Searching with Dice A survey on randomized data structures

Conrado Martínez

Univ. Politècnica de Catalunya, Spain

May 11th, 2010 Journée inaugurale de l'équipe Combinatoire, algorithmique et interactions (CALIN)

- Introduction
- Skip lists
- 3 Randomized binary search trees

R. Karp

N. C. Metropolis M. O. Rabin

The usefulnees of randomization in the design of algorithms has been known for a long time:

- Metropolis' algorithms
- Rabin's primality test
- Rabin-Karp's string search

M.N. Wegman

- Hashing is another early success of randomization for the design of data structures.
- Selecting the hash function from a universal class (Carter and Wegman, 1977) guarantees expected performance

Randomization yields algorithms:

- Simple and elegant
- Practical
- With guaranteed expected performance
- Without assumptions on the probabilistic distribution of the input

- The usual worst-case analysis is not useful for randomized algorithms
- The probabilistic model to use in the analysis is under control; it is not a working hypothesis, but built-in

In this talk:

- Skip lists
- Randomized binary search trees

- Introduction
- Skip lists
- Randomized binary search trees

W. Pugh

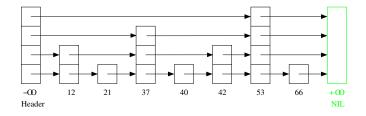
- Skip lists were invented by William Pugh (C. ACM, 1990) as a simple alternative to balanced trees
- The algorithms to search, insert, delete, etc. are very simple to understand and to implement, and they have very good expected performance—independent of any assumption on the input

W. Pugh

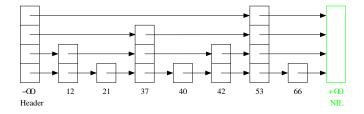
- Skip lists were invented by William Pugh (C. ACM, 1990) as a simple alternative to balanced trees
- The algorithms to search, insert, delete, etc. are very simple to understand and to implement, and they have very good expected performance—independent of any assumption on the input

A skip list S for a set X consists of:

- f 0 A sorted linked list L_1 , called level f 1, contains all elements of X
- ② A collection of non-empty sorted lists L_2, L_3, \ldots , called level 2, level 3, ... such that for all $i \geq 1$, if an element x belongs to L_i then x belongs to L_{i+1} with probability p, for some 0



To implement this, we store the items of X in a collection of nodes each holding an item and a variable-size array of pointers to the item's successor at each level; an additional dummy node gives access to the first item of each level



To implement this, we store the items of X in a collection of nodes each holding an item and a variable-size array of pointers to the item's successor at each level; an additional dummy node gives access to the first item of each level

- The level or height of a node x, height(x), is the number of lists it belongs to.
- It is given by a geometric r.v. of parameter p:

$$\Pr\{\mathsf{height}(x)=k\}=pq^{k-1}, \qquad q=1-p$$

- The level or height of a node x, height(x), is the number of lists it belongs to.
- It is given by a geometric r.v. of parameter p:

$$\Pr\{\mathsf{height}(x)=k\}=pq^{k-1}, \qquad q=1-p$$

The height of the skip list S is the number of non-empty lists,

$$\mathsf{height}(S) = \max_{x \in S} \{\mathsf{height}(x)\}$$

- The random variable H_n giving the height of a random skip list of n is the maximum of n i.i.d. Geom(p)
- Several performance measures of skip lists are expressed in terms of the probabilistic behavior of a sequence of n i.i.d. geometric r.v. of parameter p

The height of the skip list S is the number of non-empty lists,

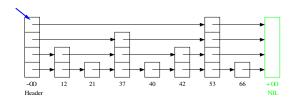
$$\mathsf{height}(S) = \max_{x \in S} \{\mathsf{height}(x)\}$$

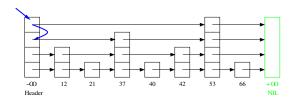
- The random variable H_n giving the height of a random skip list of n is the maximum of n i.i.d. Geom(p)
- Several performance measures of skip lists are expressed in terms of the probabilistic behavior of a sequence of n i.i.d. geometric r.v. of parameter p

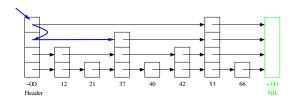
The height of the skip list S is the number of non-empty lists,

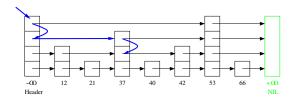
$$\mathsf{height}(S) = \max_{x \in S} \{\mathsf{height}(x)\}$$

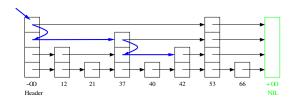
- The random variable H_n giving the height of a random skip list of n is the maximum of n i.i.d. Geom(p)
- Several performance measures of skip lists are expressed in terms of the probabilistic behavior of a sequence of n i.i.d. geometric r.v. of parameter p

