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Introduction

R. Karp N. C. Metropolis M. O. Rabin

The usefulnees of randomization in the design of algorithms has
been known for a long time:

@ Metropolis’ algorithms
@ Rabin’s primality test
@ Rabin-Karp's string search



Introduction

M.N. Wegman

@ Hashing is another early success of randomization for the
design of data structures.

@ Selecting the hash function from a universal class (Carter and
Wegman, 1977) guarantees expected performance



Introduction

Randomization yields algorithms:
@ Simple and elegant
@ Practical
e With guaranteed expected performance

o Without assumptions on the probabilistic distribution of the
input



Introduction

@ The usual worst-case analysis is not useful for randomized
algorithms

@ The probabilistic model to use in the analysis is under control;
it is not a working hypothesis, but built-in



Introduction

In this talk:
o Skip lists

@ Randomized binary search trees



© Skip lists
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@ Skip lists were invented by William Pugh (C. ACM, 1990) as a
simple alternative to balanced trees



Skip lists

W. Pugh

@ Skip lists were invented by William Pugh (C. ACM, 1990) as a
simple alternative to balanced trees

@ The algorithms to search, insert, delete, etc. are very simple to
understand and to implement, and they have very good
expected performance—independent of any assumption on the
input



Skip lists

A skip list S for a set X consists of:

Q@ A sorted linked list L1, called level 1, contains all elements of
X

@ A collection of non-empty sorted lists Lo, L3, ..., called level
2, level 3, ...such that for all ¢ > 1, if an element z belongs
to L; then z belongs to L;.1 with probability p, for some
0<p<l1
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To implement this, we store the items of X in a collection of nodes
each holding an item and a variable-size array of pointers to the
item'’s successor at each level; an additional dummy node gives
access to the first item of each level



Skip lists

@ The level or height of a node z, height(z), is the number of
lists it belongs to.



Skip lists

@ The level or height of a node z, height(z), is the number of
lists it belongs to.

@ It is given by a geometric r.v. of parameter p:

Pr{height(z) =k} =pg*~", g=1-p



Skip lists

@ The height of the skip list S is the number of non-empty lists,

height(S) = meagc{height(a:)}
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@ The height of the skip list S is the number of non-empty lists,

height(S) = meagc{height(a:)}

@ The random variable H,, giving the height of a random skip
list of n is the maximum of n i.i.d. Geom(p)



Skip lists

@ The height of the skip list S is the number of non-empty lists,

height(S) = meagc{height(a:)}

@ The random variable H,, giving the height of a random skip
list of n is the maximum of n i.i.d. Geom(p)

@ Several performance measures of skip lists are expressed in
terms of the probabilistic behavior of a sequence of n i.i.d.
geometric r.v. of parameter p
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Searching in a skip list

procedure Search(S, )
p < S.header
£ + S.height
while £ # 0 do
if p.item < z then
D < p.next[{]
else
L—10-1




Insertion in a skip list

Inserting an item z = 48
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Performance of skip lists

@ The cost of insertions, deletions and searches is essentially that
of searching, with

Cost of search = # of forward steps + height(.S)



Performance of skip lists

@ The cost of insertions, deletions and searches is essentially that
of searching, with

Cost of search = # of forward steps + height(.S)

e More formally, with X = {z1,z2,...,2,},
Tp=-00< 21 < < Ty < Tpy1 =00, for 0 <k <,

Cni=Fnp+ Hn cost of searching a key in (g, Trt1]
F, x = # of forward steps to (zx, Txy1]
H,, = height of the skip list



Analysis of the height

a; = height(z;) ~ Geom(p)
H, = height(S) = max{ai,...,an}

E[H,] =) Pr{H, >k}=) (1-Pr{H, <k})

k>0 k>0
= <1 — JT Pr{a: < kz}> = (1= (Pr{a; <k}")
£>0 1<i<n k>0

-2 - (1-#)

with ¢ : =1 —p.



Analysis of the height

#

W. Szpankowski V. Rego

Theorem (Szpankowski and Rego,1990)
1
E[Hn] =loggn + % —3 + x(loggn) + O(1/n)

with @ :=1/q, L :=1nQ, x(t) a fluctuation of period 1, mean 0
and small amplitude.




