
Searching with Dice
A survey on randomized data structures

Conrado Martínez

Univ. Politècnica de Catalunya, Spain

May 11th, 2010
Journée inaugurale de l'équipe

Combinatoire, algorithmique et interactions (CALIN)

1 Introduction

2 Skip lists

3 Randomized binary search trees

Introduction

R. Karp N. C. Metropolis M. O. Rabin

The usefulnees of randomization in the design of algorithms has

been known for a long time:

Metropolis' algorithms

Rabin's primality test

Rabin-Karp's string search

Introduction

M.N. Wegman

Hashing is another early success of randomization for the

design of data structures.

Selecting the hash function from a universal class (Carter and

Wegman, 1977) guarantees expected performance

Introduction

Randomization yields algorithms:

Simple and elegant

Practical

With guaranteed expected performance

Without assumptions on the probabilistic distribution of the

input

Introduction

The usual worst-case analysis is not useful for randomized

algorithms

The probabilistic model to use in the analysis is under control;

it is not a working hypothesis, but built-in

Introduction

In this talk:

Skip lists

Randomized binary search trees

1 Introduction

2 Skip lists

3 Randomized binary search trees

Skip lists

W. Pugh

Skip lists were invented by William Pugh (C. ACM, 1990) as a

simple alternative to balanced trees

The algorithms to search, insert, delete, etc. are very simple to

understand and to implement, and they have very good

expected performance�independent of any assumption on the

input

Skip lists

W. Pugh

Skip lists were invented by William Pugh (C. ACM, 1990) as a

simple alternative to balanced trees

The algorithms to search, insert, delete, etc. are very simple to

understand and to implement, and they have very good

expected performance�independent of any assumption on the

input

Skip lists

A skip list S for a set X consists of:

1 A sorted linked list L1, called level 1, contains all elements of

X

2 A collection of non-empty sorted lists L2, L3, . . . , called level

2, level 3, . . . such that for all i � 1, if an element x belongs

to Li then x belongs to Li+1 with probability p, for some

0 < p < 1

Skip lists

12 4240 53 663721

Header

−OO

NIL

OO+

To implement this, we store the items of X in a collection of nodes

each holding an item and a variable-size array of pointers to the

item's successor at each level; an additional dummy node gives

access to the �rst item of each level

Skip lists

12 4240 53 663721

Header

−OO

NIL

OO+

To implement this, we store the items of X in a collection of nodes

each holding an item and a variable-size array of pointers to the

item's successor at each level; an additional dummy node gives

access to the �rst item of each level

Skip lists

The level or height of a node x, height(x), is the number of

lists it belongs to.

It is given by a geometric r.v. of parameter p:

Prfheight(x) = kg = pqk�1; q = 1� p

Skip lists

The level or height of a node x, height(x), is the number of

lists it belongs to.

It is given by a geometric r.v. of parameter p:

Prfheight(x) = kg = pqk�1; q = 1� p

Skip lists

The height of the skip list S is the number of non-empty lists,

height(S) = max
x2S

fheight(x)g

The random variable Hn giving the height of a random skip

list of n is the maximum of n i.i.d. Geom(p)

Several performance measures of skip lists are expressed in

terms of the probabilistic behavior of a sequence of n i.i.d.

geometric r.v. of parameter p

Skip lists

The height of the skip list S is the number of non-empty lists,

height(S) = max
x2S

fheight(x)g

The random variable Hn giving the height of a random skip

list of n is the maximum of n i.i.d. Geom(p)

Several performance measures of skip lists are expressed in

terms of the probabilistic behavior of a sequence of n i.i.d.

geometric r.v. of parameter p

Skip lists

The height of the skip list S is the number of non-empty lists,

height(S) = max
x2S

fheight(x)g

The random variable Hn giving the height of a random skip

list of n is the maximum of n i.i.d. Geom(p)

Several performance measures of skip lists are expressed in

terms of the probabilistic behavior of a sequence of n i.i.d.

