
Forty years of Quicksort and Quickselect:
a personal view

Conrado Martínez

Univ. Politècnica de Catalunya, Spain

Carleton Univ./Univ. Ottawa, April, 2004 – p.1/51

Introduction

Quicksort and quickselect were invented in the early
sixties by C.A.R. Hoare (Hoare, 1961; Hoare, 1962)

They are simple, elegant, beatiful and practical
solutions to two basic problems of Computer Science:
sorting and selection

They are primary examples of the divide-and-conquer
principle

Carleton Univ./Univ. Ottawa, April, 2004 – p.2/51

Introduction

Quicksort and quickselect were invented in the early
sixties by C.A.R. Hoare (Hoare, 1961; Hoare, 1962)

They are simple, elegant, beatiful and practical
solutions to two basic problems of Computer Science:
sorting and selection

They are primary examples of the divide-and-conquer
principle

Carleton Univ./Univ. Ottawa, April, 2004 – p.2/51

Introduction

Quicksort and quickselect were invented in the early
sixties by C.A.R. Hoare (Hoare, 1961; Hoare, 1962)

They are simple, elegant, beatiful and practical
solutions to two basic problems of Computer Science:
sorting and selection

They are primary examples of the divide-and-conquer
principle

Carleton Univ./Univ. Ottawa, April, 2004 – p.2/51

Quicksort

void quicksort(vector<Elem>& A, int i, int j) {

if (i < j) {

int p = get_pivot(A, i, j);

swap(A[p], A[l]);

int k;

partition(A, i, j, k);

// A[i..k − 1] ≤ A[k] ≤ A[k + 1..j]

quicksort(A, i, k - 1);

quicksort(A, k + 1, j);

} }

Carleton Univ./Univ. Ottawa, April, 2004 – p.3/51

Quickselect

Elem quickselect(vector<Elem>& A,

int i, int j, int m) {

if (i >= j) return A[i];

int p = get_pivot(A, i, j, m);

swap(A[p], A[l]);

int k;

partition(A, i, j, k);

if (m < k) quickselect(A, i, k - 1, m);

else if (m > k) quickselect(A, k + 1, j, m);

else return A[k];

}

Carleton Univ./Univ. Ottawa, April, 2004 – p.4/51

Partition

void partition(vector<Elem>& A,

int i, int j, int& k) {

int l = i; int u = j + 1; Elem pv = A[i];

for (; ;) {

do ++l; while(A[l] < pv);

do --u; while(A[u] > pv);

if (l >= u) break;

swap(A[l], A[u]);

};

swap(A[i], A[u]); k = u;

}

Carleton Univ./Univ. Ottawa, April, 2004 – p.5/51

Partition

pv < pv ??? > pv

l u

ji

Carleton Univ./Univ. Ottawa, April, 2004 – p.6/51

The Recurrences for Average Costs

Probability that the selected pivot is the k-th of n
elements: πn,k

Carleton Univ./Univ. Ottawa, April, 2004 – p.7/51

The Recurrences for Average Costs

Probability that the selected pivot is the k-th of n
elements: πn,k

Average number of comparisons Qn to sort n
elements:

Qn = n− 1 +
n

∑

k=1

πn,k · (Qk−1 +Qn−k)

Carleton Univ./Univ. Ottawa, April, 2004 – p.7/51

The Recurrences for Average Costs

Probability that the selected pivot is the k-th of n
elements: πn,k

Average number of comparisons Cn,m to select the
m-th out of n:

Cn,m = n− 1 +
n

∑

k=m+1

πn,k · Ck−1,m

+
m−1
∑

k=1

πn,k · Cn−k,m−k

Carleton Univ./Univ. Ottawa, April, 2004 – p.7/51

Quicksort: The Average Cost

For the standard variant, πn,k = 1/n

Average number of comparisons Qn to sort n
elements (Hoare, 1962):

Qn = 2(n+ 1)Hn − 4n

= 2n lnn+ (2γ − 4)n+ 2 lnn+ O(1)

where Hn =
∑

1≤k≤n 1/k = lnn+ γ + O(1/n) is the
n-th harmonic number and γ = 0.577 . . . is Euler’s
gamma constant.

Carleton Univ./Univ. Ottawa, April, 2004 – p.8/51

Quicksort: The Average Cost

For the standard variant, πn,k = 1/n

Average number of comparisons Qn to sort n
elements (Hoare, 1962):

Qn = 2(n+ 1)Hn − 4n

= 2n lnn+ (2γ − 4)n+ 2 lnn+ O(1)

where Hn =
∑

1≤k≤n 1/k = lnn+ γ + O(1/n) is the
n-th harmonic number and γ = 0.577 . . . is Euler’s
gamma constant.

Carleton Univ./Univ. Ottawa, April, 2004 – p.8/51

Quickselect: The Average Cost

Average number of comparisons Cn,m to select the
m-th out of n elements (Knuth, 1971):

Cn,m = 2
(

n+ 3 + (n+ 1)Hn

− (n+ 3 −m)Hn+1−m − (m+ 2)Hm

)

Carleton Univ./Univ. Ottawa, April, 2004 – p.9/51

Quickselect: The Average Cost

This is Θ(n) for any m, 1 ≤ m ≤ n. In particular,

m0(α) = lim
n→∞,m/n→α

Cn,m

n
= 2 + 2 · H(α),

H(x) = −(x lnx+ (1 − x) ln(1 − x)).

with 0 ≤ α ≤ 1. The maximum is at α = 1/2, where
m0(1/2) = 2 + 2 ln 2 = 3.386 . . .; the mean value is
m0 = 3.