Analysis of the forward cost

The number of forward steps F, i is the number of weak

left-to-right maxima in ag,ax_1,...,a;1, with a; = height(z;)
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Analysis of the forward cost

The number of forward steps F, i is the number of weak
left-to-right maxima in ag,ax_1,...,a;1, with a; = height(z;)
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Analysis of the forward cost

o Total unsuccessful search cost

Cn = Z Cn,k:an+Fn
0<k<n



Analysis of the forward cost

o Total unsuccessful search cost

Cn = Z Cn,k:an+Fn
0<k<n

o Total forward cost

F, = Z Fn,k

0<k<n
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Analysis of the forward cost

@ F(S) = total forward cost of the skip list S



Analysis of the forward cost

@ F(S) = total forward cost of the skip list S

@ The recursive decomposition S = (o, m, T) gives

F(S)=F(o)+ F(t)+ 7| +1



Analysis of the forward cost

@ F(S) = total forward cost of the skip list S

@ The recursive decomposition S = (o, m, T) gives
F(S)=F(o)+ F(1)+|7|+1

o Let Slond] denote the set of all skip lists whose height satisfies
the condition cond

Fleondl(z 4) = Z 2SI FS) pr(s),
SES[cond]

with
Pr(S) = Pr(o) - pg™ ! - Pr(7)



Analysis of the forward cost

@ The recursion translates to

F=™(z,u) = pg™ L2u? F<™ Y2, u) F<™ (2, u), m >0

F%z,u) =1



Analysis of the forward cost

@ The recursion translates to
F=™(z,u) = pg™ L2u? F<™ Y2, u) F<™ (2, u), m >0
F%z,u) =1

o Taking derivatives w.r.t. u and setting w = 1, we obtain a
recurrence for the GF of expectations:

ml ) | FEe)

—my _ 2DQ
) = Q] T ] m 1]

with [m] :==1—2(1 —q¢™)



Analysis of the forward cost

@ We solve the recurrence by iteration, with
f=™ = f<™ — f<m1 and finally take the limit
f(z) :==1limy, 00 fﬁm(z)

22 pg (1 —¢)

1= m o

i>1 [[7']]



Analysis of the forward cost

@ We solve the recurrence by iteration, with
f=™ = f<™ — f<m1 and finally take the limit
f(z) :==1limy, 00 fﬁm(z)

£(2) z? pg (1 —¢")

T 1-2P4 M

@ Using Euler transform we can easily extract the nth coefficient

of f(z), [2"]f(2) = E[F]

g:=1-p,Q:=1/q



Analysis of the forward cost

The asymptotic behavior of F,, (and other quantities that arise in
the analysis of skip lists) can be analyzed using Mellin transforms or
Rice's method

l; <Z>(—1)kf(k) = _% /C Wf(z) dz

with C a positively oriented curve enclosing @, a + 1, ..., n, and
f(2z) an analytic continuation of f(k)



Analysis of the forward cost

P. Kirschenhofer H. Prodinger

Theorem (Kirschehofer, Prodinger, 1994)

The expected forward cost in a random skip list of size n is

-1 1 1
E[Fn] = (Q-1)n <logQ n -+ ’YT —3 + Zx(logQ n)) +O(logn),
with @ :==1/q, L =1nQ and x a periodic fluctuation of period 1,
mean 0 and small amplitude.




To learn more

[§ L. Devroye.
A limit theory for random skip lists.
The Annals of Applied Probability, 2(3):597-609, 1992.

[ P. Kirschenhofer and H. Prodinger.
The path length of random skip lists.
Acta Informatica, 31(8):775-792, 1994.

[ P. Kirschenhofer, C. Martinez and H. Prodinger.
Analysis of an Optimized Search Algorithm for Skip Lists.
Theoretical Computer Science, 144:199-220, 1995.
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G T Papadakis, J. I. Munro, and P. V. Poblete.
Average search and update costs in skip lists.
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[§ H. Prodinger.

Combinatorics of geometrically distributed random variables:
Left-to-right maxima.

Discrete Mathematics, 153:253-270, 1996.