geometric r.v. of parameter p

Searching in a skip list

Searching for an item x, 42 < x � 53

12 4240 53 663721

Header

−OO

NIL

OO+

Searching in a skip list

Searching for an item x, 42 < x � 53

12 4240 53 663721

Header

−OO

NIL

OO+

Searching in a skip list

Searching for an item x, 42 < x � 53

12 4240 53 663721

Header

−OO

NIL

OO+

Searching in a skip list

Searching for an item x, 42 < x � 53

12 4240 53 663721

Header

−OO

NIL

OO+

Searching in a skip list

Searching for an item x, 42 < x � 53

12 4240 53 663721

Header

−OO

NIL

OO+

Searching in a skip list

Searching for an item x, 42 < x � 53

12 4240 53 663721

Header

−OO

NIL

OO+

Searching in a skip list

procedure Search(S, x)
p S:header
` S:height
while ` 6= 0 do

if p:item < x then

p p:next[`]
else

` `� 1

Insertion in a skip list

Inserting an item x = 48

12 4240 53 663721

Header

−OO

NIL

OO+

Insertion in a skip list

Inserting an item x = 48

12 4240 53 663721

Header

−OO

NIL

OO+

Geom(p)

48

Insertion in a skip list

Inserting an item x = 48

53 66

NIL

OO+12 42403721

Header

−OO

48

Insertion in a skip list

Inserting an item x = 48

53 66

NIL

OO+4812 42403721

Header

−OO

Performance of skip lists

The cost of insertions, deletions and searches is essentially that

of searching, with

Cost of search = # of forward steps+ height(S)

More formally, with X = fx1; x2; : : : ; xng,
x0 = �1 < x1 < � � � < xn < xn+1 = +1, for 0 � k � n,

Cn;k = Fn;k +Hn cost of searching a key in (xk; xk+1]

Fn;k = # of forward steps to (xk; xk+1]

Hn = height of the skip list

Performance of skip lists

The cost of insertions, deletions and searches is essentially that

of searching, with

Cost of search = # of forward steps+ height(S)

More formally, with X = fx1; x2; : : : ; xng,
x0 = �1 < x1 < � � � < xn < xn+1 = +1, for 0 � k � n,

Cn;k = Fn;k +Hn cost of searching a key in (xk; xk+1]

Fn;k = # of forward steps to (xk; xk+1]

Hn = height of the skip list

Analysis of the height

ai = height(xi) � Geom(p)

Hn = height(S) = maxfa1; : : : ; ang

E[Hn] =
X
k>0

PrfHn > kg =
X
k>0

(1� PrfHn � kg)

=
X
k>0

0
@1�

Y
1�i�n

Prfai � kg

1
A =

X
k>0

(1� (Prfai � kg)n)

=
X
k>0

�
1�

�
1� qk

�n�

with q := 1� p.

Analysis of the height

W. Szpankowski V. Rego

Theorem (Szpankowski and Rego,1990)

E[Hn] = logQ n+

L
�

1

2
+ �(logQ n) +O(1=n)

with Q := 1=q, L := lnQ, �(t) a �uctuation of period 1, mean 0

and small amplitude.

Analysis of the forward cost

The number of forward steps Fn;k is the number of weak

left-to-right maxima in ak; ak�1; : : : ; a1, with ai = height(xi)

12 4240 53 663721

Header

−OO

NIL

OO+

Analysis of the forward cost

The number of forward steps Fn;k is the number of weak

left-to-right maxima in ak; ak�1; : : : ; a1, with ai = height(xi)

12 4240 53 663721

Header

−OO

NIL

OO+

Analysis of the forward cost

Total unsuccessful search cost

Cn =
X

0�k�n

Cn;k = nHn + Fn

Total forward cost

Fn =
X

0�k�n

Fn;k

Analysis of the forward cost

Total unsuccessful search cost

Cn =
X

0�k�n

Cn;k = nHn + Fn

Total forward cost

Fn =
X

0�k�n

Fn;k

Analysis of the forward cost

6

?

< m

6

?