Carleton Univ./Univ. Ottawa, April, 2004 – p.9/51

Improving Quicksort and Quickselect

Apply general techniques: recursion removal, loop
unwrapping, . . .

Reorder recursive calls to quicksort

Switch to a simpler algorithm for small subfiles

Use samples to select better pivots

Carleton Univ./Univ. Ottawa, April, 2004 – p.10/51

Improving Quicksort and Quickselect

Apply general techniques: recursion removal, loop
unwrapping, . . .

Reorder recursive calls to quicksort

Switch to a simpler algorithm for small subfiles

Use samples to select better pivots

Carleton Univ./Univ. Ottawa, April, 2004 – p.10/51

Improving Quicksort and Quickselect

Apply general techniques: recursion removal, loop
unwrapping, . . .

Reorder recursive calls to quicksort

Switch to a simpler algorithm for small subfiles

Use samples to select better pivots

Carleton Univ./Univ. Ottawa, April, 2004 – p.10/51

Improving Quicksort and Quickselect

Apply general techniques: recursion removal, loop
unwrapping, . . .

Reorder recursive calls to quicksort

Switch to a simpler algorithm for small subfiles

Use samples to select better pivots

Carleton Univ./Univ. Ottawa, April, 2004 – p.10/51

Improving Quicksort and Quickselect

Apply general techniques: recursion removal, loop
unwrapping, . . .

Reorder recursive calls to quicksort

Switch to a simpler algorithm for small subfiles

Use samples to select better pivots

Carleton Univ./Univ. Ottawa, April, 2004 – p.11/51

Small Subfiles

It is well known (Sedgewick, 1975) that, for quicksort, it
is convenient to stop recursion for subarrays of size
≤ n0 and use insertion sort instead

The optimal choice for n0 is around 20 to 25 elements

Alternatively, one might do nothing with small subfiles
and perform a single pass of insertion sort over the
whole file

Carleton Univ./Univ. Ottawa, April, 2004 – p.12/51

Small Subfiles

It is well known (Sedgewick, 1975) that, for quicksort, it
is convenient to stop recursion for subarrays of size
≤ n0 and use insertion sort instead

The optimal choice for n0 is around 20 to 25 elements

Alternatively, one might do nothing with small subfiles
and perform a single pass of insertion sort over the
whole file

Carleton Univ./Univ. Ottawa, April, 2004 – p.12/51

Small Subfiles

It is well known (Sedgewick, 1975) that, for quicksort, it
is convenient to stop recursion for subarrays of size
≤ n0 and use insertion sort instead

The optimal choice for n0 is around 20 to 25 elements

Alternatively, one might do nothing with small subfiles
and perform a single pass of insertion sort over the
whole file

Carleton Univ./Univ. Ottawa, April, 2004 – p.12/51

Small Subfiles

Cutting off recursion also yields benefits for quickselect

In (Martínez, Panario, Viola, 2002) we investigate
different choices to process small subfiles and how
they affect the average total cost: selection, insertion
sort, optimized selection

Carleton Univ./Univ. Ottawa, April, 2004 – p.13/51

Small Subfiles

Cutting off recursion also yields benefits for quickselect

In (Martínez, Panario, Viola, 2002) we investigate
different choices to process small subfiles and how
they affect the average total cost: selection, insertion
sort, optimized selection

Carleton Univ./Univ. Ottawa, April, 2004 – p.13/51

Small Subfiles

We have now

Cn,m =

tn,m +
n

∑

k=m+1

πn,k · Ck−1,m

+
m−1
∑

k=1

πn,k · Cn−k,m−k,

if n > n0

bn,m if n ≤ n0

Carleton Univ./Univ. Ottawa, April, 2004 – p.14/51

Small Subfiles

Let C(z, u) =
∑

n≥0

∑

1≤m≤n Cn,mz
num

It can be shown that

C(z, u) = Cn0
(z, u) +

∫ z

0
(1 − t)(1 − ut)∂T (t,u)

∂t
dt

(1 − z)(1 − uz)

where T (z, u) =
∑

n≥0

∑

1≤m≤n tn,mz
num and Cn0

(z, u)

is the only part depending on the bn,m’s and n0.

Carleton Univ./Univ. Ottawa, April, 2004 – p.15/51

Small Subfiles

Let C(z, u) =
∑

n≥0

∑

1≤m≤n Cn,mz
num

It can be shown that

C(z, u) = Cn0
(z, u) +

∫ z

0
(1 − t)(1 − ut)∂T (t,u)

∂t
dt

(1 − z)(1 − uz)

where T (z, u) =
∑

n≥0

∑

1≤m≤n tn,mz
num and Cn0

(z, u)

is the only part depending on the bn,m’s and n0.

Carleton Univ./Univ. Ottawa, April, 2004 – p.15/51

Small Subfiles

In order to determine the optimal choice for n0 we
need only to compute [znum]Cn0

(z, u)

We assume tn,m = αn+ β + γ/(n− 1) and

bn,m = K1n
2 +K2n+K3m

2 +K4m+K5mn+K6

+K7g
2 +K8g +K9gn,

where g ≡ min{m,n−m+ 1}, to study the best choice
for n0, as a function of α, β, γ and the Ki’s.

Carleton Univ./Univ. Ottawa, April, 2004 – p.16/51

Small Subfiles

In order to determine the optimal choice for n0 we
need only to compute [znum]Cn0

(z, u)

We assume tn,m = αn+ β + γ/(n− 1) and

bn,m = K1n
2 +K2n+K3m

2 +K4m+K5mn+K6

+K7g
2 +K8g +K9gn,

where g ≡ min{m,n−m+ 1}, to study the best choice
for n0, as a function of α, β, γ and the Ki’s.