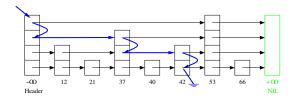




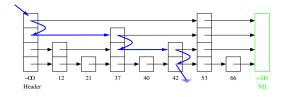


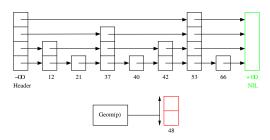


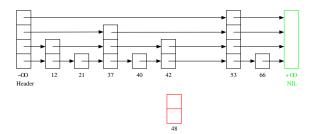


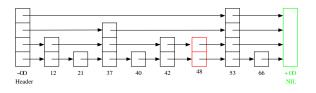


```
\begin{array}{l} \textbf{procedure} \; \mathsf{Search}(S, \, x) \\ p \leftarrow S. \mathsf{header} \\ \ell \leftarrow S. \mathsf{height} \\ \textbf{while} \; \ell \neq 0 \; \textbf{do} \\ \textbf{if} \; p. \mathsf{item} < x \; \textbf{then} \\ p \leftarrow p. \mathsf{next}[\ell] \\ \textbf{else} \\ \ell \leftarrow \ell - 1 \end{array}
```









Performance of skip lists

 The cost of insertions, deletions and searches is essentially that of searching, with

$$\mathsf{Cost} \ \mathsf{of} \ \mathsf{search} = \# \ \mathsf{of} \ \mathsf{forward} \ \mathsf{steps} + \mathsf{height}(S)$$

• More formally, with
$$X=\{x_1,x_2,\ldots,x_n\}$$
, $x_0=-\infty < x_1 < \cdots < x_n < x_{n+1}=+\infty$, for $0 \le k \le n$, $C_{n,k}=F_{n,k}+H_n$ cost of searching a key in $(x_k,x_{k+1}]$ $F_{n,k}=\#$ of forward steps to $(x_k,x_{k+1}]$ $H_n=$ height of the skip list

Performance of skip lists

 The cost of insertions, deletions and searches is essentially that of searching, with

$$\mathsf{Cost} \,\, \mathsf{of} \,\, \mathsf{search} = \# \,\, \mathsf{of} \,\, \mathsf{forward} \,\, \mathsf{steps} + \mathsf{height}(S)$$

• More formally, with $X=\{x_1,x_2,\ldots,x_n\}$, $x_0=-\infty < x_1 < \cdots < x_n < x_{n+1}=+\infty$, for $0 \le k \le n$, $C_{n,k}=F_{n,k}+H_n$ cost of searching a key in $(x_k,x_{k+1}]$ $F_{n,k}=\#$ of forward steps to $(x_k,x_{k+1}]$ $H_n=$ height of the skip list

Analysis of the height

with q := 1 - p.

$$egin{aligned} a_i &= \mathsf{height}(x_i) \sim Geom(p) \ H_n &= \mathsf{height}(S) = \max\{a_1, \dots, a_n\} \ \mathbb{E}[H_n] &= \sum_{k>0} \Pr\{H_n > k\} = \sum_{k>0} (1 - \Pr\{H_n \leq k\}) \ &= \sum_{k>0} \left(1 - \prod_{1 \leq i \leq n} \Pr\{a_i \leq k\}
ight) = \sum_{k>0} \left(1 - \left(\Pr\{a_i \leq k\}\right)^n\right) \ &= \sum_{k>0} \left(1 - \left(1 - q^k\right)^n\right) \end{aligned}$$

Analysis of the height

W. Szpankowski

V. Rego

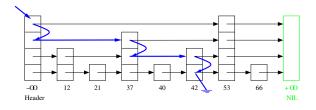
Theorem (Szpankowski and Rego,1990)

$$\mathbb{E}[H_n] = \log_Q n + rac{\gamma}{L} - rac{1}{2} + \chi(\log_Q n) + O(1/n)$$

with Q:=1/q, $L:=\ln Q$, $\chi(t)$ a fluctuation of period 1, mean 0 and small amplitude.

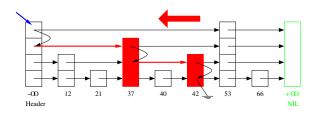
Analysis of the forward cost

The number of forward steps $F_{n,k}$ is the number of weak left-to-right maxima in $a_k, a_{k-1}, \ldots, a_1$, with $a_i = \mathsf{height}(x_i)$



Analysis of the forward cost

The number of forward steps $F_{n,k}$ is the number of weak left-to-right maxima in $a_k, a_{k-1}, \ldots, a_1$, with $a_i = \mathsf{height}(x_i)$