6

?

m

Header

� m

NILm� �
A recursive decomposition of the skip list S

Analysis of the forward cost

F (S) = total forward cost of the skip list S

The recursive decomposition S = h�;m; � i gives

F (S) = F (�) + F (�) + j� j+ 1

Let S [cond] denote the set of all skip lists whose height satis�es

the condition cond

F [cond](z; u) =
X

S2S[cond]

zjSjuF (S) Pr(S);

with

Pr(S) = Pr(�) � pqm�1 � Pr(�)

Analysis of the forward cost

F (S) = total forward cost of the skip list S

The recursive decomposition S = h�;m; � i gives

F (S) = F (�) + F (�) + j� j+ 1

Let S [cond] denote the set of all skip lists whose height satis�es

the condition cond

F [cond](z; u) =
X

S2S[cond]

zjSjuF (S) Pr(S);

with

Pr(S) = Pr(�) � pqm�1 � Pr(�)

Analysis of the forward cost

F (S) = total forward cost of the skip list S

The recursive decomposition S = h�;m; � i gives

F (S) = F (�) + F (�) + j� j+ 1

Let S [cond] denote the set of all skip lists whose height satis�es

the condition cond

F [cond](z; u) =
X

S2S[cond]

zjSjuF (S) Pr(S);

with

Pr(S) = Pr(�) � pqm�1 � Pr(�)

Analysis of the forward cost

The recursion translates to

F=m(z; u) = pqm�1zu2F�m�1(z; u)F�m(z; u); m > 0

F=0(z; u) = 1

Taking derivatives w.r.t. u and setting u = 1, we obtain a

recurrence for the GF of expectations:

f=m(z) =
2pqm�1z

[[m� 1]][[m]]
+
f�m�1(z)

[[m]]
+
f�m(z)

[[m� 1]]
;

with [[m]] := 1� z(1� qm)

Analysis of the forward cost

The recursion translates to

F=m(z; u) = pqm�1zu2F�m�1(z; u)F�m(z; u); m > 0

F=0(z; u) = 1

Taking derivatives w.r.t. u and setting u = 1, we obtain a

recurrence for the GF of expectations:

f=m(z) =
2pqm�1z

[[m� 1]][[m]]
+
f�m�1(z)

[[m]]
+
f�m(z)

[[m� 1]]
;

with [[m]] := 1� z(1� qm)

Analysis of the forward cost

We solve the recurrence by iteration, with

f=m = f�m � f�m�1 and �nally take the limit

f(z) := limm!1 f�m(z)

f(z) =
z2

(1� z)2

X
i�1

pqi�1(1� qi)

[[i]]

Using Euler transform we can easily extract the nth coe�cient

of f(z), [zn]f(z) = E[Fn]

E[Fn] =
p

q

nX
k=2

(�1)k
1

Qk�1 � 1
;

q := 1� p;Q := 1=q

Analysis of the forward cost

We solve the recurrence by iteration, with

f=m = f�m � f�m�1 and �nally take the limit

f(z) := limm!1 f�m(z)

f(z) =
z2

(1� z)2

X
i�1

pqi�1(1� qi)

[[i]]

Using Euler transform we can easily extract the nth coe�cient

of f(z), [zn]f(z) = E[Fn]

E[Fn] =
p

q

nX
k=2

(�1)k
1

Qk�1 � 1
;

q := 1� p;Q := 1=q

Analysis of the forward cost

The asymptotic behavior of Fn (and other quantities that arise in

the analysis of skip lists) can be analyzed using Mellin transforms or

Rice's method

nX
k=a

n

k

!
(�1)kf(k) = �

1

2�i

Z
C

�(n+ 1)�(�z)

�(n+ 1� z)
f(z) dz

with C a positively oriented curve enclosing a, a+ 1, . . . , n, and
f(z) an analytic continuation of f(k)

Analysis of the forward cost

P. Kirschenhofer H. Prodinger

Theorem (Kirschehofer, Prodinger, 1994)

The expected forward cost in a random skip list of size n is

E[Fn] = (Q�1)n

�
logQ n+

 � 1

L
�

1

2
+

1

L
�(logQ n)

�
+O(logn);

with Q := 1=q, L = lnQ and � a periodic �uctuation of period 1,

mean 0 and small amplitude.

To learn more

L. Devroye.

A limit theory for random skip lists.

The Annals of Applied Probability, 2(3):597�609, 1992.