Carleton Univ./Univ. Ottawa, April, 2004 – p.16/51

Small Subfiles

Using insertion sort with n0 ≤ 10 reduces the average
cost; the optimal choice for n0 is 5

Selection (we locate the minimum, then the second
minimum, etc.) reduces the average cost if n0 ≤ 11;
the optimum n0 is 6

Optimized selection (looks for the m-th from the
minimum or the maximum, whatever is closer) yields
improved average performance if n0 ≤ 22; the
optimum n0 is 11

Carleton Univ./Univ. Ottawa, April, 2004 – p.17/51

Small Subfiles

Using insertion sort with n0 ≤ 10 reduces the average
cost; the optimal choice for n0 is 5

Selection (we locate the minimum, then the second
minimum, etc.) reduces the average cost if n0 ≤ 11;
the optimum n0 is 6

Optimized selection (looks for the m-th from the
minimum or the maximum, whatever is closer) yields
improved average performance if n0 ≤ 22; the
optimum n0 is 11

Carleton Univ./Univ. Ottawa, April, 2004 – p.17/51

Small Subfiles

Using insertion sort with n0 ≤ 10 reduces the average
cost; the optimal choice for n0 is 5

Selection (we locate the minimum, then the second
minimum, etc.) reduces the average cost if n0 ≤ 11;
the optimum n0 is 6

Optimized selection (looks for the m-th from the
minimum or the maximum, whatever is closer) yields
improved average performance if n0 ≤ 22; the
optimum n0 is 11

Carleton Univ./Univ. Ottawa, April, 2004 – p.17/51

Median-of-three

In quicksort with median-of-three, the pivot of each
recursive stage is selected as the median of a sample
of three elements (Singleton, 1969)

This reduces the probability of uneven partitions which
lead to quadratic worst-case

Carleton Univ./Univ. Ottawa, April, 2004 – p.18/51

Median-of-three

In quicksort with median-of-three, the pivot of each
recursive stage is selected as the median of a sample
of three elements (Singleton, 1969)

This reduces the probability of uneven partitions which
lead to quadratic worst-case

Carleton Univ./Univ. Ottawa, April, 2004 – p.18/51

Median-of-three

We have in this case

πn,k =
(k − 1)(n− k)

(

n
3

)

The average number of comparisons Qn is
(Sedgewick, 1975)

Qn =
12

7
n log n+ O(n),

roughly a 14.3% less than standard quicksort

Carleton Univ./Univ. Ottawa, April, 2004 – p.19/51

Median-of-three

We have in this case

πn,k =
(k − 1)(n− k)

(

n
3

)

The average number of comparisons Qn is
(Sedgewick, 1975)

Qn =
12

7
n log n+ O(n),

roughly a 14.3% less than standard quicksort

Carleton Univ./Univ. Ottawa, April, 2004 – p.19/51

Median-of-three

To study quickselect with median-of-three, in
(Kirschenhofer, Martínez, Prodinger, 1997), we use
bivariate generating functions

C(z, u) =
∑

n≥0

∑

1≤m≤n

Cn,mz
num

The recurrences translate into second-order differential
equations of hypergeometric type

x(1 − x)y′′ + (c− (1 + a+ b)x)y′ − aby = 0

Carleton Univ./Univ. Ottawa, April, 2004 – p.20/51

Median-of-three

To study quickselect with median-of-three, in
(Kirschenhofer, Martínez, Prodinger, 1997), we use
bivariate generating functions

C(z, u) =
∑

n≥0

∑

1≤m≤n

Cn,mz
num

The recurrences translate into second-order differential
equations of hypergeometric type

x(1 − x)y′′ + (c− (1 + a+ b)x)y′ − aby = 0

Carleton Univ./Univ. Ottawa, April, 2004 – p.20/51

Median-of-three

We compute explicit solutions for comparisons and for
passes; from there, one has to extract (painfully ;-)) the
coefficients

Carleton Univ./Univ. Ottawa, April, 2004 – p.21/51

Median-of-three

We compute explicit solutions for comparisons and for
passes; from there, one has to extract (painfully ;-)) the
coefficients

For instance, for the average number of passes we get

Pn,m =
24

35
Hn +

18

35
Hm +

18

35
Hn+1−m + O(1)

Carleton Univ./Univ. Ottawa, April, 2004 – p.21/51

Median-of-three

We compute explicit solutions for comparisons and for
passes; from there, one has to extract (painfully ;-)) the
coefficients

And for the average number of comparisons

Cn,m = 2n+
72

35
Hn − 156

35
Hm − 156

35
Hn+1−m

+ 3m− (m− 1)(m− 2)

n
+ O(1)

Carleton Univ./Univ. Ottawa, April, 2004 – p.21/51

Median-of-three

An important particular case is m = dn/2e (the
median) were the average number of comparisons is

11

4
n+ o(n)

Compare to (2 + 2 ln 2)n+ o(n) for standard
quickselect.

Carleton Univ./Univ. Ottawa, April, 2004 – p.22/51

Median-of-three

In general,

m1(α) = lim
n→∞,m/n→α

Cn,m

n
= 2 + 3 · α · (1 − α)

with 0 ≤ α ≤ 1. The mean value is m1 = 5/2;
compare to 3n+ o(n) comparisons for standard
quickselect on random ranks.

