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Quicksort and quickselect were invented in the

early sixties by C.A.R. Hoare (Hoare, 1961; Hoare,

1962)

They are simple, elegant, beatiful and practical

solutions to two basic problems of Computer

Science: sorting and selection

They are primary examples of the

divide-and-conquer principle
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Quicksort

void quicksort(vector<Elem>& A, int i, int j) {if (i < j) {int p = select_pivot(A, i, j);swap(A[p], A[l]);int k;partition(A, i, j, k);// A[i::k � 1] � A[k] � A[k + 1::j]quicksort(A, i, k - 1);quicksort(A, k + 1, j);} }
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Quickselect

Elem quickselect(vector<Elem>& A,int i, int j, int m) {if (i >= j) return A[i];int p = select_pivot(A, i, j, m);swap(A[p], A[l]);int k;partition(A, i, j, k);if (m < k) quickselect(A, i, k - 1, m);else if (m > k) quickselect(A, k + 1, j, m);else return A[k];}
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Partition

void partition(vector<Elem>& A,int i, int j, int& k) {int l = i; int u = j + 1; Elem pv = A[i];for ( ; ; ) {do ++l; while(A[l] < pv);do --u; while(A[u] > pv);if (l >= u) break;swap(A[l], A[u]);};swap(A[i], A[u]); k = u;}
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The Recurrences for Average Cost

Probability that the selected pivot is the k-th of n
elements: �n;k
Average number of comparisons Qn to sort n
elements:

Qn = n� 1 + nX
k=1�n;k � (Qk�1 +Qn�k)
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The Recurrences for Average Cost

Average number of comparisons Cn;m to select

the m-th out of n:
Cn;m = n� 1 + nX

k=m+1
�n;k � Ck�1;m

+ m�1X
k=1 �n;k � Cn�k;m�k
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Quicksort: The Average Cost

For the standard variant, the splitting probabilities

are �n;k = 1=n
Average number of comparisons Qn to sort n
elements (Hoare, 1962):

Qn = 2(n+ 1)Hn � 4n= 2n lnn+ (2
 � 4)n+ 2 lnn+O(1)
where Hn =P

1�k�n 1=k = lnn+O(1) is the n-th
harmonic number.
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Quickselect: The Average Cost

Average number of comparisons Cn;m to select

the m-th out of n elements (Knuth, 1971):

Cn;m = 2�n+ 3 + (n+ 1)Hn� (n+ 3�m)Hn+1�m � (m+ 2)Hm�:
This is �(n) for any m, 1 � m � n.
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Quickselect: The Average Cost

The expectation characteristic function

m0(�) = limn!1;m=n!� Cn;mn = 2 + 2 � H(�);
H(x) = �(x lnx+ (1� x) ln(1� x)):

with 0 � � � 1.
The maximum is at � = 1=2, wherem0(1=2) = 2 + 2 ln 2 = 3:386 : : :
The mean value is m0 = 3 =) the average number

of comparisons to select an item of given random

rank is 3n+ o(n).
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Variance and More

The variance of both quicksort and quickselect is�(n2) (Hennequin, 1989; Kirschenhofer & Prodinger,

1998) =) concentration around the mean for

quicksort, not for quickselect

Higher moments are also known (e.g., Hennequin,

1989)

Many properties about the distributions are

known (e.g. Régnier, 1989, Rösler, 1991, McDiarmid &

Hayward, 1996), but no closed form
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Improving Quicksort and Quickselect

Apply general techniques: recursion removal, loop

unwrapping, . . .

Reorder recursive calls to quicksort

Switch to a simpler algorithm for small subfiles

Use samples to select better pivots
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Quicksort with Median-of-Three

In quicksort with median-of-three, the pivot of

each recursive stage is selected as the median of a

sample of three elements (Singleton, 1969)

This reduces the probability of uneven partitions

which lead to quadratic worst-case
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Quicksort with Median-of-Three

The splitting probabilities are

�n;k = (k � 1)(n� k)�n
3
�

The average number of comparisons made by

quicksort with median-of-three Qn is (Sedgewick,

1975) Qn = 127 n logn+O(n);
roughly a 14.3% less than standard quicksort
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Quickselect with Median-of-Three