P. Kirschenhofer and H. Prodinger.

The path length of random skip lists.

Acta Informatica, 31(8):775�792, 1994.

P. Kirschenhofer, C. Martínez and H. Prodinger.

Analysis of an Optimized Search Algorithm for Skip Lists.

Theoretical Computer Science, 144:199�220, 1995.

To learn more (2)

T. Papadakis, J. I. Munro, and P. V. Poblete.

Average search and update costs in skip lists.

BIT, 32:316�332, 1992.

H. Prodinger.

Combinatorics of geometrically distributed random variables:

Left-to-right maxima.

Discrete Mathematics, 153:253�270, 1996.

W. Pugh.

Skip lists: a probabilistic alternative to balanced trees.

Comm. ACM, 33(6):668�676, 1990.

1 Introduction

2 Skip lists

3 Randomized binary search trees

Randomized binary search trees

C. Aragon R. Seidel

Two incarnations

Randomized treaps (tree+heap) invented by Aragon and

Seidel (FOCS 1989, Algorithmica 1996) use random priorities

and bottom-up balancing

Randomized binary search trees (RBSTs) invented by Martínez

and Roura (ESA 1996, JACM 1998) use subtree sizes and

top-down balancing

Randomized binary search trees

C. Aragon R. Seidel S. Roura

Two incarnations

Randomized treaps (tree+heap) invented by Aragon and

Seidel (FOCS 1989, Algorithmica 1996) use random priorities

and bottom-up balancing

Randomized binary search trees (RBSTs) invented by Martínez

and Roura (ESA 1996, JACM 1998) use subtree sizes and

top-down balancing

Randomized binary search trees

In a random binary search tree (built using random insertions)

any of its n elements is the root with probability 1=n

Idea: to insert a new item, insert it at the root with probability

1=(n+ 1), otherwise proceed recursively

The random priorities of treaps �simulate� random timestamps

(cif. Vuillemin's Cartesian trees 1980); rotations are used to

maintain the BST invariant w.r.t. keys and the heap invariant

w.r.t. priorities

Randomized binary search trees

In a random binary search tree (built using random insertions)

any of its n elements is the root with probability 1=n

Idea: to insert a new item, insert it at the root with probability

1=(n+ 1), otherwise proceed recursively

The random priorities of treaps �simulate� random timestamps

(cif. Vuillemin's Cartesian trees 1980); rotations are used to

maintain the BST invariant w.r.t. keys and the heap invariant

w.r.t. priorities

Randomized binary search trees

J. Vuillemin

In a random binary search tree (built using random insertions)

any of its n elements is the root with probability 1=n

Idea: to insert a new item, insert it at the root with probability

1=(n+ 1), otherwise proceed recursively

The random priorities of treaps �simulate� random timestamps

(cif. Vuillemin's Cartesian trees 1980); rotations are used to

maintain the BST invariant w.r.t. keys and the heap invariant

w.r.t. priorities

Insertion in a RBST

Inserting an item x = 48

42

27

11 35 56

64

1
1

3

6

2

1

Insertion in a RBST

Inserting an item x = 48

42

27

11 35 56

64

1
1

3

6

2

1

48

insert new

item

Insertion in a RBST

Inserting an item x = 48

42

27

11 35 56

64

1
1

3

6

2

1

48

with prob 1/7 insert

at root

Insertion in a RBST

Inserting an item x = 48

48
42

27

11 35 56

64

1
1

3

6

2

1 with prob =1/3

insert at root

Insertion in a RBST

Inserting an item x = 48

42

27

11 351
1

3
48 3

7

56

2

1

64

Insertion in a RBST

procedure Insert(T , x)
n T:size . n = 0 if T = �
if Uniform(0; n) = 0 then

return Insert-at-Root(T; x)

if x < T:item then

T:left Insert(T:left; x)
else

T:right Insert(T:right; x)

Update T:size
return T

Insertion in a RBST

To insert a new item x at the root of T , we use the algorithm
Split that returns two RBSTs T� and T+ with element smaller

and larger than x, resp.

hT�; T+i = Split(T; x)