Carleton Univ./Univ. Ottawa, April, 2004 – p.23/51

Optimal Sampling

In (Martínez, Roura, 2001) we study what happens if
we use samples of size s = 2t+ 1 to pick the pivots,
but t = t(n)

The comparisons needed to pick the pivots have to be
taken into account:

Qn = n− 1 + Θ(s) +
n

∑

k=1

πn,k · (Qk−1 +Qn−k)

Carleton Univ./Univ. Ottawa, April, 2004 – p.24/51

Optimal Sampling

In (Martínez, Roura, 2001) we study what happens if
we use samples of size s = 2t+ 1 to pick the pivots,
but t = t(n)

The comparisons needed to pick the pivots have to be
taken into account:

Qn = n− 1 + Θ(s) +
n

∑

k=1

πn,k · (Qk−1 +Qn−k)

Carleton Univ./Univ. Ottawa, April, 2004 – p.24/51

Optimal Sampling

Traditional techniques to solve recurrences cannot be
used here

We make extensive use of the continuous master
theorem (Roura, 1997)

We also study the cost of quickselect when the rank of
the sought element is random

Total cost: # of comparisons + ξ · # of exchanges

Carleton Univ./Univ. Ottawa, April, 2004 – p.25/51

Optimal Sampling

Traditional techniques to solve recurrences cannot be
used here

We make extensive use of the continuous master
theorem (Roura, 1997)

We also study the cost of quickselect when the rank of
the sought element is random

Total cost: # of comparisons + ξ · # of exchanges

Carleton Univ./Univ. Ottawa, April, 2004 – p.25/51

Optimal Sampling

Traditional techniques to solve recurrences cannot be
used here

We make extensive use of the continuous master
theorem (Roura, 1997)

We also study the cost of quickselect when the rank of
the sought element is random

Total cost: # of comparisons + ξ · # of exchanges

Carleton Univ./Univ. Ottawa, April, 2004 – p.25/51

Optimal Sampling

Traditional techniques to solve recurrences cannot be
used here

We make extensive use of the continuous master
theorem (Roura, 1997)

We also study the cost of quickselect when the rank of
the sought element is random

Total cost: # of comparisons + ξ · # of exchanges

Carleton Univ./Univ. Ottawa, April, 2004 – p.25/51

Optimal Sampling

Theorem 1. If we use samples of size s, with s = o(n) and

s = ω(1) then the average total cost Qn of quicksort is

Qn = (1 + ξ/4)n log2 n+ o(n log n)

and the average total cost Cn of quickselect to find an element of given
random rank is

Cn = 2(1 + ξ/4)n+ o(n)

Carleton Univ./Univ. Ottawa, April, 2004 – p.26/51

Optimal Sampling

Theorem 2. Let s∗ = 2t∗ + 1 denote the optimal sample size that
minimizes the average total cost of quickselect; assume the average
total cost of the algorithm to pick the medians from the samples is
βs+ o(s). Then

t∗ =
1

2
√
β
·
√
n+ o

(√
n
)

Carleton Univ./Univ. Ottawa, April, 2004 – p.27/51

Optimal Sampling

Theorem 3. Let s∗ = 2t∗ + 1 denote the optimal sample size that
minimizes the average number of comparisons made by quicksort.
Then

t∗ =

√

1

β

(

4 − ξ(2 ln 2 − 1)

8 ln 2

)

·
√
n+ o

(√
n
)

if ξ < τ = 4/(2 ln 2 − 1) ≈ 10.3548

Carleton Univ./Univ. Ottawa, April, 2004 – p.28/51

Optimal Sampling

0

5

10

15

20

25

500 1000 1500 2000 2500 3000

Optimal sample size (Theorem 3) vs. exact values

Carleton Univ./Univ. Ottawa, April, 2004 – p.29/51

Optimal Sampling

If exchanges are expensive (ξ ≥ τ) we have to use
fixed-size samples and pick the median (not optimal) or
pick the (ψ · s)-th element of a sample of size Θ(

√
n)

If the position of the pivot is close to either end of the
array, then few exchanges are necessary on that stage,
but a poor partition leads to more recursive steps. This
trade-off is relevant if exchanges are very expensive

Carleton Univ./Univ. Ottawa, April, 2004 – p.30/51

Optimal Sampling

If exchanges are expensive (ξ ≥ τ) we have to use
fixed-size samples and pick the median (not optimal) or
pick the (ψ · s)-th element of a sample of size Θ(

√
n)

If the position of the pivot is close to either end of the
array, then few exchanges are necessary on that stage,
but a poor partition leads to more recursive steps. This
trade-off is relevant if exchanges are very expensive

Carleton Univ./Univ. Ottawa, April, 2004 – p.30/51

Optimal Sampling

The variance of quickselect when s = s(n) → ∞ is

Vn = Θ

(

max

{

n2

s
, n · s

})

The best choice is s = Θ(
√
n); then Vn = Θ(n3/2) and

there is concentration in probability

We conjecture this type of result holds for quicksort too

Carleton Univ./Univ. Ottawa, April, 2004 – p.31/51

Optimal Sampling

The variance of quickselect when s = s(n) → ∞ is

Vn = Θ

(

max

{

n2

s
, n · s

})

The best choice is s = Θ(
√
n); then Vn = Θ(n3/2) and

there is concentration in probability

We conjecture this type of result holds for quicksort too

Carleton Univ./Univ. Ottawa, April, 2004 – p.31/51

Optimal Sampling

The variance of quickselect when s = s(n) → ∞ is

Vn = Θ

(

max

{

n2

s
, n · s

})