§ W. Pugh.
Skip lists: a probabilistic alternative to balanced trees.
Comm. ACM, 33(6):668-676, 1990.
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Two incarnations

e Randomized treaps (tree+heap) invented by Aragon and
Seidel (FOCS 1989, Algorithmica 1996) use random priorities
and bottom-up balancing



Randomized binary search trees

C. Aragon R. Seidel S. Roura

Two incarnations
e Randomized treaps (tree+heap) invented by Aragon and
Seidel (FOCS 1989, Algorithmica 1996) use random priorities
and bottom-up balancing
@ Randomized binary search trees (RBSTs) invented by Martinez
and Roura (ESA 1996, JACM 1998) use subtree sizes and
top-down balancing



Randomized binary search trees

@ In a random binary search tree (built using random insertions)
any of its n elements is the root with probability 1/n
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@ In a random binary search tree (built using random insertions)
any of its n elements is the root with probability 1/n

@ |dea: to insert a new item, insert it at the root with probability
1/(n + 1), otherwise proceed recursively



Randomized binary search trees

A

J. Vuillemin

@ In a random binary search tree (built using random insertions)
any of its n elements is the root with probability 1/n

@ |dea: to insert a new item, insert it at the root with probability
1/(n + 1), otherwise proceed recursively

@ The random priorities of treaps “simulate” random timestamps
(cif. Vuillemin's Cartesian trees 1980); rotations are used to
maintain the BST invariant w.r.t. keys and the heap invariant
w.r.t. priorities
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Insertion in a RBST

procedure Insert(T', z)
n« Tsize pn=0if T =0
if Uniform(0,n) = 0 then
return Insert-at-Root(T, z)
if 2 < T.item then
T.left « Insert(Tleft, z)
else
T'.right < Insert(Tright, z)

Update T'.size
return T




Insertion in a RBST

@ To insert a new item z at the root of T', we use the algorithm
Split that returns two RBSTs T~ and T'" with element smaller
and larger than z, resp.

(T, T") = Split(T, z)

T =BSTfor{yeT|y<z}
Tt =BST for {y € T'|z < y}
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Split that returns two RBSTs T~ and T'" with element smaller
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Insertion in a RBST

@ To insert a new item z at the root of T', we use the algorithm
Split that returns two RBSTs T~ and T'" with element smaller
and larger than z, resp.

(T, T") = Split(T, z)

T =BSTfor{yeT|y<z}
Tt =BST for {y € T'|z < y}

@ Split is like partition in Quicksort

@ Insertion at root was invented by Stephenson in 1976



Splitting a RBST

To split a RBST T around z, we need just to follow the path from
the root of T to the leaf where z falls

X<z



Splitting a RBST

To split a RBST T around z, we need just to follow the path from
the root of T to the leaf where z falls

X<z




Splitting a RBST

@ The cost of the insertion at root (measured # of visited
nodes) is exactly the same as the cost of the standard insertion



Splitting a RBST

@ The cost of the insertion at root (measured # of visited
nodes) is exactly the same as the cost of the standard insertion

o For a random(ized) BST this is the depth Ly ; of the ith leaf
plus 1 (see, e.g., Knuth’s volume 3)

E[Ln;) = Hi—1 + Hpt1-4
~2logn+0(1), 1=a-n+o(n),0<a<l



Splitting a RBST

Lemma

Let T~ and T™ be the BSTs produced by Split(T,z). If T is a
random BST containing the set of keys K, then T~ and T are
independent random BSTs containing the sets of keys

K ={yeT|y<z}and K" ={y € T|y > z}, respectively.



Insertion in RBSTs

Theorem

If T is a random BST that contains the set of keys K and z is any

key not in K, then Insert(T, z) produces a random BST containing
the set of keys K U {z}.




Deletions in RBSTs

procedure Delete(T', z)

if T =0 then

return T
if 2 = T.item then

return Delete-Root(T")
if z < T.item then

T.left « Delete(T'.left, z)
else

T'.right < Delete(Tright, )
Update T'size
return T




Deletions in RBSTs

@ The fundamental problem is how to remove the root node of a
BST, in particular, when both subtrees are not empty
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Deletions in RBSTs

@ The fundamental problem is how to remove the root node of a
BST, in particular, when both subtrees are not empty

@ The original deletion algorithm by Hibbard was assumed to
preserve randomness

@ In 1975, G. Knott discovered that Hibbard's deletion preserves
randomness of shape, but an insertion following a deletion
would destroy randomness (Knott's paradox)
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@ Several theoretical and experimental work aimed at
understanding what was the effect of deletions, e.g.,
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@ Several theoretical and experimental work aimed at
understanding what was the effect of deletions, e.g.,
o Jonassen & Knuth's An Algorithm whose Analysis Isn’t (JCSS,
1978)

o Knuth's Deletions that Preserve Randomness (IEEE Trans.
Soft. Eng., 1977)

e Eppinger’s experiments (CACM, 1983)
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Deletions in RBSTs
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J. Culberson J.L. Eppinger D.E. Knuth

