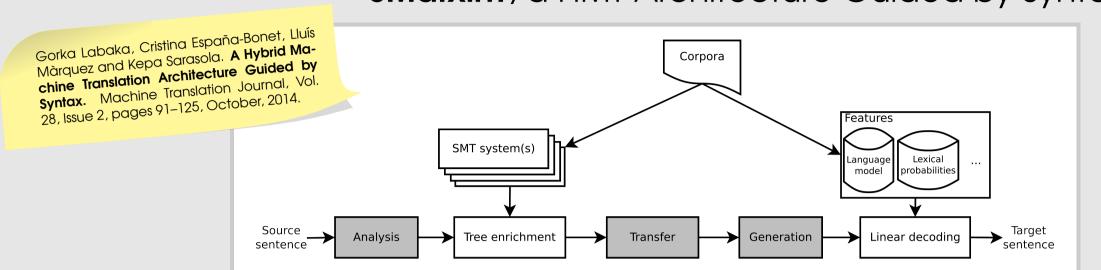
Journey through Natural Language Processing

Cristina España-Bonet

Hybrid Machine Translation

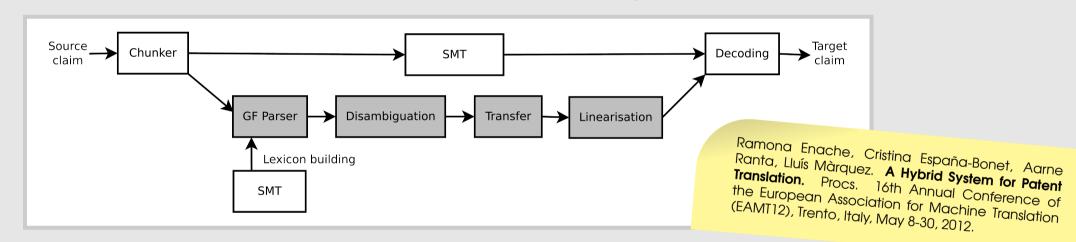
SMatxinT, a HMT Architecture Guided by Syntax



	TER	BLEU	NIST	GTM-2	MTR-st	RG-S*	ULC
Matxin SMT_b SMT_g	68.49	14.29 15.93 15.21	6.45	23.64	20.27 21.59 21.84	16.39	44.56
SMatxinT (m) SMatxinT (r)					22.52 22.51		

- Candidate chunk translations are calculated with an SMT system and used to enrich the RBMT treebased source representation with more alternatives
- The most probable combination among the available fragments is obtained with a monotone statistical decoding (m) following the order provided by the RBMT system
- The evaluation on news (out-of-domain) shows a preference for SMatxinT. There is no necessity for reordering the RBMT choice (r)

MOLTO, a HMT for Patent Translation



- A GF translator (RBMT) is built for the specific domain which, in turn, uses an in-domain SMT system to build its lexicon
- Another SMT system is on top of the GF to translate those phrases not covered by the grammar. Hard integration (HI) vs. Soft integration (SI)
- Evaluations consistently show a preference for the SI hybrid system in front of the two individual translators

	TER	BLEU	NIST	GTM-2	MTR-p	RG-S*	ULC
GF SMT		26.56 63.18		22.74 44.58	38.76 71.64	29.00 72.65	
SI1.0 SI0.5	25.10 25.02	55.88 63.56 63.60 63.15	10.02 10.03	44.86	71.96 71.94		67.56 67.60
En2Fr							

Document-Level Machine Translation

• Using a document-level (DL) decoder and considering a feature function that rewards coherent translations

Es2Ca on Tweets

• Capturing semantic information in corpora with bilingual word vector models that can be integrated as semantic space language models (biSSM) at translation time

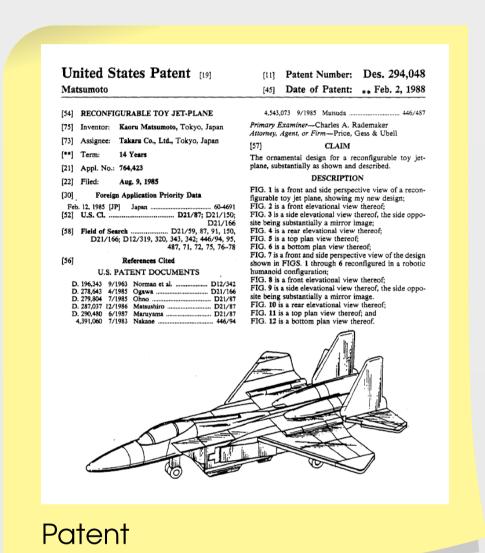
	TER	BLEU	NIST	MTR-p	RG-S*	SP-Op	ULC
DL DL + monoSSM DL + biSSM	72.61	28.48	7.52	23.28	30.33	_	77.49

Eva Martínez Garcia, Cristina España-Bonet, Lluís Màrquez. **Document-Level Machine Translation with Word Vector Models.** Procs. 18th Annual Conference of the European Association for Machine Translation (EAMT15), pages 59-66, Antalya, Turkey, May 2015.

