
Probabilistic analysis of algorithms:
What’s it good for?

Conrado Martínez

Univ. Politècnica de Catalunya, Spain

University of Cape Town
February 2008

1 Introduction

2 Example #1: Generating random derangements

3 Example #2: Updating Kd trees

4 Example #3: Partial sorting

5 Concluding remarks

Introduction

Probabilistic analysis of algorithms is the right tool
when

We want to analyze “typical” behavior of
algorithms
We want to compare algorithms with
asymptotically equivalent performances
We want to analyze randomized algorithms
(essential!)
We want to have some mathematical fun :)

Introduction

Probabilistic analysis of algorithms is the right tool
when

We want to analyze “typical” behavior of
algorithms
We want to compare algorithms with
asymptotically equivalent performances
We want to analyze randomized algorithms
(essential!)
We want to have some mathematical fun :)

Introduction

Probabilistic analysis of algorithms is the right tool
when

We want to analyze “typical” behavior of
algorithms
We want to compare algorithms with
asymptotically equivalent performances
We want to analyze randomized algorithms
(essential!)
We want to have some mathematical fun :)

Introduction

Probabilistic analysis of algorithms is the right tool
when

We want to analyze “typical” behavior of
algorithms
We want to compare algorithms with
asymptotically equivalent performances
We want to analyze randomized algorithms
(essential!)
We want to have some mathematical fun :)

Introduction

A few well known examples:
Quicksort
Find, a.k.a. Quickselect
Hashing
Simplex
Randomized data structures
and many more . . .

Introduction

A few well known examples:
Quicksort
Find, a.k.a. Quickselect
Hashing
Simplex
Randomized data structures
and many more . . .

Introduction

A few well known examples:
Quicksort
Find, a.k.a. Quickselect
Hashing
Simplex
Randomized data structures
and many more . . .

Introduction

A few well known examples:
Quicksort
Find, a.k.a. Quickselect
Hashing
Simplex
Randomized data structures
and many more . . .

Introduction

A few well known examples:
Quicksort
Find, a.k.a. Quickselect
Hashing
Simplex
Randomized data structures
and many more . . .

Introduction

A few well known examples:
Quicksort
Find, a.k.a. Quickselect
Hashing
Simplex
Randomized data structures
and many more . . .

Introduction

It was indeed very difficult for me to make a choice of
examples . . .

Introduction

. . . even if I restricted myself to those few that I’ve
worked out myself!

Randomized binary search trees
Optimal sampling for quicksort and quickselect
Adaptive sampling for quickselect
Updates and associative queries in relaxed Kd
trees
Exhaustive and random generation of
combinatorial objects
Partial sorting
Probabilistic analysis of binary search trees, skip
lists, . . .

1 Introduction

2 Example #1: Generating random derangements

3 Example #2: Updating Kd trees

4 Example #3: Partial sorting

5 Concluding remarks

Example #1: Generating random derangements

Le Problème des Derangements:
“A number of gentlemen, say n, surrender their top
hats in the cloakroom and proceed to the evening’s
enjoyment. After wining and dining (and wining some
more), they stumble back to the cloakroom and
confusedly take the first tophat they see. What is the
probability that no gentleman gets his own hat?”

Derangements

A derangement is a permutation without fixed
points: �(i) 6= i for any i, 1 � i � n
The number Dn of derangements of size n isDn = n! � � 10! � 11! + 12! � 13! + � � �+ (�1)nn! � = �n! + 1e � :
As n!1, Dn=n! � 1=e � 0:36788. In fact, e�1 is a
extremely good approximation to the probability
that a random permutation is a derangement forn � 10.

Derangements

A derangement is a permutation without fixed
points: �(i) 6= i for any i, 1 � i � n
The number Dn of derangements of size n isDn = n! � � 10! � 11! + 12! � 13! + � � �+ (�1)nn! � = �n! + 1e � :
As n!1, Dn=n! � 1=e � 0:36788. In fact, e�1 is a
extremely good approximation to the probability
that a random permutation is a derangement forn � 10.

Derangements

A derangement is a permutation without fixed
points: �(i) 6= i for any i, 1 � i � n
The number Dn of derangements of size n isDn = n! � � 10! � 11! + 12! � 13! + � � �+ (�1)nn! � = �n! + 1e � :
As n!1, Dn=n! � 1=e � 0:36788. In fact, e�1 is a
extremely good approximation to the probability
that a random permutation is a derangement forn � 10.