The average number of comparisons Cn;m made by

quickselect with median-of-three is

(Kirschenhofer, Martínez & Prodinger, 1997)

Cn;m = 2n+ 7235Hn � 15635 Hm � 15635 Hn+1�m
+ 3m� (m� 1)(m� 2)n +O(1)

To obtain this result we used the bivariate

generating function

C(z; u) = X
n�0

X
1�m�nCn;mznum
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Quickselect with Median-of-Three

The recurrences translate into a second-order

differential equation of hypergeometric type

satisfied by C(z; u)
We compute then explicit solutions for the GF,

and from there, one has to extract (painfully ) the

coefficients
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Quickselect with Median-of-Three

The expectation characteristic function is

m1(�) = limn!1;m=n!� Cn;mn = 2 + 3 � � � (1� �)
with 0 � � � 1.
For any �, m1(�) � m0(�)
The mean value is m1 = 5=2; compare to 3n+ o(n)
comparisons for standard quickselect on random

ranks
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Quickselect with Median-of-Three

A plot of the standard quickselect characteristic

function versus median-of-three characteristic

function

0.0 0.5 1.0
α

2.75

3.386 . . .

2

m0(α)

m1(α)

.

1
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Median-of-(2t + 1)

The generalization to samples of size s = (2t+ 1) is

immediate

If s = �(1) then the recurrences for quicksort and

quickselect are � as for the standard case (s = 1)
The splitting probabilities are:

�n;k = �k�1t ��n�kt �� n
2t+1�
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Quicksort with Median-of-(2t + 1)

Average number of comparisons Q(t)n (VanEmden,

1970) Q(t)n = 1H2t+2 �Ht+1n logn+O(n)
Notice that ct = 1=(H2t+2 �Ht+1) tends to 1= ln 2 ast!1; this means that with large samples

Qn � n log2 n
which is optimal (in the theoretical sense)
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Quickselect with Median-of-(2t + 1)

The average number of comparisons is not known;

must be linear, but the coefficient mt(�) remains

unknown

Average number of comparisons C(t)n to select an

element of random rank (Martínez & Roura,

2001): C(t)n = (2 + 1t+ 1)n+ o(n)
The variance of the number of comparisons to

select an element of random rank (Martínez &

Roura, 2001):

V
hC(t)n i = 2t+ 33(t+ 1)2n2 + o(n2)
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Median-of-(2t + 1)

The main technique to obtain the results was the

continuos master theorem (Roura, 1997); it allows

to solve many recurrences of the type

Fn = tn + X
0�k<n!n;kFk

The CMT is a powerful generalization of the usual

master theorem found in textbooks (e.g., Cormen,

Leiserson & Rivest, 1990)
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Median-of-(2t + 1)

To use the CMT one needs to find a continuous

approximation of the weights !n;k; we typically use!(z) = limn!1 n � !n;z�n
Then one has to compute

H = 1� Z 1

0
!(z) � za dz

where a > �1 is the exponent of n in tn; we have

three cases depending on H > 0, H = 0, H < 0
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Adaptive Sampling for Quickselect

Median-of-(2t+ 1) might be a good idea for

sorting: both subarrays must be recursively sorted;

but it is not so natural for selection

In proportion-from-s sampling we take an element

in the sample of s elements whose rank is, in

relative terms, close to the rank of the sought

element (Martínez, Panario & Viola, 2004)
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Adaptive Sampling for Quickselect

More generally, if the current relative rank is� = m=n, we select the element of rank r(�) from

the sample as our pivot

Example

Standard quickselect: s = 1; r(�) = 1
Median-of-(2t+ 1): s = 2t+ 1; r(�) = t+ 1
Proportion-from-s: r(�) � � � s
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Adaptive Sampling for Quickselect

Example

We are looking the fourth element (m = 4) out of n = 15 elements

9 5 10 12 3 1 11 15 7 2 8 13 6 4 14

� = 4=15 < 1=3
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Adaptive Sampling for Quickselect

Example

We are looking the fourth element (m = 4) out of n = 15 elements

7 5 4 6 3 1 8 2 9 15 11 13 12 10 14
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Adaptive Sampling for Quickselect

