Forty years of Quicksort and Quickselect: a personal view

Conrado Martínez

Univ. Politècnica de Catalunya, Spain

Introduction

Quicksort and quickselect were invented in the early sixties by C.A.R. Hoare (Hoare, 1961; Hoare, 1962)

Introduction

Quicksort and quickselect were invented in the early sixties by C.A.R. Hoare (Hoare, 1961; Hoare, 1962)

They are simple, elegant, beatiful and practical solutions to two basic problems of Computer Science: sorting and selection

Introduction

Quicksort and quickselect were invented in the early sixties by C.A.R. Hoare (Hoare, 1961; Hoare, 1962)

They are simple, elegant, beatiful and practical solutions to two basic problems of Computer Science: sorting and selection

They are primary examples of the divide-and-conquer principle

Quicksort

void quicksort (vector $<$ Elem $>\& A$ A, int i, int j) \{ if (i<j) \{ int $p=$ get_pivot (A, i, j); swap(A[p], A[l]); int k; partition(A, i, j, k); // $A[i . . k-1] \leq A[k] \leq A[k+1 . . j]$ quicksort (A, i, k - 1); quicksort(A, $k+1, j) ;$
\} \}

Quickselect

```
Elem quickselect(vector \(\langle\) Elem>\& A,
    int i, int j, int m) \{
    if (i >= j) return A[i];
    int \(p=\) get_pivot (A, i, j, m);
swap (A[p], A[l]);
int k;
partition(A, i, j, k);
if ( \(\mathrm{m}<\mathrm{k}\) ) quickselect \((\mathrm{A}, \mathrm{i}, \mathrm{k}-1, \mathrm{~m})\);
else if ( \(m>k\) ) quickselect \((A, k+1, j, m) ;\)
else return A[k];

\section*{Partition}
```