Analysis of the forward cost

Total unsuccessful search cost

$$C_n = \sum_{0 \leq k \leq n} C_{n,k} = nH_n + F_n$$

Total forward cost

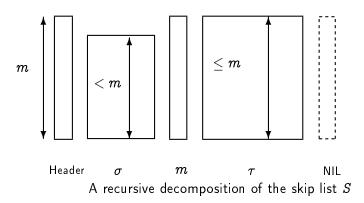
$$F_n = \sum_{0 \le k \le n} F_{n,k}$$

Total unsuccessful search cost

$$C_n = \sum_{0 \le k \le n} C_{n,k} = nH_n + F_n$$

Total forward cost

$$F_n = \sum_{0 \le k \le n} F_{n,k}$$



- ullet $F(S) = ext{total forward cost of the skip list } S$
- ullet The recursive decomposition $S=\langle \sigma,m, au
 angle$ gives

$$F(S) = F(\sigma) + F(\tau) + |\tau| + 1$$

 Let S^[cond] denote the set of all skip lists whose height satisfies the condition cond

$$F^{[\mathsf{cond}]}(z,u) = \sum_{S \in \mathcal{S}^{[\mathsf{cond}]}} z^{|S|} u^{F(S)} \Pr(S),$$

with

$$\Pr(S) = \Pr(\sigma) \cdot pq^{m-1} \cdot \Pr(\tau)$$

- \bullet F(S) = total forward cost of the skip list S
- ullet The recursive decomposition $S=\langle \sigma,m, au
 angle$ gives

$$F(S) = F(\sigma) + F(au) + | au| + 1$$

• Let $\mathcal{S}^{[\mathsf{cond}]}$ denote the set of all skip lists whose height satisfies the condition cond

$$F^{[\mathsf{cond}]}(z,u) = \sum_{S \in \mathcal{S}^{[\mathsf{cond}]}} z^{|S|} u^{F(S)} \operatorname{Pr}(S)$$

with

$$\Pr(S) = \Pr(\sigma) \cdot pq^{m-1} \cdot \Pr(\tau)$$

- F(S) = total forward cost of the skip list S
- ullet The recursive decomposition $S=\langle \sigma,m, au
 angle$ gives

$$F(S) = F(\sigma) + F(\tau) + |\tau| + 1$$

• Let $\mathcal{S}^{[\mathsf{cond}]}$ denote the set of all skip lists whose height satisfies the condition cond

$$F^{[\mathsf{cond}]}(z,u) = \sum_{S \in \mathcal{S}^{[\mathsf{cond}]}} z^{|S|} u^{F(S)} \Pr(S),$$

with

$$\Pr(S) = \Pr(\sigma) \cdot pq^{m-1} \cdot \Pr(\tau)$$

The recursion translates to

$$F^{=m}(z,u) = pq^{m-1}zu^2F^{\leq m-1}(z,u)F^{\leq m}(z,u), \qquad m>0$$
 $F^{=0}(z,u) = 1$

• Taking derivatives w.r.t. u and setting u=1, we obtain a recurrence for the GF of expectations:

$$f^{=m}(z) = rac{2pq^{m-1}z}{\llbracket m-1
rbracket \llbracket m
rbracket} + rac{f^{\leq m-1}(z)}{\llbracket m
rbracket} + rac{f^{\leq m}(z)}{\llbracket m-1
rbracket},$$

with $\llbracket m
rbracket := 1 - z(1 - q^m)$

The recursion translates to

$$F^{=m}(z,u) = pq^{m-1}zu^2F^{\leq m-1}(z,u)F^{\leq m}(z,u), \qquad m>0$$
 $F^{=0}(z,u) = 1$

ullet Taking derivatives w.r.t. u and setting u=1, we obtain a recurrence for the GF of expectations:

$$f^{=m}(z)=rac{2pq^{m-1}z}{[\![m-1]\!][\![m]\!]}+rac{f^{\leq m-1}(z)}{[\![m]\!]}+rac{f^{\leq m}(z)}{[\![m-1]\!]},$$
 with $[\![m]\!]:=1-z(1-q^m)$

• We solve the recurrence by iteration, with $f^{=m}=f^{\leq m}-f^{\leq m-1}$ and finally take the limit $f(z):=\lim_{m o\infty}f^{\leq m}(z)$

$$f(z) = rac{z^2}{(1-z)^2} \sum_{i \geq 1} rac{pq^{i-1}(1-q^i)}{\llbracket i
rbracket}$$

• Using Euler transform we can easily extract the nth coefficient of f(z), $[z^n]f(z)=\mathbb{E}[F_n]$

$$\mathbb{E}[F_n] = rac{p}{q} \sum_{k=2}^n (-1)^k rac{1}{Q^{k-1}-1},$$

$$q:=1-p, Q:=1/q$$

• We solve the recurrence by iteration, with $f^{=m}=f^{\leq m}-f^{\leq m-1}$ and finally take the limit $f(z):=\lim_{m o\infty}f^{\leq m}(z)$

$$f(z) = rac{z^2}{(1-z)^2} \sum_{i \geq 1} rac{pq^{i-1}(1-q^i)}{\llbracket i
bracket}$$