Excursion: FisherYates’ shuffle

procedure RandomPermutation(n)
for i 1 to n do A[i℄ i
for i n downto 1 doj Uniform(1; i)A[i℄$ A[j℄
return A

Excursion: Sattolo’s algorithm

procedure RandomCyclicPermutation(n)
for i 1 to n do A[i℄ i
for i n downto 1 doj Uniform(1; i� 1)A[i℄$ A[j℄
return A

Excursion: The rejection method

Require: n 6= 1
procedure RandomDerangement(n)

repeatA RandomPermutation(n)
until IsDerangement(A) return A

P[A is a derangement℄ � 1eE [# of calls to Random℄ = e � n+O(1)

Excursion: The rejection method

Require: n 6= 1
procedure RandomDerangement(n)

repeatA RandomPermutation(n)
until IsDerangement(A) return A

P[A is a derangement℄ � 1eE [# of calls to Random℄ = e � n+O(1)

A recurrence for the number of
derangements

D0 = 1;D1 = 0Dn = (n� 1)Dn�1 + (n� 1)Dn�2

A recurrence for the number of
derangements

D0 = 1;D1 = 0Dn = (n� 1)Dn�1 + (n� 1)Dn�2
Choice #1: n belongs to a cycle of length > 2.
The derangement of size n is built by constructing a
derangement of size n� 1 and then n is inserted into
any of the cycles (of length � 2); there are (n� 1)
possible ways to do that

A recurrence for the number of
derangements

D0 = 1;D1 = 0Dn = (n� 1)Dn�1 + (n� 1)Dn�2
Choice #2: n belongs to a cycle of length 2.
The derangement of size n is built by constructing a
cycle of size 2 with n and some j, 1 � j � n� 1; then we
build a derangement of size n� 2 with the remaining
elements

The recursive methodC f1; 2; : : : ; ng
RandomDerangementRec(n;C)

Require: n 6= 1
procedure RandomDerangementRec(n, C)

if n � 1 then returnj a random element from Cp Uniform(0; 1)
if p < (n� 1)Dn�2=Dn then

RandomDerangementRec(n� 2; C n fj; ng)�(n) j;�(j) n
else

RandomDerangementRec(n� 1; C n fng)�(n) �(j);�(j) n

Our algorithm

Require: n 6= 1
procedure RandomDerangement(n)

for i 1 to n do A[i℄ i;mark[i℄ falsei n;u n
while u � 2 do

if :mark[i℄ thenj a random unmarked element in A[1::i� 1℄A[i℄$ A[j℄
if j has to close a cycle thenmark[j℄ true; u u� 1u u� 1i i� 1

return A

Our algorithm

Require: n 6= 1
procedure RandomDerangement(n)

for i 1 to n do A[i℄ i;mark[i℄ falsei n;u n
while u � 2 do

if :mark[i℄ then
repeat j Random(1; i � 1)
until :mark[j℄A[i℄$ A[j℄p Uniform(0; 1)
if p < (u� 1)Du�2=Dumark[j℄ true;u u� 1u u� 1i i� 1

return A

The analysis

of marked elements = # of cycles (Cn)
of iterations = # of calls to Uniform = n�CnG = # of calls to RandomGi = # of calls to Random at iteration iE [cost℄ = n� E [Cn℄ + E [G℄= n� E [Cn℄ + X1<i�n E [Gi℄

The analysis

of marked elements = # of cycles (Cn)
of iterations = # of calls to Uniform = n�CnG = # of calls to RandomGi = # of calls to Random at iteration iE [cost℄ = n� E [Cn℄ + E [G℄= n� E [Cn℄ + X1<i�n E [Gi℄

The analysis

of marked elements = # of cycles (Cn)
of iterations = # of calls to Uniform = n�CnG = # of calls to RandomGi = # of calls to Random at iteration iE [cost℄ = n� E [Cn℄ + E [G℄= n� E [Cn℄ + X1<i�n E [Gi℄

The analysis

of marked elements = # of cycles (Cn)
of iterations = # of calls to Uniform = n�CnG = # of calls to RandomGi = # of calls to Random at iteration iE [cost℄ = n� E [Cn℄ + E [G℄= n� E [Cn℄ + X1<i�n E [Gi℄

The analysis

of marked elements = # of cycles (Cn)
of iterations = # of calls to Uniform = n�CnG = # of calls to RandomGi = # of calls to Random at iteration iE [cost℄ = n� E [Cn℄ + E [G℄= n� E [Cn℄ + X1<i�n E [Gi℄

The analysis

The computation of E [Cn℄ can be done via standard
generating function techniques:C(z; v) = XA2D zjAjjAj!v# cycles(A)= exp�v �log 11� z � z�� = e�vz 1(1� z)vE hvCni = n!Dn [zn℄C(z; v) = e1�v(v � 1)!nv�1(1 +O(n�1+�))E [Cn℄ = log n+O(1); V[Cn℄ = log n+O(1)Cn � log nplog n ! N (0; 1)

The analysis

The computation of E [Cn℄ can be done via standard
generating function techniques:C(z; v) = XA2D zjAjjAj!v# cycles(A)= exp�v �log 11� z � z�� = e�vz 1(1� z)vE hvCni = n!Dn [zn℄C(z; v) = e1�v(v � 1)!nv�1(1 +O(n�1+�))E [Cn℄ = log n+O(1); V[Cn℄ = log n+O(1)Cn � log nplog n ! N (0; 1)