T� = BST for fy 2 T j y < xg

T+ = BST for fy 2 T jx < yg

Split is like partition in Quicksort

Insertion at root was invented by Stephenson in 1976

Insertion in a RBST

To insert a new item x at the root of T , we use the algorithm
Split that returns two RBSTs T� and T+ with element smaller

and larger than x, resp.

hT�; T+i = Split(T; x)

T� = BST for fy 2 T j y < xg

T+ = BST for fy 2 T jx < yg

Split is like partition in Quicksort

Insertion at root was invented by Stephenson in 1976

Insertion in a RBST

To insert a new item x at the root of T , we use the algorithm
Split that returns two RBSTs T� and T+ with element smaller

and larger than x, resp.

hT�; T+i = Split(T; x)

T� = BST for fy 2 T j y < xg

T+ = BST for fy 2 T jx < yg

Split is like partition in Quicksort

Insertion at root was invented by Stephenson in 1976

Splitting a RBST

To split a RBST T around x, we need just to follow the path from

the root of T to the leaf where x falls

z

T =

x < z

L R

Splitting a RBST

To split a RBST T around x, we need just to follow the path from

the root of T to the leaf where x falls

L+

z

x < z

−

+T = <L , z , R>+

R

−T = L

Splitting a RBST

The cost of the insertion at root (measured # of visited

nodes) is exactly the same as the cost of the standard insertion

For a random(ized) BST this is the depth Ln;i of the ith leaf

plus 1 (see, e.g., Knuth's volume 3)

E[Ln;i] = Hi�1 +Hn+1�i

� 2 logn+O(1); i = � � n+ o(n); 0 < � < 1

Splitting a RBST

The cost of the insertion at root (measured # of visited

nodes) is exactly the same as the cost of the standard insertion

For a random(ized) BST this is the depth Ln;i of the ith leaf

plus 1 (see, e.g., Knuth's volume 3)

E[Ln;i] = Hi�1 +Hn+1�i

� 2 logn+O(1); i = � � n+ o(n); 0 < � < 1

Splitting a RBST

Lemma

Let T� and T+ be the BSTs produced by Split(T; x). If T is a

random BST containing the set of keys K, then T� and T+ are

independent random BSTs containing the sets of keys

K� = fy 2 T j y < xg and K+ = fy 2 T j y > xg, respectively.

Insertion in RBSTs

Theorem

If T is a random BST that contains the set of keys K and x is any

key not in K, then Insert(T; x) produces a random BST containing

the set of keys K [fxg.

Deletions in RBSTs

procedure Delete(T , x)
if T = � then

return T

if x = T:item then

return Delete-Root(T)

if x < T:item then

T:left Delete(T:left; x)
else

T:right Delete(T:right; x)

Update T:size
return T

Deletions in RBSTs

The fundamental problem is how to remove the root node of a

BST, in particular, when both subtrees are not empty

The original deletion algorithm by Hibbard was assumed to

preserve randomness

In 1975, G. Knott discovered that Hibbard's deletion preserves

randomness of shape, but an insertion following a deletion

would destroy randomness (Knott's paradox)

Deletions in RBSTs

The fundamental problem is how to remove the root node of a

BST, in particular, when both subtrees are not empty

The original deletion algorithm by Hibbard was assumed to

preserve randomness

In 1975, G. Knott discovered that Hibbard's deletion preserves

randomness of shape, but an insertion following a deletion

would destroy randomness (Knott's paradox)

Deletions in RBSTs

The fundamental problem is how to remove the root node of a

BST, in particular, when both subtrees are not empty

The original deletion algorithm by Hibbard was assumed to

preserve randomness

In 1975, G. Knott discovered that Hibbard's deletion preserves

randomness of shape, but an insertion following a deletion

would destroy randomness (Knott's paradox)

Deletions in RBSTs

J. Culberson J.L. Eppinger D.E. Knuth

Several theoretical and experimental work aimed at
understanding what was the e�ect of deletions, e.g.,

Jonassen & Knuth's An Algorithm whose Analysis Isn't (JCSS,
1978)
Knuth's Deletions that Preserve Randomness (IEEE Trans.
Soft. Eng., 1977)
Eppinger's experiments (CACM, 1983)
Culberson's paper on deletions of the left spine (STOC, 1985)
. . .