void partition (vector \langle Elem>\& A,
int i, int j, int\& k) \{
int $1=i ; i n t u=j+1 ;$ Elem $p v=A[i] ;$
for (; ;) \{
do ++l; while(A[l] < pv);
do --u; while(A[u] > pv);
if (l $>=u)$ break;
swap (A[l], A[u]);
\};
swap(A[i], A[u]); $k=u ;$
\}

```

\section*{Partition}


\section*{The Recurrences for Average Costs}

Probability that the selected pivot is the \(k\)-th of \(n\) elements: \(\pi_{n, k}\)

\section*{The Recurrences for Average Costs}

Probability that the selected pivot is the \(k\)-th of \(n\) elements: \(\pi_{n, k}\)

Average number of comparisons \(Q_{n}\) to sort \(n\) elements:
\[
Q_{n}=n-1+\sum_{k=1}^{n} \pi_{n, k} \cdot\left(Q_{k-1}+Q_{n-k}\right)
\]

\section*{The Recurrences for Average Costs}

Probability that the selected pivot is the \(k\)-th of \(n\) elements: \(\pi_{n, k}\)

Average number of comparisons \(C_{n, m}\) to select the \(m\)-th out of \(n\) :
\[
C_{n, m}=n-1+\sum_{k=m+1}^{n} \pi_{n, k} \cdot C_{k-1, m}
\]
\[
+\sum_{k=1}^{m-1} \pi_{n, k} \cdot C_{n-k, m-k}
\]

\section*{Quicksort: The Average Cost}

For the standard variant, \(\pi_{n, k}=1 / n\)

\section*{Quicksort: The Average Cost}

For the standard variant, \(\pi_{n, k}=1 / n\)
Average number of comparisons \(Q_{n}\) to sort \(n\) elements (Hoare, 1962):
\[
\begin{aligned}
Q_{n}=2(n+1) & H_{n}-4 n \\
& =2 n \ln n+(2 \gamma-4) n+2 \ln n+\mathcal{O}(1)
\end{aligned}
\]
where \(H_{n}=\sum_{1 \leq k \leq n} 1 / k=\ln n+\gamma+\mathcal{O}(1 / n)\) is the \(n\)-th harmonic number and \(\gamma=0.577 \ldots\) is Euler's gamma constant.

\section*{Quickselect: The Average Cost}

Average number of comparisons \(C_{n, m}\) to select the \(m\)-th out of \(n\) elements (Knuth, 1971):
\[
\begin{aligned}
C_{n, m}=2(n+3 & +(n+1) H_{n} \\
& \left.-(n+3-m) H_{n+1-m}-(m+2) H_{m}\right)
\end{aligned}
\]

\section*{Quickselect: The Average Cost}

This is \(\Theta(n)\) for any \(m, 1 \leq m \leq n\). In particular,
\[
\begin{aligned}
m_{0}(\alpha) & =\lim _{n \rightarrow \infty, m / n \rightarrow \alpha} \frac{C_{n, m}}{n}=2+2 \cdot \mathcal{H}(\alpha) \\
\mathcal{H}(x) & =-(x \ln x+(1-x) \ln (1-x))
\end{aligned}
\]
with \(0 \leq \alpha \leq 1\). The maximum is at \(\alpha=1 / 2\), where \(m_{0}(1 / 2)=2+2 \ln 2=3.386 \ldots\); the mean value is \(\bar{m}_{0}=3\).

\section*{Improving Quicksort and Quickselect}

Apply general techniques: recursion removal, loop unwrapping, ...

\section*{Improving Quicksort and Quickselect}

Apply general techniques: recursion removal, loop unwrapping, ...

Reorder recursive calls to quicksort

\section*{Improving Quicksort and Quickselect}

Apply general techniques: recursion removal, loop unwrapping, ...

6 Reorder recursive calls to quicksort
Switch to a simpler algorithm for small subfiles

\section*{Improving Quicksort and Quickselect}

Apply general techniques: recursion removal, loop unwrapping, ...

6 Reorder recursive calls to quicksort
- Switch to a simpler algorithm for small subfiles
- Use samples to select better pivots

\section*{Improving Quicksort and Quickselect}

Apply general techniques: recursion removal, loop unwrapping, ...

6 Reorder recursive calls to quicksort
- Switch to a simpler algorithm for small subfiles
© Use samples to select better pivots

\section*{Small Subfiles}

It is well known (Sedgewick, 1975) that, for quicksort, it is convenient to stop recursion for subarrays of size \(\leq n_{0}\) and use insertion sort instead

\section*{Small Subfiles}

It is well known (Sedgewick, 1975) that, for quicksort, it is convenient to stop recursion for subarrays of size \(\leq n_{0}\) and use insertion sort instead

The optimal choice for \(n_{0}\) is around 20 to 25 elements

\section*{Small Subfiles}
- It is well known (Sedgewick, 1975) that, for quicksort, it is convenient to stop recursion for subarrays of size \(\leq n_{0}\) and use insertion sort instead
The optimal choice for \(n_{0}\) is around 20 to 25 elements
Alternatively, one might do nothing with small subfiles and perform a single pass of insertion sort over the whole file

\section*{Small Subfiles}

\section*{Cutting off recursion also yields benefits for quickselect}

\section*{Small Subfiles}

Cutting off recursion also yields benefits for quickselect
In (Martínez, Panario, Viola, 2002) we investigate different choices to process small subfiles and how they affect the average total cost: selection, insertion sort, optimized selection

\section*{Small Subfiles}

We have now
\[
C_{n, m}=\left\{\begin{array}{cc}
