In phrase-based SMT, weights of the several components are usually estimated via MERT on a development set.

FACT: Weights might not generalise well on different domain test sets.

GOAL: Readjust the weights to be more appropriate on those sets without the need for specialised data.

Method and results

This work combines MERT with a perception training to obtain more robust weights.

IN-DOMAIN TRAINING. An improvement of more than 2 points of BLEU with respect to the MERT baseline can be obtained.

OUT-OF-DOMAIN TRAINING. When using out-of-domain sets in both trainings slight improvements are still observed with the perception.

Methodology

Fundamental equation

\[
T(f) = \hat{e} = \arg\max \log P(e|f) = \arg\max \sum_i \log P(e_i) + \lambda_\alpha \log \lambda + \lambda_\beta \log \lambda,
\]

\[
\lambda_\alpha \log \lambda + \lambda_\beta \log \lambda = \lambda_\alpha \log \lambda + \lambda_\beta \log \lambda = \lambda_\alpha \log \lambda + \lambda_\beta \log \lambda + \lambda_\gamma \log \lambda.
\]

System development

After the SMT training, weights are fitted on a development set:

STAGE 1

Minimum Error Rate Training.

Fitted weights: \(\hat{X}_0 \)

STAGE 2

Perception Training.

Update of each feature weight \(\lambda_i \) for each sentence so that the translation is closer to the best attainable one (see algorithm).

The algorithm

INPUT: Training data \(\{(f,e)\}_i \), MERT initial weights \(\lambda \), \(N \) epochs, learning rate \(\epsilon \).

for each epoch \(n = 1, ... , N \) \n
for each example \(f, i = 1, ... , T \) \n
\(\hat{e} \leftarrow \arg\max \left(\log P(e|f) \right) \)

\(\text{tgt: argmax (BLEU(e|f))} \)

if \(\tilde{N}(f, \hat{e}) \neq \tilde{N}(f, \text{tgt}) \) then

\(\lambda_i \leftarrow \lambda_i + \epsilon \Delta h(f, \hat{e}, \text{tgt}, \text{guess}) \)

end if

end for

end for

GOLD STANDARD (tgt)

Sentence with the highest (smoothed) BLEU score in the \(\hat{e} \)-best list.

UPDATE RULE

Constant update rule only depending on the direction of change:

\[
\Delta h = \arg\max (\tilde{N}(f, \hat{e}) - \tilde{N}(f, \text{guess})).
\]

In-domain TRAINING

The quality of the translation worsens on development along in-domain training with Trdev while perturbing the weights.

ON TEST

Still, the quality improves significantly on out-domain tests:

Comparison

In/Out-domain Training on Out-of-domain N08 TEST

On an out-of-domain test set, both in-domain (blues) and out-of-domain (reds & greens) perception trainings improve MERT scores. The latter even surpass the fictitious value that MERT would obtain on N08, [N08]...

Out-of-domain TRAINING

During the perception training on N06 the quality of the translation is being improved. It gets a stable value over that of MERT on the same data set.

ON TEST

The improvement on out-of-domain test sets is even more evident in this case:

Acknowledgments

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013 under grant agreement numbers: 279947 and 247702) and from the Spanish Ministry of Science and Innovation (TIN2009-14075-C03).