The best choice is s = Θ(
√
n); then Vn = Θ(n3/2) and

there is concentration in probability

We conjecture this type of result holds for quicksort too

Carleton Univ./Univ. Ottawa, April, 2004 – p.31/51

Adaptive Sampling

In (Martínez, Panario, Viola, 2004) we study choosing
pivots with relative rank in the sample close to
α = m/n

In general: r(α) = rank of the pivot within the sample,
when selecting the m-th out of n elements and
α = m/n

Divide [0, 1] into ` intervals with endpoints
0 = a0 < a1 < a2 < · · · < a` = 1 and let rk denote the
value of r(α) for α in the k-th interval

Carleton Univ./Univ. Ottawa, April, 2004 – p.32/51

Adaptive Sampling

In (Martínez, Panario, Viola, 2004) we study choosing
pivots with relative rank in the sample close to
α = m/n

In general: r(α) = rank of the pivot within the sample,
when selecting the m-th out of n elements and
α = m/n

Divide [0, 1] into ` intervals with endpoints
0 = a0 < a1 < a2 < · · · < a` = 1 and let rk denote the
value of r(α) for α in the k-th interval

Carleton Univ./Univ. Ottawa, April, 2004 – p.32/51

Adaptive Sampling

In (Martínez, Panario, Viola, 2004) we study choosing
pivots with relative rank in the sample close to
α = m/n

In general: r(α) = rank of the pivot within the sample,
when selecting the m-th out of n elements and
α = m/n

Divide [0, 1] into ` intervals with endpoints
0 = a0 < a1 < a2 < · · · < a` = 1 and let rk denote the
value of r(α) for α in the k-th interval

Carleton Univ./Univ. Ottawa, April, 2004 – p.32/51

Adaptive Sampling

For median-of- (2t+ 1): ` = 1 and r1 = t+ 1

For proportion-from- s: ` = s, ak = k/s and rk = k

“Proportion-from”-like strategies: ` = s and rk = k,
but the endpoints of the intervals ak 6= k/s

A sampling strategy is symmetric if

r(α) = s+ 1 − r(1 − α)

Carleton Univ./Univ. Ottawa, April, 2004 – p.33/51

Adaptive Sampling

For median-of- (2t+ 1): ` = 1 and r1 = t+ 1

For proportion-from- s: ` = s, ak = k/s and rk = k

“Proportion-from”-like strategies: ` = s and rk = k,
but the endpoints of the intervals ak 6= k/s

A sampling strategy is symmetric if

r(α) = s+ 1 − r(1 − α)

Carleton Univ./Univ. Ottawa, April, 2004 – p.33/51

Adaptive Sampling

For median-of- (2t+ 1): ` = 1 and r1 = t+ 1

For proportion-from- s: ` = s, ak = k/s and rk = k

“Proportion-from”-like strategies: ` = s and rk = k,
but the endpoints of the intervals ak 6= k/s

A sampling strategy is symmetric if

r(α) = s+ 1 − r(1 − α)

Carleton Univ./Univ. Ottawa, April, 2004 – p.33/51

Adaptive Sampling

For median-of- (2t+ 1): ` = 1 and r1 = t+ 1

For proportion-from- s: ` = s, ak = k/s and rk = k

“Proportion-from”-like strategies: ` = s and rk = k,
but the endpoints of the intervals ak 6= k/s

A sampling strategy is symmetric if

r(α) = s+ 1 − r(1 − α)

Carleton Univ./Univ. Ottawa, April, 2004 – p.33/51

Adaptive Sampling

Theorem 4. Let f(α) = limn→∞,m/n→α
Cn,m

n
. Then

f(α) = 1 +
s!

(r(α) − 1)!(s− r(α))!
×

[

∫ 1

α

f
(α

x

)

xr(α)(1 − x)s−r(α) dx

+

∫ α

0

f

(

α− x

1 − x

)

xr(α)−1(1 − x)s+1−r(α) dx

]

.

Carleton Univ./Univ. Ottawa, April, 2004 – p.34/51

Adaptive Sampling:
Proportion-from-2

Here f(α) is composed of two “pieces” f1 and f2 for
the intervals [0, 1/2] and (1/2, 1]

Because of symmetry we need only to solve for f1

f1(x) = a

(

(x− 1) ln(1 − x) +
x3

6
+
x2

2
− x

)

− b(1 + H(x)) + cx+ d.

Carleton Univ./Univ. Ottawa, April, 2004 – p.35/51

Adaptive Sampling:
Proportion-from-2

Here f(α) is composed of two “pieces” f1 and f2 for
the intervals [0, 1/2] and (1/2, 1]

Because of symmetry we need only to solve for f1

f1(x) = a

(

(x− 1) ln(1 − x) +
x3

6
+
x2

2
− x

)

− b(1 + H(x)) + cx+ d.

Carleton Univ./Univ. Ottawa, April, 2004 – p.35/51

Adaptive Sampling:
Proportion-from-2

The maximum is at α = 1/2. There f(1/2) = 3.112 . . .

Proportion-from-2 beats standard quickselect:
f(α) ≤ m0(α)

Proportion-from-2 beats median-of-three in some
regions: f(α) ≤ m1(α) if α ≤ 0.140 . . . or α ≥ 0.860 . . .

The grand-average: Cn = 2.598 · n+ o(n)

Carleton Univ./Univ. Ottawa, April, 2004 – p.36/51

Adaptive Sampling:
Proportion-from-2

The maximum is at α = 1/2. There f(1/2) = 3.112 . . .