These studies showed that deletions degraded performance in

the long run

Deletions in RBSTs

J. Culberson J.L. Eppinger D.E. Knuth

Several theoretical and experimental work aimed at
understanding what was the e�ect of deletions, e.g.,

Jonassen & Knuth's An Algorithm whose Analysis Isn't (JCSS,
1978)
Knuth's Deletions that Preserve Randomness (IEEE Trans.
Soft. Eng., 1977)
Eppinger's experiments (CACM, 1983)
Culberson's paper on deletions of the left spine (STOC, 1985)
. . .

These studies showed that deletions degraded performance in

the long run

Deletions in RBSTs

J. Culberson J.L. Eppinger D.E. Knuth

Several theoretical and experimental work aimed at
understanding what was the e�ect of deletions, e.g.,

Jonassen & Knuth's An Algorithm whose Analysis Isn't (JCSS,
1978)
Knuth's Deletions that Preserve Randomness (IEEE Trans.
Soft. Eng., 1977)
Eppinger's experiments (CACM, 1983)
Culberson's paper on deletions of the left spine (STOC, 1985)
. . .

These studies showed that deletions degraded performance in

the long run

Deletions in RBSTs

J. Culberson J.L. Eppinger D.E. Knuth

Several theoretical and experimental work aimed at
understanding what was the e�ect of deletions, e.g.,

Jonassen & Knuth's An Algorithm whose Analysis Isn't (JCSS,
1978)
Knuth's Deletions that Preserve Randomness (IEEE Trans.
Soft. Eng., 1977)
Eppinger's experiments (CACM, 1983)
Culberson's paper on deletions of the left spine (STOC, 1985)
. . .

These studies showed that deletions degraded performance in

the long run

Deletions in RBSTs

J. Culberson J.L. Eppinger D.E. Knuth

Several theoretical and experimental work aimed at
understanding what was the e�ect of deletions, e.g.,

Jonassen & Knuth's An Algorithm whose Analysis Isn't (JCSS,
1978)
Knuth's Deletions that Preserve Randomness (IEEE Trans.
Soft. Eng., 1977)
Eppinger's experiments (CACM, 1983)
Culberson's paper on deletions of the left spine (STOC, 1985)
. . .

These studies showed that deletions degraded performance in

the long run

Deletions in RBSTs

J. Culberson J.L. Eppinger D.E. Knuth

Several theoretical and experimental work aimed at
understanding what was the e�ect of deletions, e.g.,

Jonassen & Knuth's An Algorithm whose Analysis Isn't (JCSS,
1978)
Knuth's Deletions that Preserve Randomness (IEEE Trans.
Soft. Eng., 1977)
Eppinger's experiments (CACM, 1983)
Culberson's paper on deletions of the left spine (STOC, 1985)
. . .

These studies showed that deletions degraded performance in

the long run

Deletions in RBSTs

J. Culberson J.L. Eppinger D.E. Knuth

Several theoretical and experimental work aimed at
understanding what was the e�ect of deletions, e.g.,

Jonassen & Knuth's An Algorithm whose Analysis Isn't (JCSS,
1978)
Knuth's Deletions that Preserve Randomness (IEEE Trans.
Soft. Eng., 1977)
Eppinger's experiments (CACM, 1983)
Culberson's paper on deletions of the left spine (STOC, 1985)
. . .

These studies showed that deletions degraded performance in

the long run

Deletions in RBSTs

We delete the root using a procedure Join(T1; T2). Given two BSTs

such that for all x 2 T1 and all y 2 T2, x � y, it returns a new

BST that contains all the keys in T1 and T2. Then

Delete-Root(T) � Join(T:left; T:right)

with

Join(�;�) = �

Join(T;�) = Join(�; T) = T

Join(T1; T2) = ?; T1 6= �; T2 6= �

Joining two BSTs

L
1

x

T T
1

R
1

L R2 2

y

2

Joining two BSTs

L
1

x

join(R , T)