The analysis

The computation of E [Cn℄ can be done via standard
generating function techniques:C(z; v) = XA2D zjAjjAj!v# cycles(A)= exp�v �log 11� z � z�� = e�vz 1(1� z)vE hvCni = n!Dn [zn℄C(z; v) = e1�v(v � 1)!nv�1(1 +O(n�1+�))E [Cn℄ = log n+O(1); V[Cn℄ = log n+O(1)Cn � log nplog n ! N (0; 1)

The analysis

The computation of E [Cn℄ can be done via standard
generating function techniques:C(z; v) = XA2D zjAjjAj!v# cycles(A)= exp�v �log 11� z � z�� = e�vz 1(1� z)vE hvCni = n!Dn [zn℄C(z; v) = e1�v(v � 1)!nv�1(1 +O(n�1+�))E [Cn℄ = log n+O(1); V[Cn℄ = log n+O(1)Cn � log nplog n ! N (0; 1)

The analysis

The computation of E [Cn℄ can be done via standard
generating function techniques:C(z; v) = XA2D zjAjjAj!v# cycles(A)= exp�v �log 11� z � z�� = e�vz 1(1� z)vE hvCni = n!Dn [zn℄C(z; v) = e1�v(v � 1)!nv�1(1 +O(n�1+�))E [Cn℄ = log n+O(1); V[Cn℄ = log n+O(1)Cn � log nplog n ! N (0; 1)

The analysis

Mi indicator variable for the event “A[i℄ gets
marked”Mi = 1 =) Gi = 0E [G℄ = X1<i�n E [Gi jMi = 0℄ � P[Mi = 0℄

The analysis

Mi indicator variable for the event “A[i℄ gets
marked”Mi = 1 =) Gi = 0E [G℄ = X1<i�n E [Gi jMi = 0℄ � P[Mi = 0℄

The analysis

Mi indicator variable for the event “A[i℄ gets
marked”Mi = 1 =) Gi = 0E [G℄ = X1<i�n E [Gi jMi = 0℄ � P[Mi = 0℄

The analysisUi = # of unmarked elements in A[1::i℄;Un = nBi+1 = # of marked elements in A[1::i℄;Bn+1 = 0Ui +Bi+1 = i
If A[i℄ is not marked then Gi is geometrically
distributed with probability of success(Ui � 1)=(i � 1) = (i� 1�Bi+1)=(i� 1); henceE [Gi jMi = 0℄ = E � i� 1i� 1�Bi+1 jMi = 0�

The analysisUi = # of unmarked elements in A[1::i℄;Un = nBi+1 = # of marked elements in A[1::i℄;Bn+1 = 0Ui +Bi+1 = i
If A[i℄ is not marked then Gi is geometrically
distributed with probability of success(Ui � 1)=(i � 1) = (i� 1�Bi+1)=(i� 1); henceE [Gi jMi = 0℄ = E � i� 1i� 1�Bi+1 jMi = 0�

The analysisUi = # of unmarked elements in A[1::i℄;Un = nBi+1 = # of marked elements in A[1::i℄;Bn+1 = 0Ui +Bi+1 = i
If A[i℄ is not marked then Gi is geometrically
distributed with probability of success(Ui � 1)=(i � 1) = (i� 1�Bi+1)=(i� 1); henceE [Gi jMi = 0℄ = E � i� 1i� 1�Bi+1 jMi = 0�

The analysisUi = # of unmarked elements in A[1::i℄;Un = nBi+1 = # of marked elements in A[1::i℄;Bn+1 = 0Ui +Bi+1 = i
If A[i℄ is not marked then Gi is geometrically
distributed with probability of success(Ui � 1)=(i � 1) = (i� 1�Bi+1)=(i� 1); henceE [Gi jMi = 0℄ = E � i� 1i� 1�Bi+1 jMi = 0�

The analysis

Bi+1 � Cn0 � Bi+1 � iUi 6= 1 and Bi+1 6= i� 1 for all 1 � i � n
If Mi = 0 then Bi+1 < i� 1

The analysis

Bi+1 � Cn0 � Bi+1 � iUi 6= 1 and Bi+1 6= i� 1 for all 1 � i � n
If Mi = 0 then Bi+1 < i� 1

The analysis

Bi+1 � Cn0 � Bi+1 � iUi 6= 1 and Bi+1 6= i� 1 for all 1 � i � n
If Mi = 0 then Bi+1 < i� 1

The analysis

Bi+1 � Cn0 � Bi+1 � iUi 6= 1 and Bi+1 6= i� 1 for all 1 � i � n
If Mi = 0 then Bi+1 < i� 1

The analysis

E [G℄ = X1<i�n E � i� 1i� 1�Bi+1 jMi = 0� � P[Mi = 0℄� X1<i�n E �min�i� 1; i� 1i� 1� Cn��� X1�k�bn=2P[Cn = k℄0�k+1Xi=1(i� 1) + bn=2Xi=k+2 i� 1i� 1� k1A= n� 1� E [Cn℄ + 12 E hCn2i+O(E [Cn log(n� Cn)℄)= n+O(E hCn2i) +O(log n � E [Cn℄) = n+O(log2 n)