Proportion-from-2 beats standard quickselect:
f(α) ≤ m0(α)

Proportion-from-2 beats median-of-three in some
regions: f(α) ≤ m1(α) if α ≤ 0.140 . . . or α ≥ 0.860 . . .

The grand-average: Cn = 2.598 · n+ o(n)

Carleton Univ./Univ. Ottawa, April, 2004 – p.36/51

Adaptive Sampling:
Proportion-from-2

The maximum is at α = 1/2. There f(1/2) = 3.112 . . .

Proportion-from-2 beats standard quickselect:
f(α) ≤ m0(α)

Proportion-from-2 beats median-of-three in some
regions: f(α) ≤ m1(α) if α ≤ 0.140 . . . or α ≥ 0.860 . . .

The grand-average: Cn = 2.598 · n+ o(n)

Carleton Univ./Univ. Ottawa, April, 2004 – p.36/51

Adaptive Sampling:
Proportion-from-2

The maximum is at α = 1/2. There f(1/2) = 3.112 . . .

Proportion-from-2 beats standard quickselect:
f(α) ≤ m0(α)

Proportion-from-2 beats median-of-three in some
regions: f(α) ≤ m1(α) if α ≤ 0.140 . . . or α ≥ 0.860 . . .

The grand-average: Cn = 2.598 · n+ o(n)

Carleton Univ./Univ. Ottawa, April, 2004 – p.36/51

Adaptive Sampling:
Proportion-from-2

0.0 0.5 1.0
α

2.75

3.113

3.386

2

1.5
0.140

m0(α)

f(α)
m1(α)

Carleton Univ./Univ. Ottawa, April, 2004 – p.37/51

Adaptive Sampling:
Proportion-from-3

For proportion-from-3,

f1(x) = −C0(1 + H(x)) + C1 + C2x

+ C3K1(x) + C4K2(x),

f2(x) = −C5(1 + H(x)) + C6x(1 − x) + C7,

with

K1(x) = cos(
√

2 ln x) ·
∑

n≥0

Anxn+4 + sin(
√

2 ln x) ·
∑

n≥0

Bnxn+4,

K2(x) = sin(
√

2 ln x) ·
∑

n≥0

Anxn+4 − cos(
√

2 ln x) ·
∑

n≥0

Bnxn+4.

Carleton Univ./Univ. Ottawa, April, 2004 – p.38/51

Adaptive Sampling:
Proportion-from-3

Two maxima at α = 1/3 and α = 2/3. There
f(1/3) = f(2/3) = 2.883 . . .

The median is not the most difficult rank:
f(1/2) = 2.723 . . .

Proportion-from-3 beats median-of-three in some
regions: f(α) ≤ m1(α) if α ≤ 0.201 . . ., α ≥ 0.798 . . .
or 1/3 < α < 2/3

The grand-average: Cn = 2.421 · n+ o(n)

Carleton Univ./Univ. Ottawa, April, 2004 – p.39/51

Adaptive Sampling:
Proportion-from-3

Two maxima at α = 1/3 and α = 2/3. There
f(1/3) = f(2/3) = 2.883 . . .

The median is not the most difficult rank:
f(1/2) = 2.723 . . .

Proportion-from-3 beats median-of-three in some
regions: f(α) ≤ m1(α) if α ≤ 0.201 . . ., α ≥ 0.798 . . .
or 1/3 < α < 2/3

The grand-average: Cn = 2.421 · n+ o(n)

Carleton Univ./Univ. Ottawa, April, 2004 – p.39/51

Adaptive Sampling:
Proportion-from-3

Two maxima at α = 1/3 and α = 2/3. There
f(1/3) = f(2/3) = 2.883 . . .

The median is not the most difficult rank:
f(1/2) = 2.723 . . .

Proportion-from-3 beats median-of-three in some
regions: f(α) ≤ m1(α) if α ≤ 0.201 . . ., α ≥ 0.798 . . .
or 1/3 < α < 2/3

The grand-average: Cn = 2.421 · n+ o(n)

Carleton Univ./Univ. Ottawa, April, 2004 – p.39/51

Adaptive Sampling:
Proportion-from-3

Two maxima at α = 1/3 and α = 2/3. There
f(1/3) = f(2/3) = 2.883 . . .

The median is not the most difficult rank:
f(1/2) = 2.723 . . .

Proportion-from-3 beats median-of-three in some
regions: f(α) ≤ m1(α) if α ≤ 0.201 . . ., α ≥ 0.798 . . .
or 1/3 < α < 2/3

The grand-average: Cn = 2.421 · n+ o(n)

Carleton Univ./Univ. Ottawa, April, 2004 – p.39/51

Adaptive Sampling: Batfind

0.0 0.5 1.0
α

2.75
2.723

2

4/3
0.201

0.276

f(α)

m1(α)

Carleton Univ./Univ. Ottawa, April, 2004 – p.40/51

Adaptive Sampling: Batfind

0.0 0.5 1.0
α

2.75
2.723

2

4/3
0.201

0.276

f(α)

m1(α)

Carleton Univ./Univ. Ottawa, April, 2004 – p.40/51

Adaptive Sampling: ν-find

Like proportion-from-3, but a1 = ν and a2 = 1 − ν

Same differential equation, same fi’s, with Ci = Ci(ν)

If ν → 0 then fν → m1 (median-of-three)

If ν → 1/2 then fν is similar to proportion-from-2, but it
is not the same

Carleton Univ./Univ. Ottawa, April, 2004 – p.41/51

Adaptive Sampling: ν-find

Like proportion-from-3, but a1 = ν and a2 = 1 − ν

Same differential equation, same fi’s, with Ci = Ci(ν)