• Using Euler transform we can easily extract the nth coefficient of f(z), $[z^n]f(z)=\mathbb{E}[F_n]$

$$\mathbb{E}[F_n] = rac{p}{q} \sum_{k=2}^n (-1)^k rac{1}{Q^{k-1} - 1},$$

$$q:=1-p, Q:=1/q$$

The asymptotic behavior of F_n (and other quantities that arise in the analysis of skip lists) can be analyzed using Mellin transforms or Rice's method

$$\sum_{k=a}^n inom{n}{k} (-1)^k f(k) = -rac{1}{2\pi \mathsf{i}} \int_{\mathcal{C}} rac{\Gamma(n+1)\Gamma(-z)}{\Gamma(n+1-z)} f(z) \, dz$$

with ${\mathcal C}$ a positively oriented curve enclosing $a,\ a+1,\ \dots,\ n$, and f(z) an analytic continuation of f(k)

P. Kirschenhofer

H. Prodinger

Theorem (Kirschehofer, Prodinger, 1994)

The expected forward cost in a random skip list of size n is

$$\mathbb{E}[F_n] = (Q-1)n\left(\log_Q n + rac{\gamma-1}{L} - rac{1}{2} + rac{1}{L}\chi(\log_Q n)
ight) + O(\log n),$$

with Q:=1/q, $L=\ln Q$ and χ a periodic fluctuation of period 1, mean 0 and small amplitude.

To learn more

L. Devroye.

A limit theory for random skip lists.

The Annals of Applied Probability, 2(3):597-609, 1992.

P. Kirschenhofer and H. Prodinger. The path length of random skip lists. Acta Informatica, 31(8):775–792, 1994.

P. Kirschenhofer, C. Martínez and H. Prodinger.
Analysis of an Optimized Search Algorithm for Skip Lists.
Theoretical Computer Science, 144:199–220, 1995.

To learn more (2)

H. Prodinger.

Combinatorics of geometrically distributed random variables: Left-to-right maxima.

Discrete Mathematics, 153:253-270, 1996.

🔋 W. Pugh.

Skip lists: a probabilistic alternative to balanced trees.

Comm. ACM, 33(6):668-676, 1990.

- Introduction
- Skip lists
- Randomized binary search trees

C. Aragon

R. Seidel

Two incarnations

- Randomized treaps (tree+heap) invented by Aragon and Seidel (FOCS 1989, Algorithmica 1996) use random priorities and bottom-up balancing
- Randomized binary search trees (RBSTs) invented by Martínez and Roura (ESA 1996, JACM 1998) use subtree sizes and top-down balancing

C. Aragon

R. Seidel

S. Roura

Two incarnations

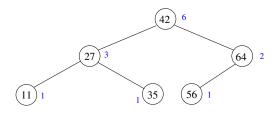
- Randomized treaps (tree+heap) invented by Aragon and Seidel (FOCS 1989, Algorithmica 1996) use random priorities and bottom-up balancing
- Randomized binary search trees (RBSTs) invented by Martínez and Roura (ESA 1996, JACM 1998) use subtree sizes and top-down balancing

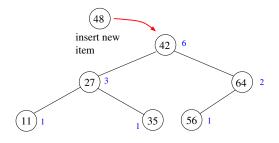
- ullet In a random binary search tree (built using random insertions) any of its n elements is the root with probability 1/n
- Idea: to insert a new item, insert it at the root with probability 1/(n+1), otherwise proceed recursively
- The random priorities of treaps "simulate" random timestamps (cif. Vuillemin's Cartesian trees 1980); rotations are used to maintain the BST invariant w.r.t. keys and the heap invariant w.r.t. priorities

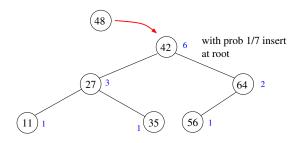
- In a random binary search tree (built using random insertions) any of its n elements is the root with probability 1/n
- Idea: to insert a new item, insert it at the root with probability 1/(n+1), otherwise proceed recursively
- The random priorities of treaps "simulate" random timestamps (cif. Vuillemin's Cartesian trees 1980); rotations are used to maintain the BST invariant w.r.t. keys and the heap invariant w.r.t. priorities