@ Several theoretical and experimental work aimed at
understanding what was the effect of deletions, e.g.,
o Jonassen & Knuth's An Algorithm whose Analysis Isn’t (JCSS,
1978)

o Knuth's Deletions that Preserve Randomness (IEEE Trans.
Soft. Eng., 1977)

Eppinger’s experiments (CACM, 1983)
Culberson’s paper on deletions of the left spine (STOC, 1985)



Deletions in RBSTs
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J. Culberson J.L. Eppinger D.E. Knuth
@ Several theoretical and experimental work aimed at
understanding what was the effect of deletions, e.g.,
o Jonassen & Knuth's An Algorithm whose Analysis Isn’t (JCSS,
1978)

o Knuth's Deletions that Preserve Randomness (IEEE Trans.
Soft. Eng., 1977)

Eppinger’s experiments (CACM, 1983)
Culberson’s paper on deletions of the left spine (STOC, 1985)

@ These studies showed that deletions degraded performance in
the long run



Deletions in RBSTs

We delete the root using a procedure Join(T1,T%). Given two BSTs
such that for all z € T4 and all y € T,, ¢ <y, it returns a new
BST that contains all the keys in T4 and T%. Then

Delete-Root(T') = Join(Tleft, T'right)
with

Join(0,0) =0
Join(T,0) = Join((0, T) =T
JOin(T]_,Tz) == ?, T]_ ;ﬁ D,Tg 75 O]
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undesirable bias
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y is the root of Th with probability 1/n



Joining two BSTs

o If we systematically choose the root of T} as the root of
Join(T, T), or the other way around, we will introduce an
undesirable bias

@ Suppose both T; and T, are random. Let m and n denote
their sizes. Then z is the root of T} with probability 1/m and
y is the root of Th with probability 1/n

@ Choose z as the common root with probability m/(m + n),
choose y with probability n/(m + n)




Joining two RBSTs

Lemma

Let L and R be two independent random BSTs, such that the keys
in L are strictly smaller than the keys in R. Let Ky, and Kg denote
the sets of keys in L and R, respectively. Then T = Join(L, R) is a
random BST that contains the set of keys K = K1, U Kpg.
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@ The recursion for JoinTy, T, traverses the rightmost branch
(right spine) of T4 and the leftmost branch (left spine) of Th

@ The trees to be joined are the left and right subtrees L and R
of the 7th item in a RBST of size n; then

length of left spine of L = path length to zth leaf
length of right spine of R = path length to (¢ + 1)th leaf



Joining two RBSTs

@ The recursion for JoinTy, T, traverses the rightmost branch
(right spine) of T4 and the leftmost branch (left spine) of Th

@ The trees to be joined are the left and right subtrees L and R
of the 7th item in a RBST of size n; then

length of left spine of L = path length to zth leaf
length of right spine of R = path length to (¢ + 1)th leaf

@ The cost of the joining phase is the sum of the path lengths to
the leaves minus twice the depth of the ith item; the expected
cost follows from well-known results



Deletions in RBSTs

Theorem

If T is a random BST that contains the set of keys K, then
Delete(T, z) produces a random BST containing the set of keys

K\ {z}.




Deletions in RBSTs

Theorem

If T is a random BST that contains the set of keys K, then
Delete(T, z) produces a random BST containing the set of keys

Corollary

The result of any arbitary sequence of insertions and deletions,
starting from an initially empty tree is always a random BST.
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Additional remarks

@ Arbitrary insertions and deletions yield always random BSTs

@ A deletion algorithm for BSTs that preserved randomness was
a long standing open problem (10-15 yr)

@ Properties of random BSTs have been investigated in depth
and for a long time

@ Treaps only need to generate a single random number per
node (with O(logn) bits)

@ RBSTs need O(logn) calls to the random generator per
insertion, and O(1) calls per deletion (on average)
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@ Storing subtree sizes for balancing is more useful: they can be
used to implement search and deletion by rank, e.g., find the
tth smallest element in the tree
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Additional remarks

@ Storing subtree sizes for balancing is more useful: they can be
used to implement search and deletion by rank, e.g., find the
tth smallest element in the tree

@ Other operations, e.g., union and intersection are also
efficiently supported by RBSTs

@ Similar ideas have been used to randomize other search trees,
namely, K-dimensional binary search trees (Duch and
Martinez, 1998) and quadtrees (Duch, 1999)
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