R
1

L R2 2

y1 2

Joining two BSTs

If we systematically choose the root of T1 as the root of

Join(T1; T2), or the other way around, we will introduce an

undesirable bias

Suppose both T1 and T2 are random. Let m and n denote

their sizes. Then x is the root of T1 with probability 1=m and

y is the root of T2 with probability 1=n

Choose x as the common root with probability m=(m+ n),
choose y with probability n=(m+ n)

1

m
�

m

m+ n
=

1

m+ n
1

n
�

n

m+ n
=

1

m+ n

Joining two BSTs

If we systematically choose the root of T1 as the root of

Join(T1; T2), or the other way around, we will introduce an

undesirable bias

Suppose both T1 and T2 are random. Let m and n denote

their sizes. Then x is the root of T1 with probability 1=m and

y is the root of T2 with probability 1=n

Choose x as the common root with probability m=(m+ n),
choose y with probability n=(m+ n)

1

m
�

m

m+ n
=

1

m+ n
1

n
�

n

m+ n
=

1

m+ n

Joining two BSTs

If we systematically choose the root of T1 as the root of

Join(T1; T2), or the other way around, we will introduce an

undesirable bias

Suppose both T1 and T2 are random. Let m and n denote

their sizes. Then x is the root of T1 with probability 1=m and

y is the root of T2 with probability 1=n

Choose x as the common root with probability m=(m+ n),
choose y with probability n=(m+ n)

1

m
�

m

m+ n
=

1

m+ n
1

n
�

n

m+ n
=

1

m+ n

Joining two RBSTs

Lemma

Let L and R be two independent random BSTs, such that the keys

in L are strictly smaller than the keys in R. Let KL and KR denote

the sets of keys in L and R, respectively. Then T = Join(L;R) is a
random BST that contains the set of keys K = KL [KR.

Joining two RBSTs

The recursion for JoinT1; T2 traverses the rightmost branch

(right spine) of T1 and the leftmost branch (left spine) of T2

The trees to be joined are the left and right subtrees L and R
of the ith item in a RBST of size n; then

length of left spine of L = path length to ith leaf

length of right spine of R = path length to (i+ 1)th leaf

The cost of the joining phase is the sum of the path lengths to

the leaves minus twice the depth of the ith item; the expected

cost follows from well-known results�
2�

1

i
�

1

n+ 1� i

�
= O(1)

Joining two RBSTs

The recursion for JoinT1; T2 traverses the rightmost branch

(right spine) of T1 and the leftmost branch (left spine) of T2

The trees to be joined are the left and right subtrees L and R
of the ith item in a RBST of size n; then

length of left spine of L = path length to ith leaf

length of right spine of R = path length to (i+ 1)th leaf

The cost of the joining phase is the sum of the path lengths to

the leaves minus twice the depth of the ith item; the expected

cost follows from well-known results�
2�

1

i
�

1

n+ 1� i

�
= O(1)

Joining two RBSTs

The recursion for JoinT1; T2 traverses the rightmost branch

(right spine) of T1 and the leftmost branch (left spine) of T2

The trees to be joined are the left and right subtrees L and R
of the ith item in a RBST of size n; then

length of left spine of L = path length to ith leaf

length of right spine of R = path length to (i+ 1)th leaf

The cost of the joining phase is the sum of the path lengths to

the leaves minus twice the depth of the ith item; the expected

cost follows from well-known results�
2�

1

i
�

1

n+ 1� i

�
= O(1)

Deletions in RBSTs

Theorem

If T is a random BST that contains the set of keys K, then

Delete(T; x) produces a random BST containing the set of keys

K n fxg.

Deletions in RBSTs

Theorem

If T is a random BST that contains the set of keys K, then

Delete(T; x) produces a random BST containing the set of keys

K n fxg.

Corollary

The result of any arbitary sequence of insertions and deletions,

starting from an initially empty tree is always a random BST.