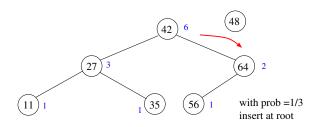
J. Vuillemin

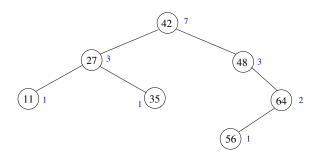
- ullet In a random binary search tree (built using random insertions) any of its n elements is the root with probability 1/n
- Idea: to insert a new item, insert it at the root with probability 1/(n+1), otherwise proceed recursively
- The random priorities of treaps "simulate" random timestamps (cif. Vuillemin's Cartesian trees 1980); rotations are used to maintain the BST invariant w.r.t. keys and the heap invariant w.r.t. priorities











```
procedure Insert(T, x)

n \leftarrow T.size \triangleright n = 0 if T = \square

if Uniform(0, n) = 0 then

return Insert-at-Root(T, x)

if x < T.item then

T.left \leftarrow Insert(T.left, x)

else

T.right \leftarrow Insert(T.right, x)

Update T.size

return T
```

• To insert a new item x at the root of T, we use the algorithm Split that returns two RBSTs T^- and T^+ with element smaller and larger than x, resp.

$$egin{aligned} \langle T^-, T^+
angle &= \mathsf{Split}(T,x) \ T^- &= \mathsf{BST} \; \mathsf{for} \; \{y \in T \, | \, y < x \} \ T^+ &= \mathsf{BST} \; \mathsf{for} \; \{y \in T \, | \, x < y \} \end{aligned}$$

- Split is like partition in Quicksort
- Insertion at root was invented by Stephenson in 1976

• To insert a new item x at the root of T, we use the algorithm Split that returns two RBSTs T^- and T^+ with element smaller and larger than x, resp.

$$egin{aligned} \langle T^-, T^+
angle &= \mathsf{Split}(T,x) \ T^- &= \mathsf{BST} \; \mathsf{for} \; \{y \in T \, | \, y < x \} \ T^+ &= \mathsf{BST} \; \mathsf{for} \; \{y \in T \, | \, x < y \} \end{aligned}$$

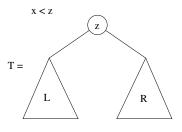
- Split is like partition in Quicksort
- Insertion at root was invented by Stephenson in 1976

• To insert a new item x at the root of T, we use the algorithm Split that returns two RBSTs T^- and T^+ with element smaller and larger than x, resp.

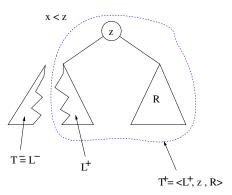
$$egin{aligned} \langle T^-, T^+
angle &= \mathsf{Split}(T,x) \ T^- &= \mathsf{BST} \; \mathsf{for} \; \{y \in T \, | \, y < x \} \ T^+ &= \mathsf{BST} \; \mathsf{for} \; \{y \in T \, | \, x < y \} \end{aligned}$$

- Split is like partition in Quicksort
- Insertion at root was invented by Stephenson in 1976

To split a RBST T around x, we need just to follow the path from the root of T to the leaf where x falls



To split a RBST T around x, we need just to follow the path from the root of T to the leaf where x falls



- The cost of the insertion at root (measured # of visited nodes) is exactly the same as the cost of the standard insertion
- For a random(ized) BST this is the depth $L_{n,i}$ of the *i*th leaf plus 1 (see, e.g., Knuth's volume 3)

$$egin{align} \mathbb{E}[L_{n,i}] &= H_{i-1} + H_{n+1-i} \ &\sim 2\log n + \mathcal{O}(1), \quad i = lpha \cdot n + o(n), 0 < lpha < 1 \end{split}$$

- The cost of the insertion at root (measured # of visited nodes) is exactly the same as the cost of the standard insertion
- For a random(ized) BST this is the depth $L_{n,i}$ of the *i*th leaf plus 1 (see, e.g., Knuth's volume 3)

$$egin{aligned} \mathbb{E}[L_{n,i}] &= H_{i-1} + H_{n+1-i} \ &\sim 2\log n + O(1), \quad i = lpha \cdot n + o(n), 0 < lpha < 1 \end{aligned}$$

Lemma

Let T^- and T^+ be the BSTs produced by $\operatorname{Split}(T,x)$. If T is a random BST containing the set of keys K, then T^- and T^+ are independent random BSTs containing the sets of keys $K^- = \{y \in T \mid y < x\}$ and $K^+ = \{y \in T \mid y > x\}$, respectively.

Theorem

If T is a random BST that contains the set of keys K and x is any key not in K, then $\mathsf{Insert}(T,x)$ produces a random BST containing the set of keys $K \cup \{x\}$.