The analysis

E [G℄ = X1<i�n E � i� 1i� 1�Bi+1 jMi = 0� � P[Mi = 0℄� X1<i�n E �min�i� 1; i� 1i� 1� Cn��� X1�k�bn=2P[Cn = k℄0�k+1Xi=1(i� 1) + bn=2Xi=k+2 i� 1i� 1� k1A= n� 1� E [Cn℄ + 12 E hCn2i+O(E [Cn log(n� Cn)℄)= n+O(E hCn2i) +O(log n � E [Cn℄) = n+O(log2 n)

The analysis

E [G℄ = X1<i�n E � i� 1i� 1�Bi+1 jMi = 0� � P[Mi = 0℄� X1<i�n E �min�i� 1; i� 1i� 1� Cn��� X1�k�bn=2P[Cn = k℄0�k+1Xi=1(i� 1) + bn=2Xi=k+2 i� 1i� 1� k1A= n� 1� E [Cn℄ + 12 E hCn2i+O(E [Cn log(n� Cn)℄)= n+O(E hCn2i) +O(log n � E [Cn℄) = n+O(log2 n)

The analysis

E [G℄ = X1<i�n E � i� 1i� 1�Bi+1 jMi = 0� � P[Mi = 0℄� X1<i�n E �min�i� 1; i� 1i� 1� Cn��� X1�k�bn=2P[Cn = k℄0�k+1Xi=1(i� 1) + bn=2Xi=k+2 i� 1i� 1� k1A= n� 1� E [Cn℄ + 12 E hCn2i+O(E [Cn log(n� Cn)℄)= n+O(E hCn2i) +O(log n � E [Cn℄) = n+O(log2 n)

The analysis

E [G℄ = X1<i�n E � i� 1i� 1�Bi+1 jMi = 0� � P[Mi = 0℄� X1<i�n E �min�i� 1; i� 1i� 1� Cn��� X1�k�bn=2P[Cn = k℄0�k+1Xi=1(i� 1) + bn=2Xi=k+2 i� 1i� 1� k1A= n� 1� E [Cn℄ + 12 E hCn2i+O(E [Cn log(n� Cn)℄)= n+O(E hCn2i) +O(log n � E [Cn℄) = n+O(log2 n)

The analysis

Since we also have E [G℄ � n� E [Cn℄, we have finallyE [cost℄ = n� E [Cn℄ + E [G℄ = 2n+O(log2 n)

1 Introduction

2 Example #1: Generating random derangements

3 Example #2: Updating Kd trees

4 Example #3: Partial sorting

5 Concluding remarks

Example #2: Updating Kd trees

Example #2: Updating Kd trees

1

1

Example #2: Updating Kd trees

1

2

1

2

Example #2: Updating Kd trees

1

2

1

2

3
3

Example #2: Updating Kd trees

1

2

1

2

3
3

4

4

Example #2: Updating Kd trees

1

2

1

2

3
3

4

4

5 5

Insertion in relaxed Kd treesrkdt insert (rkdt t, onst Elem& x) {int n = size(t);int u = random (0,n);if (u == n)return insert_at_root(t, x);else { // t annot be emptyint i = t -> disr;if (x[i℄ < t -> key [i℄)t -> left = insert (t -> left , x);elset -> right = insert (t -> right , x);return t;}}

Deletion in relaxed Kd treesrkdt delete (rkdt t, onst Elem& x) {if (t == NULL) return NULL;if (t -> key == x)return join(t -> left , t -> right);int i = t -> disr;if (x -> key[i℄ < t -> key[i℄)t -> left = delete (t -> left , x);elset -> right = delete (t -> right , x);return t;}

Split: Case #1

t r

Split: Case #1

t r

Split: Case #1

t r

Split: Case #2

t

r

Split: Case #2

t

r

Split: Case #2

t

r

Split: Case #2

t

r

Analysis of split/joinsn = avg. number of visited nodes in a splitmn = avg. number of visited nodes in a joinsn = 1 + 2nK X0�j<n j + 1n+ 1sj + 2(K � 1)nK X0�j<n sj+ K � 1K X0�j<n�n;jmj ;
where �n;j is probability of joining two trees with
total size j .

Analysis of split/joinsn = avg. number of visited nodes in a splitmn = avg. number of visited nodes in a joinsn = 1 + 2nK X0�j<n j + 1n+ 1sj + 2(K � 1)nK X0�j<n sj+ K � 1K X0�j<n�n;jmj ;
where �n;j is probability of joining two trees with
total size j .

Analysis of split/joinsn = avg. number of visited nodes in a splitmn = avg. number of visited nodes in a joinsn = 1 + 2nK X0�j<n j + 1n+ 1sj + 2(K � 1)nK X0�j<n sj+ K � 1K X0�j<n�n;jmj ;
where �n;j is probability of joining two trees with
total size j .