Additional remarks

Arbitrary insertions and deletions yield always random BSTs

A deletion algorithm for BSTs that preserved randomness was

a long standing open problem (10-15 yr)

Properties of random BSTs have been investigated in depth

and for a long time

Treaps only need to generate a single random number per

node (with O(logn) bits)

RBSTs need O(logn) calls to the random generator per

insertion, and O(1) calls per deletion (on average)

Additional remarks

Arbitrary insertions and deletions yield always random BSTs

A deletion algorithm for BSTs that preserved randomness was

a long standing open problem (10-15 yr)

Properties of random BSTs have been investigated in depth

and for a long time

Treaps only need to generate a single random number per

node (with O(logn) bits)

RBSTs need O(logn) calls to the random generator per

insertion, and O(1) calls per deletion (on average)

Additional remarks

Arbitrary insertions and deletions yield always random BSTs

A deletion algorithm for BSTs that preserved randomness was

a long standing open problem (10-15 yr)

Properties of random BSTs have been investigated in depth

and for a long time

Treaps only need to generate a single random number per

node (with O(logn) bits)

RBSTs need O(logn) calls to the random generator per

insertion, and O(1) calls per deletion (on average)

Additional remarks

Arbitrary insertions and deletions yield always random BSTs

A deletion algorithm for BSTs that preserved randomness was

a long standing open problem (10-15 yr)

Properties of random BSTs have been investigated in depth

and for a long time

Treaps only need to generate a single random number per

node (with O(logn) bits)

RBSTs need O(logn) calls to the random generator per

insertion, and O(1) calls per deletion (on average)

Additional remarks

Arbitrary insertions and deletions yield always random BSTs

A deletion algorithm for BSTs that preserved randomness was

a long standing open problem (10-15 yr)

Properties of random BSTs have been investigated in depth

and for a long time

Treaps only need to generate a single random number per

node (with O(logn) bits)

RBSTs need O(logn) calls to the random generator per

insertion, and O(1) calls per deletion (on average)

Additional remarks

Storing subtree sizes for balancing is more useful: they can be

used to implement search and deletion by rank, e.g., �nd the

ith smallest element in the tree

Other operations, e.g., union and intersection are also

e�ciently supported by RBSTs

Similar ideas have been used to randomize other search trees,

namely, K-dimensional binary search trees (Duch and

Martínez, 1998) and quadtrees (Duch, 1999)

Additional remarks

Storing subtree sizes for balancing is more useful: they can be

used to implement search and deletion by rank, e.g., �nd the

ith smallest element in the tree

Other operations, e.g., union and intersection are also

e�ciently supported by RBSTs

Similar ideas have been used to randomize other search trees,

namely, K-dimensional binary search trees (Duch and

Martínez, 1998) and quadtrees (Duch, 1999)

Additional remarks

Storing subtree sizes for balancing is more useful: they can be

used to implement search and deletion by rank, e.g., �nd the

ith smallest element in the tree

Other operations, e.g., union and intersection are also

e�ciently supported by RBSTs

Similar ideas have been used to randomize other search trees,

namely, K-dimensional binary search trees (Duch and

Martínez, 1998) and quadtrees (Duch, 1999)

To learn more

H. M. Mahmoud.

Evolution of Random Search Trees.

Wiley Interscience, 1992.

C. Martínez and S. Roura.

Randomized binary search trees.

J. Assoc. Comput. Mach., 45(2):288�323, 1998.

R. Seidel and C. Aragon.

Randomized search trees.

Algorithmica, 16:464�497, 1996.

General References

Ph. Flajolet and R. Sedgewick.

Analytic Combinatorics.

Cambridge University Press, 2008.

D. E. Knuth.

The Art of Computer Programming: Sorting and Searching,

volume 3.

Addison-Wesley, 2nd edition, 1998.

C. Pandu Rangan.

Randomized Data Structures, in Handbook of Data Structures

and Applications.

D.P. Mehta and S. Sahni, editors.

Chapman & Hall, CRC, 2005.

General References (2)

P. Raghavan and R. Motwani.

Randomized Algorithms.

Cambridge University Press, 1995.

R. Sedgewick.

Algorithms in C.

Addison-Wesley, 3rd edition, 1997.

MERCI BEAUCOUP!
Avec mes meilleurs voeux de succès et longue vie

pour CALIN

	Introduction
	Skip lists
	Randomized binary search trees