Deletions in RBSTs

```
procedure Delete(T, x)
    if T = \square then
        return T
    if x = T item then
        return Delete-Root(T)
    if x < T item then
        T.\mathsf{left} \leftarrow \mathsf{Delete}(T.\mathsf{left},x)
    else
        T.right \leftarrow Delete(T.right, x)
    Update T.size
    return T
```

Deletions in RBSTs

- The fundamental problem is how to remove the root node of a BST, in particular, when both subtrees are not empty
- The original deletion algorithm by Hibbard was assumed to preserve randomness
- In 1975, G. Knott discovered that Hibbard's deletion preserves randomness of shape, but an insertion following a deletion would destroy randomness (Knott's paradox)

- The fundamental problem is how to remove the root node of a BST, in particular, when both subtrees are not empty
- The original deletion algorithm by Hibbard was assumed to preserve randomness
- In 1975, G. Knott discovered that Hibbard's deletion preserves randomness of shape, but an insertion following a deletion would destroy randomness (Knott's paradox)

- The fundamental problem is how to remove the root node of a BST, in particular, when both subtrees are not empty
- The original deletion algorithm by Hibbard was assumed to preserve randomness
- In 1975, G. Knott discovered that Hibbard's deletion preserves randomness of shape, but an insertion following a deletion would destroy randomness (Knott's paradox)

J. Culberson

J.L. Eppinger

D.E. Knuth

- Several theoretical and experimental work aimed at understanding what was the effect of deletions, e.g.,
 - Jonassen & Knuth's An Algorithm whose Analysis Isn't (JCSS, 1978)
 - Knuth's Deletions that Preserve Randomness (IEEE Trans. Soft. Eng., 1977)
 - Eppinger's experiments (CACM, 1983)
 - Culberson's paper on deletions of the left spine (STOC, 1985)
 ...
- These studies showed that deletions degraded performance in the long run

J. Culberson

J.L. Eppinger

D.E. Knuth

- Several theoretical and experimental work aimed at understanding what was the effect of deletions, e.g.,
 - Jonassen & Knuth's An Algorithm whose Analysis Isn't (JCSS, 1978)
 - Knuth's Deletions that Preserve Randomness (IEEE Trans. Soft. Eng., 1977)
 - Eppinger's experiments (CACM, 1983)
 - Culberson's paper on deletions of the left spine (STOC, 1985)
 - 0
 - These studies showed that deletions degraded performance in the long run

J. Culberson

J.L. Eppinger

D.E. Knuth

- Several theoretical and experimental work aimed at understanding what was the effect of deletions, e.g.,
 - Jonassen & Knuth's An Algorithm whose Analysis Isn't (JCSS, 1978)
 - Knuth's Deletions that Preserve Randomness (IEEE Trans. Soft. Eng., 1977)
 - Eppinger's experiments (CACM, 1983)
 - Culberson's paper on deletions of the left spine (STOC, 1985)
 - .
- These studies showed that deletions degraded performance in the long run

J. Culberson

J.L. Eppinger

D.E. Knuth

- Several theoretical and experimental work aimed at understanding what was the effect of deletions, e.g.,
 - Jonassen & Knuth's An Algorithm whose Analysis Isn't (JCSS, 1978)
 - Knuth's Deletions that Preserve Randomness (IEEE Trans. Soft. Eng., 1977)
 - Eppinger's experiments (CACM, 1983)
 - Culberson's paper on deletions of the left spine (STOC, 1985)
 - . . .
- These studies showed that deletions degraded performance in the long run

J. Culberson

J.L. Eppinger

D.E. Knuth

- Several theoretical and experimental work aimed at understanding what was the effect of deletions, e.g.,
 - Jonassen & Knuth's An Algorithm whose Analysis Isn't (JCSS, 1978)
 - Knuth's Deletions that Preserve Randomness (IEEE Trans. Soft. Eng., 1977)
 - Eppinger's experiments (CACM, 1983)
 - Culberson's paper on deletions of the left spine (STOC, 1985)
 -
- These studies showed that deletions degraded performance in the long run

J. Culberson

J.L. Eppinger

D.E. Knuth

- Several theoretical and experimental work aimed at understanding what was the effect of deletions, e.g.,
 - Jonassen & Knuth's An Algorithm whose Analysis Isn't (JCSS, 1978)
 - Knuth's Deletions that Preserve Randomness (IEEE Trans. Soft. Eng., 1977)
 - Eppinger's experiments (CACM, 1983)
 - Culberson's paper on deletions of the left spine (STOC, 1985)
 - •
- These studies showed that deletions degraded performance in the long run

J. Culberson

J.L. Eppinger

D.E. Knuth

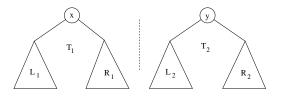
- Several theoretical and experimental work aimed at understanding what was the effect of deletions, e.g.,
 - Jonassen & Knuth's An Algorithm whose Analysis Isn't (JCSS, 1978)
 - Knuth's Deletions that Preserve Randomness (IEEE Trans. Soft. Eng., 1977)
 - Eppinger's experiments (CACM, 1983)
 - Culberson's paper on deletions of the left spine (STOC, 1985)
 - •
- These studies showed that deletions degraded performance in the long run