If ν → 0 then fν → m1 (median-of-three)

If ν → 1/2 then fν is similar to proportion-from-2, but it
is not the same

Carleton Univ./Univ. Ottawa, April, 2004 – p.41/51

Adaptive Sampling: ν-find

Like proportion-from-3, but a1 = ν and a2 = 1 − ν

Same differential equation, same fi’s, with Ci = Ci(ν)

If ν → 0 then fν → m1 (median-of-three)

If ν → 1/2 then fν is similar to proportion-from-2, but it
is not the same

Carleton Univ./Univ. Ottawa, April, 2004 – p.41/51

Adaptive Sampling: ν-find

Like proportion-from-3, but a1 = ν and a2 = 1 − ν

Same differential equation, same fi’s, with Ci = Ci(ν)

If ν → 0 then fν → m1 (median-of-three)

If ν → 1/2 then fν is similar to proportion-from-2, but it
is not the same

Carleton Univ./Univ. Ottawa, April, 2004 – p.41/51

Adaptive Sampling: ν-find

Theorem 5. There exists a value ν∗, namely, ν∗ = 0.182 . . ., such
that for any ν, 0 < ν < 1/2, and any α,

fν∗(α) ≤ fν(α).

Furthermore, ν∗ is the unique value of ν such that fν is
continuous,i.e.,

fν∗,1(ν
∗) = fν∗,2(ν

∗).

Carleton Univ./Univ. Ottawa, April, 2004 – p.42/51

Adaptive Sampling: ν-find

Obviously, the value ν∗ minimizes the maximum

fν∗(1/2) = 2.659 . . .

and the mean
f ν∗ = 2.342 . . .

If ν > ν̃ = 0.268 . . . then fν has two absolute maxima
at α = ν and α = 1 − ν; otherwise there is one
absolute maximum at α = 1/2

Carleton Univ./Univ. Ottawa, April, 2004 – p.43/51

Adaptive Sampling: ν-find

Obviously, the value ν∗ minimizes the maximum

fν∗(1/2) = 2.659 . . .

and the mean
f ν∗ = 2.342 . . .

If ν > ν̃ = 0.268 . . . then fν has two absolute maxima
at α = ν and α = 1 − ν; otherwise there is one
absolute maximum at α = 1/2

Carleton Univ./Univ. Ottawa, April, 2004 – p.43/51

Adaptive Sampling: ν-find

If ν ≤ ν ′ = 0.404 . . . then ν-find beats median-of-3 on
average ranks: f ν ≤ 5/2

If ν ≤ ν ′m = 0.364 . . . then ν-find beats median-of-3 to
find the median: fν(1/2) ≤ 11/4

If ν ≤ ν ′ = 0.219 . . . then ν-find beats median-of-3 for
all ranks: fν(α) ≤ m1(α)

Carleton Univ./Univ. Ottawa, April, 2004 – p.44/51

Adaptive Sampling: ν-find

If ν ≤ ν ′ = 0.404 . . . then ν-find beats median-of-3 on
average ranks: f ν ≤ 5/2

If ν ≤ ν ′m = 0.364 . . . then ν-find beats median-of-3 to
find the median: fν(1/2) ≤ 11/4

If ν ≤ ν ′ = 0.219 . . . then ν-find beats median-of-3 for
all ranks: fν(α) ≤ m1(α)

Carleton Univ./Univ. Ottawa, April, 2004 – p.44/51

Adaptive Sampling: ν-find

If ν ≤ ν ′ = 0.404 . . . then ν-find beats median-of-3 on
average ranks: f ν ≤ 5/2

If ν ≤ ν ′m = 0.364 . . . then ν-find beats median-of-3 to
find the median: fν(1/2) ≤ 11/4

If ν ≤ ν ′ = 0.219 . . . then ν-find beats median-of-3 for
all ranks: fν(α) ≤ m1(α)

Carleton Univ./Univ. Ottawa, April, 2004 – p.44/51

Adaptive Sampling: ν-find

0.15 0.25 0.35
2.2

2.4

2.6

2.8

3.0

ν
ν∗ ν ′ ν̃ ν ′m

fν(1/2)

f1,ν(ν)

f2,ν(ν)

m1(ν)2.75

Carleton Univ./Univ. Ottawa, April, 2004 – p.45/51

Adaptive Sampling:
proportion-from-s

Theorem 6. Let f (s)(α) = limn→∞,m/n→α
Cn,m

n
when using

samples of size s. Then for any adaptive sampling strategy such that
lims→∞ r(α)/s = α

f (∞)(α) = lim
s→∞

f (s)(α) = 1 + min(α, 1 − α).

