6161

SP-NISTiob 4.7187 4.6627 4.6795
SP-NISTc 4.1460 4.0858 4.1047
DP-Ol-⋆ 0.2019 0.2057 0.2049
DP-Oc-⋆ 0.3344 0.3314 0.3318
DP-Or-⋆ 0.2347 0.2319 0.2319
DP-HWCw 0.0575 0.0556 0.0574

Syntactic DP-HWCc 0.2118 0.2168 0.2181
DP-HWCr 0.1422 0.1474 0.1484
CP-Op-⋆ 0.4133 0.4183 0.4158
CP-Oc-⋆ 0.3823 0.3868 0.3847
CP-STM 0.2150 0.2144 0.2128
NE-Me-⋆ 0.2963 0.2979 0.2933
NE-Oe-⋆ 0.3518 0.3515 0.3472

Shallow NE-Oe-⋆⋆ 0.4161 0.4217 0.4185
Semantic SR-Mr-⋆ 0.0868 0.0841 0.0848

SR-Or-⋆ 0.2073 0.2059 0.2048
SR-Or 0.4143 0.4076 0.4104
DR-Or-⋆ 0.2101 0.2192 0.2157

Semantic DR-Orp-⋆ 0.3139 0.3272 0.3204
DR-STM 0.1563 0.1508 0.1591

Table 3: Automatic evaluation of MT results

Table 3 provides automatic evaluation results.
Metrics are grouped according to the linguistic level
at which they operate.

At the lexical level, while metrics based on re-
warding longern-gram matchings tend to prefer the
‘SMT’ baseline, variants ofROUGEandMETEOR
tend to prefer the ‘DPT’ system. Interestingly, the
‘DPT+’ attains the highest score only according to
BLEU, although not significantly.

At the shallow-syntactic level, metrics based on
lexical overlapping over parts-of-speech and base
chunk phrases prefer the ‘DPT’ and ‘DPT+’ alterna-
tives, with a slight advantage in favour of the ‘DPT’
system. However,NIST variants over sequences of
lemmas, parts-of-speech, chunk labels and chunk
types consistently prefer the ‘SMT’ baseline.

At the properly syntactic level, metrics exhibit
very different behaviors. For instance, with respect
to metrics based on lexical overlapping over depen-
dency trees, while the‘DP-Ol-⋆’ metric (i.e., over-
lapping between lexical items hanging at the same
level of the tree) gives a clear advantage to DPT
systems, the‘DP-Oc-⋆’ (i.e., lexical overlapping be-
tween grammatical categories) and‘DP-Or-⋆’ (i.e.,
lexical overlapping between grammatical relations)
metrics prefer the ‘SMT’ baseline. In contrast, met-
rics based on head-word chain matching (HWC)
over dependency trees and metrics based on lexical
overlapping over constituent trees clearly prefer the
DPT alternatives. Finally, the syntactic tree match-
ing (STM) metric confers a similar score to the three
systems.

At the shallow-semantic level, whereas metrics
based on lexical overlapping and matching between
named entities (NE) seem to prefer the ‘DPT’ sys-
tem, metrics based on semantic roles (SR) prefer the
‘SMT’ baseline.

Finally, at the semantic level, metrics based on
lexical overlapping between discourse representa-
tions (DR) confer a significant advantage to the DPT
alternatives, specially in the case of the ‘DPT’ sys-
tem. The semantic tree matching (STM) metric
gives a slight advantage to the ‘DPT+’ system.

5 Further Steps

This work has been our first approach to the Arabic-
to-English translation task, so, although results do
not considerably improve those of a standard SMT
system, we believe there is room for improvement.

Besides a better processing of Arabic and adding



Arabic lemmas to our feature set, we plan to refine
our system. That involves a better integration of
DPT predictions into the SMT system by completing
DPT probabilities for those phrases without predic-
tion applying a discounting. Other aspects such as
the optimization of the weights for every translation
model will be also explored.
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Framework for Automatic Machine Translation Eval-
uation. InProceedings of the 5th LREC, pages 685–
690.
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