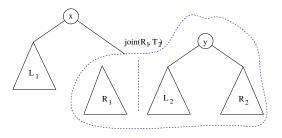
We delete the root using a procedure $\mathsf{Join}(T_1,T_2)$. Given two BSTs such that for all $x\in T_1$ and all $y\in T_2,\ x\leq y$, it returns a new BST that contains all the keys in T_1 and T_2 . Then

$$\mathsf{Delete} ext{-}\mathsf{Root}(T) \equiv \mathsf{Join}(T.\mathsf{left},T.\mathsf{right})$$

with

$$egin{aligned} \operatorname{\mathsf{Join}}(\square,\square) &= \square \ &\operatorname{\mathsf{Join}}(T,\square) &= \operatorname{\mathsf{Join}}(\square,T) &= T \ &\operatorname{\mathsf{Join}}(T_1,T_2) &= ?, & T_1
eq \square, T_2
eq \square \end{aligned}$$





- If we systematically choose the root of T_1 as the root of $\mathsf{Join}(T_1,T_2)$, or the other way around, we will introduce an undesirable bias
- Suppose both T_1 and T_2 are random. Let m and n denote their sizes. Then x is the root of T_1 with probability 1/m and y is the root of T_2 with probability 1/n
- Choose x as the common root with probability m/(m+n), choose y with probability n/(m+n)

$$\frac{1}{m} \times \frac{m}{m+n} = \frac{1}{m+n}$$

$$\frac{1}{n} \times \frac{n}{m+n} = \frac{1}{m+n}$$

- If we systematically choose the root of T_1 as the root of $\mathsf{Join}(T_1,T_2)$, or the other way around, we will introduce an undesirable bias
- Suppose both T_1 and T_2 are random. Let m and n denote their sizes. Then x is the root of T_1 with probability 1/m and y is the root of T_2 with probability 1/n
- Choose x as the common root with probability m/(m+n), choose y with probability n/(m+n)

$$\frac{1}{m} \times \frac{m}{m+n} = \frac{1}{m+n}$$

$$\frac{1}{n} \times \frac{n}{m+n} = \frac{1}{m+n}$$

- If we systematically choose the root of T_1 as the root of $\mathsf{Join}(T_1,T_2)$, or the other way around, we will introduce an undesirable bias
- Suppose both T_1 and T_2 are random. Let m and n denote their sizes. Then x is the root of T_1 with probability 1/m and y is the root of T_2 with probability 1/n
- Choose x as the common root with probability m/(m+n), choose y with probability n/(m+n)

$$rac{1}{m} imes rac{m}{m+n} = rac{1}{m+n} \ rac{1}{n} imes rac{n}{m+n} = rac{1}{m+n}$$

Lemma

Let L and R be two independent random BSTs, such that the keys in L are strictly smaller than the keys in R. Let K_L and K_R denote the sets of keys in L and R, respectively. Then $T = \mathsf{Join}(L,R)$ is a random BST that contains the set of keys $K = K_L \cup K_R$.

- The recursion for $Join T_1, T_2$ traverses the rightmost branch (right spine) of T_1 and the leftmost branch (left spine) of T_2
- The trees to be joined are the left and right subtrees L and R of the ith item in a RBST of size n; then

length of left spine of L= path length to ith leaf length of right spine of R= path length to (i+1)th leaf

 The cost of the joining phase is the sum of the path lengths to the leaves minus twice the depth of the ith item; the expected cost follows from well-known results

$$\left(2 - \frac{1}{i} - \frac{1}{n+1-i}\right) = O(1)$$

- The recursion for $Join T_1, T_2$ traverses the rightmost branch (right spine) of T_1 and the leftmost branch (left spine) of T_2
- The trees to be joined are the left and right subtrees L and R of the ith item in a RBST of size n; then

length of left spine of $L={\sf path}$ length to ith leaf length of right spine of $R={\sf path}$ length to (i+1)th leaf

 The cost of the joining phase is the sum of the path lengths to the leaves minus twice the depth of the ith item; the expected cost follows from well-known results

$$\left(2 - \frac{1}{i} - \frac{1}{n+1-i}\right) = O(1)$$

- The recursion for $\mathsf{Join}T_1, T_2$ traverses the rightmost branch (right spine) of T_1 and the leftmost branch (left spine) of T_2
- The trees to be joined are the left and right subtrees L and R of the ith item in a RBST of size n; then

length of left spine of L= path length to ith leaf length of right spine of R= path length to (i+1)th leaf

 The cost of the joining phase is the sum of the path lengths to the leaves minus twice the depth of the ith item; the expected cost follows from well-known results

$$\left(2-\frac{1}{i}-\frac{1}{n+1-i}\right)=O(1)$$

Theorem

If T is a random BST that contains the set of keys K, then $\mathsf{Delete}(T,x)$ produces a random BST containing the set of keys $K\setminus\{x\}$.