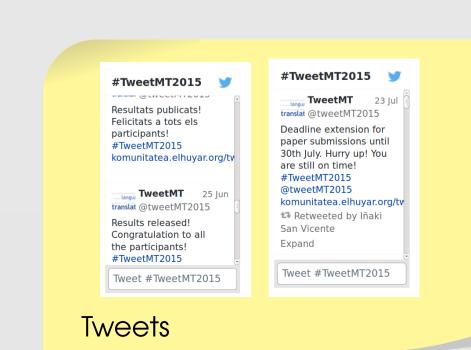
En2Es on News

Eva Martínez Garcia, Cristina España-Bonet, Lluís Màrquez. The UPC TweetMT participation: Translating Formal Tweets using Context Information. Procs. "XXXI Congreso de la Sociedad Española de Procesamiento de lenguaje natural", Alacant, Spain, September 2015.

	TER	BLEU	NIST	GTM-2	MTR-e	RG-S*	Ol	ULC
SMT DL			. —	73.02 72.97				



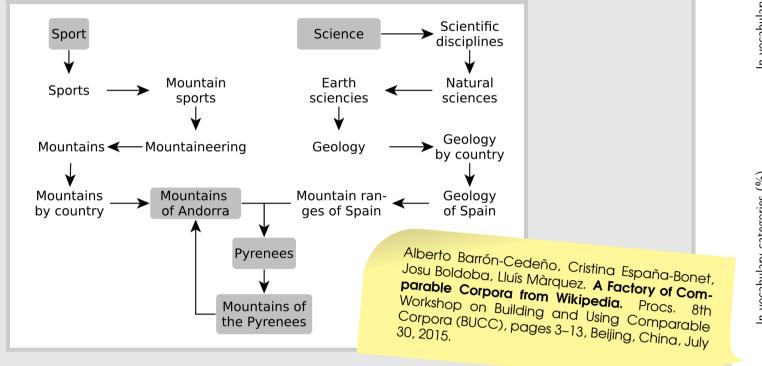
Wikipedia article



Comparable Corpora from Wikipedia

Domain Corpora

Given a domain, explore Wikipedia's category graph as a tree —breadth-first search departing from the main category visiting nodes only once



- Define an in-domain vocabulary (MFTs in *root* articles)
- Stopping criterion: levels with a mimimun percentage of categories with in-domain vocabulary in the title

Comparable Corpora

- Articles are related across languages via interlanguage links
- In-domain CC: monolingual extracted, union or intesection
- Usefulness of the corpora confirmed for training SMT systems
- Articles Depth

 50% 60% 50% 60%
 en-es en-es en es en es

 CS 18,168 8,251 6 5 5
 Sc 161,130 21,459 6 4 4 4
 Sp 72,315 1,980 8 8 3 4

CS: Computer Science, Sc: Science, Sp: Sports

Wikiparable, CC Extraction (ongoing work)

	Grap	h-based	IR-based			
	#Arts/Cat	Depth	hoSpear	#Arts/Cat	hoSpear	
1 English	50,514±121,881	5.9±2.8	0.38±0.20	61,239±73,248	0.27±0.15	
3 French	8,278±26,483	4.3 ± 1.9	0.39 ± 0.23	$18,158 \pm 17,871$	0.15 ± 0.13	
4 Spanish	6,638±17,050	4.4 ± 2.1	0.38 ± 0.22	21,490±19,605	0.18 ± 0.14	
2 German	$2,752\pm 9,573$	3.4 ± 1.9	0.42 ± 0.25	$12,887 \pm 18,876$	0.13 ± 0.13	
6 Arabic	$2,999 \pm 9,546$	3.6 ± 2.3	$0.45{\pm}0.28$	4,622±4,082	0.12 ± 0.13	
7 Romanian	$1,398\pm 8,683$	3.4 ± 1.8	0.42 ± 0.26	$1,750 \pm 1,839$	0.06 ± 0.13	
5 Catalan	1,140±4,693	3.3 ± 1.9	0.44 ± 0.22	$5,959\pm5,058$	0.14 ± 0.13	
8 Basque	$440 \pm 1,654$	3.1 ± 1.5	0.48 ± 0.25	$1,819\pm2,732$	0.13 ± 0.13	
9 Greek	$356 \pm 1,982$	2.8 ± 1.6	0.55 ± 0.22	1,604±2,378	0.16 ± 0.16	
10 Occitan	104±598	2.4 ± 1.3	0.51±0.29	419±2,040	0.14±0.17	
		_				

Mean values over 743 categories

Results for the most restrictive model for each architecture

- 700+ main categories (domains) and
 10 languages analised
- Graph-based and IR-based architectures compared
- For each architecture, parameters can be varied to obtain larger (more general) or smaller (more concrete) corpora
- Spearman correlation with an indomain corpus (root articles) or the density of in-domain terms can be used to evaluate the degree of indomainess
- The tool written in Java will be publicly available for both methods of CC extraction

Wikipedia Enrichment

Prototype for including relevant information into a Wikipedia article in language \mathcal{L}_1 from the same article in \mathcal{L}_2

- 1. Paragraph alignment (similarity measures)
- 2. Relevant paragraph identification (from unaligned paragraphs)
- 3. Determination of the insertion position into the target
- 4. Preliminar translation of the relevant paragraphs by a translation engine