Analysis of split/join

The recurrence for sn issn = 1 + 2nK X0�j<n j + 1n+ 1sj + 2(K � 1)nK X0�j<n sj+ 2(K � 1)nK X0�j<n n� jn+ 1mj ;
with s0 = 0.
The recurrence for mn has exactly the same shape
with the rôles of sn and mn interchanged; it easily
follows that sn = mn.

Analysis of split/join

Define S(z) = Xn�0 snzn
The recurrence for sn translates toz d2Sdz2 + 21� 2z1� z dSdz� 2�3K � 2K � z� S(z)(1� z)2 = 2(1� z)3 ;
with initial conditions S(0) = 0 and S0(0) = 1.

Analysis of split/join

The homogeneous second order linear ODE is of
hypergeometric type.
An easy particular solution of the ODE is�12 � KK � 1� 11� z

Analysis of split/join

Theorem
The generating function S(z) of the expected cost of
split is, for any K � 2,S(z) = 12 11� 1K �(1� z)�� � 2F1 � 1� �; 2 � �2 ���� z�� 11� z � ;
where � = �(K) = 12 �1 +q17� 16K �.

Analysis of split/join

Theorem
The expected cost sn of splitting a relaxed Kd tree of
size n is sn = �(K)n�(K) + o(n);
with � = 12 11� 1K �(2�� 1)��3(�) ;� = �� 1 = 12 0�s17� 16K � 11A :

Analysis of split/join

7060

1.1

K

100908010

1.2

403020

1.5

1.4

50

1.3

1.0

Plot of �(K)

The cost of insertions and deletions

The recurrence for the expected cost of an
insertion isIn = Inn+ 1 + �1� 1n+ 1�0�1 + 2n X0�j<n j + 1n+ 1Ij1A= Inn+ 1 + 1 +O� 1n�+ 2n+ 1 X0�j<n j + 1n+ 1Ij :
with In the average cost of an insertion at root
The expected cost of deletions Dn satisfies a
similar recurrence; it is asymptotically equivalent to
the average cost of insertions
We substitute In by the costs obtained previously
(sn)

The cost of insertions and deletions

Theorem
Let In and Dn denote the average cost of a
randomized insertion and randomized deletion in a
random relaxed Kd tree of size n using split and join.
Then1 if K = 2 then In � Dn = 4 lnn+O(1).2 if K > 2 thenIn � Dn = ��� 1�+ 1n��1 +O(log n);

where In = � n� +O(1).

The cost of insertions and deletions

Theorem
Let In and Dn denote the average cost of a
randomized insertion and randomized deletion in a
random relaxed Kd tree of size n using split and join.
Then1 if K = 2 then In � Dn = 4 lnn+O(1).2 if K > 2 thenIn � Dn = ��� 1�+ 1n��1 +O(log n);

where In = � n� +O(1).
Note that for K > 2, �(K) > 1!

Copybased insertions

2

1

3

4

5

x

x

1

2

3 4

5

Copybased insertions

5 2

3 4

x

1

2

1

3

4

5

x

Copybased insertions

x

1

2

3 4

5

2

1

3

4

5

x

Copybased insertions

3
2

1

3

4

5

x

5

x

1

2

4

Copybased insertions

3

5

x

1

2

4

2

1

3

4

5

x

Excursion: Partial match

Given a query q = (q0; : : : ; qK1) where each qi 2 [0; 1℄ orqi = �, find all elements x in the Kd tree such thatxi = qi whenever qi 6= �.
Partial matchvoid partial_math(rkdt t, query q) {if (t == NULL) return ;if (mathes (t -> key , q))report (t-> key);int i = t -> disr ;if (q[i℄ == '*') {partial_math(t -> left , q);partial_math(t -> right , q);} else if (q[i℄ < t -> key) {partial_math(t -> left , q);} else {partial_math(t -> left , q);}}

Analysis of copybased updates

The cost of building T using copybased insertion of a
key x:C(T) = P (T) + 1K jLj+ 1jT j+ 1C(L) + 1K jRj+ 1jT j+ 1C(R)+ K � 1K (C(L) + C(R)) ;
where P (T) denotes the number of nodes visited by a
partial match in T � fxg with queryq = (x0; : : : ; xi�1; �; xi+1; : : : ; xK�1)

Analysis of copybased updates

The cost of making an insertion at root into a tree
of size n:Cn = Pn + 2nK X0�k<n k + 1n+ 1Ck + 2(K � 1)nK X0�k<nCk:
with Pn the expected cost of a partial match in a
random relaxed Kd tree of size n with only one
specified coordinate out of K coordinates

Analysis of copybased updates

Theorem (Duch et al. 1998, Martínez et al. 2001)
The expected cost Pn (measured as the number of key
comparisons) of a partial match query with s out of K
attributes specified, 0 < s < K , in a randomly built
relaxed Kd tree of size n isPn = �(s=K) � n�(s=K) +O(1);
where � = �(x) = �p9� 8x� 1� =2;�(x) = �(2� + 1)(1� x)(� + 1)�3 (�+ 1) ;
and �(x) is Euler’s Gamma function.