Example

We are looking the fourth element (m = 4) out of n = 15 elements

7 5 4 6 3 1 8 2 9 15 11 13 12 10 14

1=3 < � = 4=8 = 1=2 < 2=3

Optimal Sampling for Sorting and Selection INCO, Uruguay



Introduction Fixed Size Samples Optimal Sampling

Adaptive Sampling for Quickselect

Example

We are looking the fourth element (m = 4) out of n = 15 elements

7 5 4 6 3 1 8 2 9 15 11 13 12 10 14
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Adaptive Sampling for Quickselect

Example

We are looking the fourth element (m = 4) out of n = 15 elements

1 5 4 2 3 6 8 7 9 15 11 13 12 10 14
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Adaptive Sampling for Quickselect

Example

We are looking the fourth element (m = 4) out of n = 15 elements

1 5 4 2 3 6 8 7 9 15 11 13 12 10 14

� = 4=5 > 2=3
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Adaptive Sampling for Quickselect

Example

We are looking the fourth element (m = 4) out of n = 15 elements
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Adaptive Sampling for Quickselect

Example

We are looking the fourth element (m = 4) out of n = 15 elements

2 3 1 4 5 6 8 7 9 15 11 13 12 10 14
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Adaptive Sampling for Quickselect

Theorem (Martínez, Panario & Viola, 2004)

For any adaptive sampling strategy, the expectation

characteristic function f(�) = limn!1;m=n!� Cn;mn
satisfies

f(�) = 1 + s!(r(�)� 1)!(s� r(�))!�"Z 1� f ��x
�xr(�)(1� x)s�r(�) dx

+ Z �
0
f ��� x1� x

�xr(�)�1(1� x)s+1�r(�) dx#
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Adaptive Sampling for Quickselect

Theorem (Martínez & Daligault, 2006)

The second factorial moment characteristic functiong(�) = limn!1;m=n!� Cn;m(Cn;m�1)n2 of any adaptive sampling

strategy satisfies

g(�) = 2f(�)� 1
+ s!(r(�)� 1)!(s� r(�))!

"Z 1� g(�=x)xr(�)+1(1� x)s�r(�) dx
+ Z �

0
g ��� x1� x

�xr(�)�1(1� x)s+2�r(�) dx#
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Adaptive Sampling for Quickselect

A plot of median-of-three characteristic function

versus proportion-from-three f(�)

0.0 0.5 1.0
α

2.75
2.723 . . .

2

4/3
0.202 . . .

0.276 . . .

f(α)

m1(α)

.

1

Optimal Sampling for Sorting and Selection INCO, Uruguay



Introduction Fixed Size Samples Optimal Sampling

Adaptive Sampling for Quickselect

A plot of v(�) for standard quickselect (Kirschenhofer

& Prodinger, 1998) and for median-of-three (Martínez

& Daligault, 2006)
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Adaptive Sampling for Quickselect

With a suitable choice of the endpoints of the

intervals that define r(�), we have shown that

there exists a proportion-from-3-like strategy

which makes the minimum average number of

comparisons for all � (among all strategies using

samples of three elements)

The same techniques can be used to find the

strategy which minimizes the average total cost (a

weighted sum of exchanges and comparions)
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Optimal Sampling for Quicksort

We consider now samples of sizes = s(n) = 2t(n) + 1, with t = o(n) and t!1 asn!1, for instance t = logn
The recurrence for the average cost is now

Qn = n+�(s) + nX
k=1�n;k � (Qk�1 +Qn�k);

its important to take into account the work done

to select the pivot from the sample!
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Optimal Sampling for Quicksort

The standard techniques for fixed-size samples do

not work here, the basic problem are the splitting

probabilities �n;k
The CMT comes to rescue to allow us rigorously

prove “handwaving” intuitive arguments ...
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Optimal Sampling for Quicksort

Theorem (Martínez & Roura, 2001)

The average number of comparisons made by quicksort

with median-of-(2t+ 1), for t = t(n) satisfying t!1
and t=n! 0 when n!1, is

Qn = n log2 n+ o(n logn)
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Optimal Sampling for Quicksort