Carleton Univ./Univ. Ottawa, April, 2004 – p.46/51

Partial Sort

Partial sort: Given an array A of n elements, return the
m smallest elements in A in ascending order

Heapsort-based partial sort: Build a heap, extract m
times the minimum; the cost is Θ(n+m log n)

“Quickselsort”: find the m-th with quickselect, then
quicksort m− 1 elements to its left; the cost is
Θ(n+m logm)

Carleton Univ./Univ. Ottawa, April, 2004 – p.47/51

Partial Sort

Partial sort: Given an array A of n elements, return the
m smallest elements in A in ascending order

Heapsort-based partial sort: Build a heap, extract m
times the minimum; the cost is Θ(n+m log n)

“Quickselsort”: find the m-th with quickselect, then
quicksort m− 1 elements to its left; the cost is
Θ(n+m logm)

Carleton Univ./Univ. Ottawa, April, 2004 – p.47/51

Partial Sort

Partial sort: Given an array A of n elements, return the
m smallest elements in A in ascending order

Heapsort-based partial sort: Build a heap, extract m
times the minimum; the cost is Θ(n+m log n)

“Quickselsort”: find the m-th with quickselect, then
quicksort m− 1 elements to its left; the cost is
Θ(n+m logm)

Carleton Univ./Univ. Ottawa, April, 2004 – p.47/51

Partial Quicksort

void partial_quicksort(vector<Elem>& A,

int i, int j, int m)

{

if (i < j) {

int p = get_pivot(A, i, j);

swap(A[p], A[l]);

int k;

partition(A, i, j, k);

partial_quicksort(A, i, k - 1, m);

if (k < m-1)

partial_quicksort(A, k + 1, j, m);

} }
Carleton Univ./Univ. Ottawa, April, 2004 – p.48/51

Partial Quicksort

Average number of comparisons Pn,m to sort the m
smallest elements:

Pn,m = n− 1 +
n

∑

k=m+1

πn,k · Pk−1,m

+
m

∑

k=1

πn,k · (Pk−1,k−1 + Pn−k,m−k)

But Pn,n = Qn = 2(n+ 1)Hn − 4n!

Carleton Univ./Univ. Ottawa, April, 2004 – p.49/51

Partial Quicksort

Average number of comparisons Pn,m to sort the m
smallest elements:

Pn,m = n− 1 +
n

∑

k=m+1

πn,k · Pk−1,m

+
m

∑

k=1

πn,k · (Pk−1,k−1 + Pn−k,m−k)

But Pn,n = Qn = 2(n+ 1)Hn − 4n!

Carleton Univ./Univ. Ottawa, April, 2004 – p.49/51

Partial Quicksort

The recurrence for Pn,m is the same as for quickselect
but the toll function is

n− 1 +
∑

0≤k<m

πn,kQk

For πn,k = 1/n, the solution is

Pn,m = 2n+ 2(n+ 1)Hn

− 2(n+ 3 −m)Hn+1−m − 6m+ 6

Carleton Univ./Univ. Ottawa, April, 2004 – p.50/51

Partial Quicksort

The recurrence for Pn,m is the same as for quickselect
but the toll function is

n− 1 +
∑

0≤k<m

πn,kQk

For πn,k = 1/n, the solution is

Pn,m = 2n+ 2(n+ 1)Hn

− 2(n+ 3 −m)Hn+1−m − 6m+ 6

Carleton Univ./Univ. Ottawa, April, 2004 – p.50/51

Partial Quicksort

Partial quicksort makes

2m− 4Hm + 2

comparisons less than “quickselsort”

It makes m/3 − 5Hm/6 + 1/2 exchanges less than
“quickselsort”

“Quickselsort” forgets the position of the pivots used for
the selection of the m-th to the left of m; partial
quicksort leaves these at their correct positions and
does not compare them against other elements
afterwards

Carleton Univ./Univ. Ottawa, April, 2004 – p.51/51

Partial Quicksort

Partial quicksort makes

2m− 4Hm + 2

comparisons less than “quickselsort”

It makes m/3 − 5Hm/6 + 1/2 exchanges less than
“quickselsort”

“Quickselsort” forgets the position of the pivots used for
the selection of the m-th to the left of m; partial
quicksort leaves these at their correct positions and
does not compare them against other elements
afterwards

Carleton Univ./Univ. Ottawa, April, 2004 – p.51/51

Partial Quicksort

Partial quicksort makes

2m− 4Hm + 2

comparisons less than “quickselsort”

It makes m/3 − 5Hm/6 + 1/2 exchanges less than
“quickselsort”

“Quickselsort” forgets the position of the pivots used for
the selection of the m-th to the left of m; partial
quicksort leaves these at their correct positions and
does not compare them against other elements
afterwards

Carleton Univ./Univ. Ottawa, April, 2004 – p.51/51

	Introduction
	Quicksort
	Quickselect
	Partition
	Partition
	The Recurrences for Average Costs
	Quicksort: The Average Cost
	Quickselect: The Average Cost
	Improving Quicksort and Quickselect
	Improving Quicksort and Quickselect
	Small Subfiles
	Small Subfiles
	Small Subfiles
	Small Subfiles
	Small Subfiles
	Small Subfiles
	Median-of-three
	Median-of-three
	Median-of-three
	Median-of-three
	Median-of-three
	Median-of-three
	Optimal Sampling
	Optimal Sampling
	Optimal Sampling
	Optimal Sampling
	Optimal Sampling
	Optimal Sampling
	Optimal Sampling
	Optimal Sampling
	Adaptive Sampling
	Adaptive Sampling
	Adaptive Sampling
	Adaptive Sampling: Proportion-from-2
	Adaptive Sampling: Proportion-from-2
	Adaptive Sampling: Proportion-from-2
	Adaptive Sampling: Proportion-from-3
	Adaptive Sampling: Proportion-from-3
	Adaptive Sampling: Batfind
	Adaptive Sampling: $
u $-find
	Adaptive Sampling: $
u $-find
	Adaptive Sampling: $
u $-find
	Adaptive Sampling: $
u $-find
	Adaptive Sampling: $
u $-find
	Adaptive Sampling: proportion-from-s
	Partial Sort
	Partial Quicksort
	Partial Quicksort
	Partial Quicksort
	Partial Quicksort