Analysis of copybased updates

We will use Roura’s Continuous Master Theorem to
solve recurrences of the form:Fn = tn + X0�j<nwn;jFj ; n � n0;
where tn is the socalled toll function and the
quantities wn;j � 0 are called weights

Excursion: Roura’s Continuous Master
Theorem

Theorem (Roura 2001)
Let tn � Cna logb n for some constants C , a � 0 andb > �1, and let !(z) be a real function over [0; 1℄ such
that X0�j<n �����wn;j � Z (j+1)=nj=n !(z) dz����� = O(n�d)
for some constant d > 0. Let �(x) = R 10 zx !(z) dz, and
define H = 1� �(a). Then1 If H > 0 then Fn � tn =H.2 If H = 0 then Fn � tn lnn=H0, whereH0 = �(b+ 1) R 10 za ln z !(z) dz .3 If H < 0 then Fn = �(n�), where � is the unique real

solution of �(x) = 1.

Analysis of copybased updates

Applying the CMT to our recurrence we have!(z) = 2zK + 2(K�1)Ktn = Pn =) a = % = �(1=K) = (p9� 8=K � 1)=2
Thus H = 0

Analysis of copybased updates

Applying the CMT to our recurrence we have!(z) = 2zK + 2(K�1)Ktn = Pn =) a = % = �(1=K) = (p9� 8=K � 1)=2
Thus H = 0
We have to compute H0 with b = 0H0 = �(b+ 1) Z 10 za!(z) ln z dz
and get H0 = 2K%2 + (4K � 2)% + 4K � 3K(%+ 2)2(%+ 1)2 :

Analysis of copybased updates

Theorem
The average cost Cn of copybased insertion at root
of a random relaxed Kd tree isCn = � n% lnn+ o(n lnn);
where% = %(K) = �(1=K) = �q9� 8=K � 1� =2; = �(1=K)H0 = �(2% + 1)K(%+ 2)2(%+ 1)2(1 � 1K)�3(%+ 1)(K%2 + (4K � 2)% + (4K � 3)) :
The average cost C 0n of copybased deletion of the
root of a random relaxed Kd tree of size n+ 1 is Cn .

The cost of insertions and deletions (2)

Theorem
For any fixed dimension K � 2, the average cost of a
randomized insertion or deletion in random relaxedKd tree of size n using copybased updates isIn � Dn = 2 lnn+�(1):

The cost of insertions and deletions (2)

Theorem
For any fixed dimension K � 2, the average cost of a
randomized insertion or deletion in random relaxedKd tree of size n using copybased updates isIn � Dn = 2 lnn+�(1):
The “reconstruction” phase has constant cost on the
average!

1 Introduction

2 Example #1: Generating random derangements

3 Example #2: Updating Kd trees

4 Example #3: Partial sorting

5 Concluding remarks

Example #3: Partial sorting

Partial sorting: Given an array A of n elements
and a value 1 � m � n, rearrange A so that its firstm positions contain the m smallest elements in
ascending order
For m = �(n) it might be OK to sort the array;
otherwise, we are doing too much work

Example #3: Partial sorting

Partial sorting: Given an array A of n elements
and a value 1 � m � n, rearrange A so that its firstm positions contain the m smallest elements in
ascending order
For m = �(n) it might be OK to sort the array;
otherwise, we are doing too much work

A few common solutions

Idea #1: Partial heapsort
Build a heap with the n elements and perform m
extractions of the heap’s minimum
The worstcase cost is �(n+m logn)
This the “traditonal” implementation of C++ STL’spartial_sort

A few common solutions

Idea #1: Partial heapsort
Build a heap with the n elements and perform m
extractions of the heap’s minimum
The worstcase cost is �(n+m logn)
This the “traditonal” implementation of C++ STL’spartial_sort

A few common solutions

Idea #1: Partial heapsort
Build a heap with the n elements and perform m
extractions of the heap’s minimum
The worstcase cost is �(n+m logn)
This the “traditonal” implementation of C++ STL’spartial_sort

A few common solutions

Idea #2: Online selection
Build a heap with the m first elements; then scan
the remaining n�m elements and update the heap
as needed; finally extract the m elements from the
heap
The worstcase cost is �(n logm)
Not very attractive unless m is very small or if used
in online settings

A few common solutions

Idea #2: Online selection
Build a heap with the m first elements; then scan
the remaining n�m elements and update the heap
as needed; finally extract the m elements from the
heap
The worstcase cost is �(n logm)
Not very attractive unless m is very small or if used
in online settings

A few common solutions

Idea #2: Online selection
Build a heap with the m first elements; then scan
the remaining n�m elements and update the heap
as needed; finally extract the m elements from the
heap
The worstcase cost is �(n logm)
Not very attractive unless m is very small or if used
in online settings