Theorem

If T is a random BST that contains the set of keys K, then $\mathsf{Delete}(T,x)$ produces a random BST containing the set of keys $K\setminus\{x\}$.

Corollary

The result of any arbitary sequence of insertions and deletions, starting from an initially empty tree is always a random BST.

- Arbitrary insertions and deletions yield always random BSTs
- A deletion algorithm for BSTs that preserved randomness was a long standing open problem (10-15 yr)
- Properties of random BSTs have been investigated in depth and for a long time
- Treaps only need to generate a single random number per node (with O(log n) bits)
- RBSTs need $O(\log n)$ calls to the random generator period insertion, and O(1) calls per deletion (on average)

- Arbitrary insertions and deletions yield always random BSTs
- A deletion algorithm for BSTs that preserved randomness was a long standing open problem (10-15 yr)
- Properties of random BSTs have been investigated in depth and for a long time
- Treaps only need to generate a single random number per node (with O(log n) bits)
- RBSTs need $O(\log n)$ calls to the random generator per insertion, and O(1) calls per deletion (on average)

- Arbitrary insertions and deletions yield always random BSTs
- A deletion algorithm for BSTs that preserved randomness was a long standing open problem (10-15 yr)
- Properties of random BSTs have been investigated in depth and for a long time
- Treaps only need to generate a single random number per node (with O(log n) bits)
- RBSTs need $O(\log n)$ calls to the random generator per insertion, and O(1) calls per deletion (on average)

- Arbitrary insertions and deletions yield always random BSTs
- A deletion algorithm for BSTs that preserved randomness was a long standing open problem (10-15 yr)
- Properties of random BSTs have been investigated in depth and for a long time
- Treaps only need to generate a single random number per node (with O(log n) bits)
- RBSTs need $O(\log n)$ calls to the random generator per insertion, and O(1) calls per deletion (on average)

- Arbitrary insertions and deletions yield always random BSTs
- A deletion algorithm for BSTs that preserved randomness was a long standing open problem (10-15 yr)
- Properties of random BSTs have been investigated in depth and for a long time
- Treaps only need to generate a single random number per node (with O(log n) bits)
- RBSTs need $O(\log n)$ calls to the random generator per insertion, and O(1) calls per deletion (on average)

- Storing subtree sizes for balancing is more useful: they can be used to implement search and deletion by rank, e.g., find the ith smallest element in the tree
- Other operations, e.g., union and intersection are also efficiently supported by RBSTs
- Similar ideas have been used to randomize other search trees namely, K-dimensional binary search trees (Duch and Martínez, 1998) and quadtrees (Duch, 1999)

- Storing subtree sizes for balancing is more useful: they can be used to implement search and deletion by rank, e.g., find the ith smallest element in the tree
- Other operations, e.g., union and intersection are also efficiently supported by RBSTs
- Similar ideas have been used to randomize other search trees, namely, K-dimensional binary search trees (Duch and Martínez, 1998) and quadtrees (Duch, 1999)

- Storing subtree sizes for balancing is more useful: they can be used to implement search and deletion by rank, e.g., find the ith smallest element in the tree
- Other operations, e.g., union and intersection are also efficiently supported by RBSTs
- \bullet Similar ideas have been used to randomize other search trees, namely, K-dimensional binary search trees (Duch and Martínez, 1998) and quadtrees (Duch, 1999)

To learn more

H. M. Mahmoud.

Evolution of Random Search Trees.

Wiley Interscience, 1992.

C. Martínez and S. Roura.
Randomized binary search trees.

J. Assoc. Comput. Mach., 45(2):288–323, 1998.

R. Seidel and C. Aragon.
Randomized search trees.

Algorithmica, 16:464–497, 1996.

General References

Ph. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2008.

📄 D. E. Knuth.

The Art of Computer Programming: Sorting and Searching, volume 3.

Addison-Wesley, 2nd edition, 1998.

📄 C. Pandu Rangan.

Randomized Data Structures, in Handbook of Data Structures and Applications.

D.P. Mehta and S. Sahni, editors. Chapman & Hall, CRC, 2005.

General References (2)

P. Raghavan and R. Motwani.

Randomized Algorithms.

Cambridge University Press, 1995.

R. Sedgewick.

Algorithms in C.

Addison-Wesley, 3rd edition, 1997.

MERCI BEAUCOUP!

Avec mes meilleurs voeux de succès et longue vie pour CALIN