Theorem (Martínez & Roura, 2001)

The average total cost

(# comparisons + � �# exchanges) of quicksort with

median-of-(2t+ 1), for t = t(n) satisfying t!1 andt=n! 0 when n!1, is

Q̂n = (1 + �=4) � n log2 n+ o(n logn);
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Computing the Optimal Sample Size

The idea is to substitute the asymptotic whent!1 into the recurrences

Qn = n+�(s)+n�1X
k=0 �n;k+1 �

�k log2 k+(n�k) log2(n�k)
+ o(k log k + (n� k) log(n� k))�;

. . . and compute asymptotic estimates of the right

hand-side

Qn = n+ � � s+ n log2 n2s + o(s);
where we put � � s+ o(s) the (average) cost of

selecting the median from the sample
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Optimal Sampling for Quicksort

Theorem (Martínez & Roura, 2001)

Let s� = 2t� + 1 denote the optimal sample size that

minimizes the average number of comparisons made by

quicksort. Then

t� = s 1�
�4� �(2 ln 2� 1)8 ln 2

� � pn+ o �pn�
if � < � = 4=(2 ln 2� 1) � 10:3548
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Optimal Sample Sizes for Quicksort

Optimal sample size vs. exact values
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Expensive Exchanges and Optimal Sampling

If exchanges are expensive (� � �), pick the ( � s)-th
element of a sample of size �(pn), not the median

If the position of the pivot is close to either end

of the array, then very few exchanges are

necessary on that stage, but a poor partition leads

to more recursive steps. This trade-off is relevant

if exchanges are very expensive

We found an explicit formula for  as a function

of �
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Optimal Sampling for Quickselect

Theorem (Martínez & Roura, 2001)

The average total cost

(# comparisons + � �# exchanges) of quickselect with

median-of-(2t+ 1) to select an element of random

rank, for t = t(n) satisfying t!1 and t=n! 0 whenn!1, is Ĉn = 2(1 + �=4) � n+ o(n logn);
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Optimal Sampling for Quickselect

Theorem (Martínez & Roura, 2001)

Let s� = 2t� + 1 denote the optimal sample size that

minimizes the average total cost of quickselect. Then

t� = 12p� � pn+ o �pn�
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Optimal Sampling for Quickselect

Solving the integral equations for the

expectation and second factorial moment

characteristic function is difficult, but we can

analyse what happens when s!1
For instance, if we use median-of-(2t+ 1) sampling

then mt(�) = 2 when t!1; this is not optimal
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Optimal Sampling for Quickselect

Theorem (Martínez, Panario & Viola, 2004)

Proportion-from-s sampling with s!1 achieves

optimal expected performance:

f(�) = 1 +min(�; 1� �)
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Optimal Sampling for Quickselect

Theorem (Martínez & Daligault, 2006)

The variance of proportion-from-s sampling withs!1 is subquadratic. Since

g(�) = (1 + min(�; 1� �))2 = f2(�);
we have

limn!1;m=n!� V[Cn;m]n2 = g(�)� f2(�) = 0
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Optimal Sampling for Quickselect

The two results above hold for biased

proportion-from-s strategies

The rank r(�) must be close to � � s . . . but no too

close!

We want our selected pivot to be close to the

sought element, but at the proper side; e.g., if� < 1=2 the pivot should be slightly to the right of

the sought element, not to the left

Solution: take r(�) > � � s+ 1� � if � < 1=2 and

symmetrically if � > 1=2
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Optimal Sampling for Quickselect

We can plug the asymptotic estimateCn;m = n+min(m;n�m) + o(n) back into

quickselect’s recurrence to determine the optimal

size of samples

But it is difficult to obtain precise asymptotics, we

only obtained order of magnitude

Cn;m = n+ � � s+min(m;n�m) +O�ns
� ;

V[Cn;m] = max n � s; n2s
!
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Optimal Sampling for Quickselect

Theorem (Martínez & Daligault, 2006)

Biased proportion-from-s sampling with s = �(pn)
minimizes both the expectation and variance of the

number of comparisons; in particular, the variance is�(n3=2).
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