A few common solutions

Idea #3: “Quickselsort”
Find the mth smallest element with quickselect,
then quicksort the preceding m� 1 elements
The average cost is �(n+m logm)
Uses two basic algorithms widely available (and highly
tuned for performance in standard libraries)

A few common solutions

Idea #3: “Quickselsort”
Find the mth smallest element with quickselect,
then quicksort the preceding m� 1 elements
The average cost is �(n+m logm)
Uses two basic algorithms widely available (and highly
tuned for performance in standard libraries)

A few common solutions

Idea #3: “Quickselsort”
Find the mth smallest element with quickselect,
then quicksort the preceding m� 1 elements
The average cost is �(n+m logm)
Uses two basic algorithms widely available (and highly
tuned for performance in standard libraries)

Partial quicksort

void partial_quiksort(vetor <Elem >& A,int i, int j, int m) {if (i < j) {int p = get_pivot (A, i, j);swap(A[p℄, A[l℄);int k;partition (A, i, j, k);partial_quiksort(A, i, k - 1, m);if (k < m - 1)partial_quiksort(A, k + 1, j, m);} }

The analysis

Probability that the selected pivot is the kth of n
elements: �n;k
Average number of comparisons Pn;m to sort them smallest elements out of n:Pn;m = n� 1 + nXk=m+1�n;k � Pk�1;m+ mXk=1�n;k � (Pk�1;k�1 + Pn�k;m�k)

The analysis

Probability that the selected pivot is the kth of n
elements: �n;k
Average number of comparisons Pn;m to sort them smallest elements out of n:Pn;m = n� 1 + nXk=m+1�n;k � Pk�1;m+ mXk=1�n;k � (Pk�1;k�1 + Pn�k;m�k)

The analysis

For m = n, partial quicksort � quicksort; let qn
denote the average number of comparisons used
by quicksort
Hence,Pn;m = n� 1 + X0�k<m�n;k+1 � qk+ nXk=m+1�n;k � Pk�1;m + mXk=1 �n;k � Pn�k;m�k (1)

The analysis

For m = n, partial quicksort � quicksort; let qn
denote the average number of comparisons used
by quicksort
Hence,Pn;m = n� 1 + X0�k<m�n;k+1 � qk+ nXk=m+1�n;k � Pk�1;m + mXk=1 �n;k � Pn�k;m�k (1)

The analysis

The recurrence for Pn;m is the same as for
quickselect but the toll function istn;m = n� 1 + X0�k<m�n;k+1 � qk
Up to now, everything holds no matter which pivot
selection scheme do we use; for the standard
variant we must take �n;k = 1=n, for all 1 � k � n

The analysis

The recurrence for Pn;m is the same as for
quickselect but the toll function istn;m = n� 1 + X0�k<m�n;k+1 � qk
Up to now, everything holds no matter which pivot
selection scheme do we use; for the standard
variant we must take �n;k = 1=n, for all 1 � k � n

The analysis: Generating functions

Define the two BGFsP (z; u) = Xn�0 X1�m�nPn;mznumT (z; u) = Xn�0 X1�m�n tn;mznum
Then the recurrence (1) translates to�P�z = P (z; u)1� z + uP (z; u)1� uz + �T�z (2)

The analysis: Generating functions

Define the two BGFsP (z; u) = Xn�0 X1�m�nPn;mznumT (z; u) = Xn�0 X1�m�n tn;mznum
Then the recurrence (1) translates to�P�z = P (z; u)1� z + uP (z; u)1� uz + �T�z (2)

The analysis: Generating functions

Let P (z; u) = F (z; u) + S(z; u), where F (z; u)
corresponds to the selection part of the toll
function (n� 1) and S(z; u) to the sorting part
(
Pk qk=n)
Let TF (z; u) = Xn�0 X1�m�n(n� 1)znumTS(z; u) = Xn�0 X1�m�n 1n 0� X0�k<m qk1A znum

The analysis: Generating functions

Let P (z; u) = F (z; u) + S(z; u), where F (z; u)
corresponds to the selection part of the toll
function (n� 1) and S(z; u) to the sorting part
(
Pk qk=n)
Let TF (z; u) = Xn�0 X1�m�n(n� 1)znumTS(z; u) = Xn�0 X1�m�n 1n 0� X0�k<m qk1A znum

The analysis: Generating functions

Then, each of F (z; u) and S(z; u) satisfies a
differential equation like (2) andF (z; u) = 1(1� z)(1 � zu)� �Z (1� z)(1 � zu)�TF�z dz +KF�S(z; u) = 1(1� z)(1 � zu)� �Z (1� z)(1 � zu)�TS�z dz +KS�

The analysis: Generating functions

F (z; u) satisfies exactly the same differential
equation as standard quickselect; it is well known
(Knuth, 1971) that for 1 � m � n,Fn;m = [znum℄F (z; u) = 2�n+ 3 + (n+ 1)Hn� (m+ 2)Hm � (n+ 3�m)Hn+1�m�

The analysis: Generating functions

To compute S(z; u), we need first to determineTS(z; u) �TS�z = u1� z Q(uz)1� uz
where Q(z) =Pn�0 qnzn .
With the toll function n� 1, we solve the
recurrence for quicksort to getQ(z) = 2(1� z)2 �ln 11� z � z�

The analysis: Generating functions

To compute S(z; u), we need first to determineTS(z; u) �TS�z = u1� z Q(uz)1� uz
where Q(z) =Pn�0 qnzn .
With the toll function n� 1, we solve the
recurrence for quicksort to getQ(z) = 2(1� z)2 �ln 11� z � z�

The analysis: Generating functions

Hence,S(z; u) = 1(1� z)(1� uz) �Z uQ(uz) dz +KS�= 2(1� uz)2(1� z) ln 11� uz+ 2(1� z)(1 � uz) ln 11� uz� 4 uz(1� uz)2(1� z)

The analysis: Generating functions

Extracting coefficients Sn;m = [znum℄S(z; u)Sn;m = 2(m+ 1)Hm � 6m+ 2Hm
And finallyPn;m = 2n+ 2(n + 1)Hn � 2(n+ 3�m)Hn+1�m� 6m+ 6

The analysis: Generating functions

Extracting coefficients Sn;m = [znum℄S(z; u)Sn;m = 2(m+ 1)Hm � 6m+ 2Hm
And finallyPn;m = 2n+ 2(n + 1)Hn � 2(n+ 3�m)Hn+1�m� 6m+ 6

Partial quicksort vs. quickselsort

The average number of comparisons made by
quickselsort is Qn;m = Fn;m + qm�1
Using partial quicksort we saveQn;m � Pn;m = 2m� 4Hm + 2
comparisons on the average

Partial quicksort vs. quickselsort

The average number of comparisons made by
quickselsort is Qn;m = Fn;m + qm�1
Using partial quicksort we saveQn;m � Pn;m = 2m� 4Hm + 2
comparisons on the average

Final remarks on partial quicksort

Partial quicksort avoids some of the redundant
comparisons, exchanges, . . . made by quickselsort
It is easily implemented
It benefits from standard optimization techniques:
sampling, recursion removal, recursion cutoff on
small subfiles, improved partitioning schems, etc.
The same idea can be applied to similar algorithms
like radix sorting and quicksort for strings

Final remarks on partial quicksort

Partial quicksort avoids some of the redundant
comparisons, exchanges, . . . made by quickselsort
It is easily implemented
It benefits from standard optimization techniques:
sampling, recursion removal, recursion cutoff on
small subfiles, improved partitioning schems, etc.
The same idea can be applied to similar algorithms
like radix sorting and quicksort for strings

Final remarks on partial quicksort

Partial quicksort avoids some of the redundant
comparisons, exchanges, . . . made by quickselsort
It is easily implemented
It benefits from standard optimization techniques:
sampling, recursion removal, recursion cutoff on
small subfiles, improved partitioning schems, etc.
The same idea can be applied to similar algorithms
like radix sorting and quicksort for strings

Final remarks on partial quicksort

Partial quicksort avoids some of the redundant
comparisons, exchanges, . . . made by quickselsort
It is easily implemented
It benefits from standard optimization techniques:
sampling, recursion removal, recursion cutoff on
small subfiles, improved partitioning schems, etc.
The same idea can be applied to similar algorithms
like radix sorting and quicksort for strings

1 Introduction

2 Example #1: Generating random derangements

3 Example #2: Updating Kd trees

4 Example #3: Partial sorting

5 Concluding remarks

Concluding remarks

I hope I have convinced you about the usefulness of
probabilistic analysis

Provides useful information about typical behavior
Necessary when analyzing randomized algorithms
Allows meaningful comparisons between
competitors of equivalent performance
A source of beautiful and challenging mathematical
problems!

Concluding remarks

I hope I have convinced you about the usefulness of
probabilistic analysis

Provides useful information about typical behavior
Necessary when analyzing randomized algorithms
Allows meaningful comparisons between
competitors of equivalent performance
A source of beautiful and challenging mathematical
problems!

Concluding remarks

I hope I have convinced you about the usefulness of
probabilistic analysis

Provides useful information about typical behavior
Necessary when analyzing randomized algorithms
Allows meaningful comparisons between
competitors of equivalent performance
A source of beautiful and challenging mathematical
problems!

Concluding remarks

I hope I have convinced you about the usefulness of
probabilistic analysis

Provides useful information about typical behavior
Necessary when analyzing randomized algorithms
Allows meaningful comparisons between
competitors of equivalent performance
A source of beautiful and challenging mathematical
problems!

Credits

Alois Panholzer and Helmut Prodinger:
Generating random derangements
Amalia Duch: Updating Kd trees

THANKS!!

	Introduction
	Example #1: Generating random derangements
	Example #2: Updating K-d trees
	Example #3: Partial sorting
	Concluding remarks