t_{n, m}+\sum_{k=m+1}^{n} \pi_{n, k} \cdot C_{k-1, m} & \\
+\sum_{k=1}^{m-1} \pi_{n, k} \cdot C_{n-k, m-k}, & \text { if } n>n_{0} \\
b_{n, m} & \text { if } n \leq n_{0}
\end{array}\right.
\]

\section*{Small Subfiles}
\[
\text { Let } C(z, u)=\sum_{n \geq 0} \sum_{1 \leq m \leq n} C_{n, m} z^{n} u^{m}
\]

\section*{Small Subfiles}
\[
\text { Let } C(z, u)=\sum_{n \geq 0} \sum_{1 \leq m \leq n} C_{n, m} z^{n} u^{m}
\]

It can be shown that
\[
C(z, u)=C_{n_{0}}(z, u)+\frac{\int_{0}^{z}(1-t)(1-u t) \frac{\partial T(t, u)}{\partial t} d t}{(1-z)(1-u z)}
\]
where \(T(z, u)=\sum_{n \geq 0} \sum_{1 \leq m \leq n} t_{n, m} z^{n} u^{m}\) and \(C_{n_{0}}(z, u)\) is the only part depending on the \(b_{n, m}\) 's and \(n_{0}\).

\section*{Small Subfiles}

In order to determine the optimal choice for \(n_{0}\) we need only to compute \(\left[z^{n} u^{m}\right] C_{n_{0}}(z, u)\)

\section*{Small Subfiles}
- In order to determine the optimal choice for \(n_{0}\) we need only to compute \(\left[z^{n} u^{m}\right] C_{n_{0}}(z, u)\)
© We assume \(t_{n, m}=\alpha n+\beta+\gamma /(n-1)\) and
\[
\begin{aligned}
b_{n, m}=K_{1} n^{2}+K_{2} n+K_{3} m^{2}+ & K_{4} m+K_{5} m n+K_{6} \\
& +K_{7} g^{2}+K_{8} g+K_{9} g n,
\end{aligned}
\]
where \(g \equiv \min \{m, n-m+1\}\), to study the best choice for \(n_{0}\), as a function of \(\alpha, \beta, \gamma\) and the \(K_{i}\) 's.

\section*{Small Subfiles}

Using insertion sort with \(n_{0} \leq 10\) reduces the average cost; the optimal choice for \(n_{0}\) is 5

\section*{Small Subfiles}

Using insertion sort with \(n_{0} \leq 10\) reduces the average cost; the optimal choice for \(n_{0}\) is 5

6 Selection (we locate the minimum, then the second minimum, etc.) reduces the average cost if \(n_{0} \leq 11\); the optimum \(n_{0}\) is 6

\section*{Small Subfiles}
- Using insertion sort with \(n_{0} \leq 10\) reduces the average cost; the optimal choice for \(n_{0}\) is 5
- Selection (we locate the minimum, then the second minimum, etc.) reduces the average cost if \(n_{0} \leq 11\); the optimum \(n_{0}\) is 6
- Optimized selection (looks for the \(m\)-th from the minimum or the maximum, whatever is closer) yields improved average performance if \(n_{0} \leq 22\); the optimum \(n_{0}\) is 11

\section*{Median-of-three}

In quicksort with median-of-three, the pivot of each recursive stage is selected as the median of a sample of three elements (Singleton, 1969)

\section*{Median-of-three}

In quicksort with median-of-three, the pivot of each recursive stage is selected as the median of a sample of three elements (Singleton, 1969)

This reduces the probability of uneven partitions which lead to quadratic worst-case

\section*{Median-of-three}

We have in this case
\[
\pi_{n, k}=\frac{(k-1)(n-k)}{\binom{n}{3}}
\]

\section*{Median-of-three}

We have in this case
\[
\pi_{n, k}=\frac{(k-1)(n-k)}{\binom{n}{3}}
\]

The average number of comparisons \(Q_{n}\) is (Sedgewick, 1975)
\[
Q_{n}=\frac{12}{7} n \log n+\mathcal{O}(n)
\]
roughly a \(14.3 \%\) less than standard quicksort

\section*{Median-of-three}

To study quickselect with median-of-three, in (Kirschenhofer, Martínez, Prodinger, 1997), we use bivariate generating functions
\[
C(z, u)=\sum_{n \geq 0} \sum_{1 \leq m \leq n} C_{n, m} z^{n} u^{m}
\]

\section*{Median-of-three}

To study quickselect with median-of-three, in (Kirschenhofer, Martínez, Prodinger, 1997), we use bivariate generating functions
\[
C(z, u)=\sum_{n \geq 0} \sum_{1 \leq m \leq n} C_{n, m} z^{n} u^{m}
\]

The recurrences translate into second-order differential equations of hypergeometric type
\[
x(1-x) y^{\prime \prime}+(c-(1+a+b) x) y^{\prime}-a b y=0
\]

\section*{Median-of-three}

We compute explicit solutions for comparisons and for passes; from there, one has to extract (painfully ;-)) the coefficients

\section*{Median-of-three}

We compute explicit solutions for comparisons and for passes; from there, one has to extract (painfully ;-)) the coefficients

For instance, for the average number of passes we get
\[
P_{n, m}=\frac{24}{35} H_{n}+\frac{18}{35} H_{m}+\frac{18}{35} H_{n+1-m}+\mathcal{O}(1)
\]

\section*{Median-of-three}

We compute explicit solutions for comparisons and for passes; from there, one has to extract (painfully ;-)) the coefficients
6 And for the average number of comparisons
\[
\begin{aligned}
C_{n, m}=2 n+\frac{72}{35} H_{n}- & \frac{156}{35} H_{m}-\frac{156}{35} H_{n+1-m} \\
& +3 m-\frac{(m-1)(m-2)}{n}+\mathcal{O}(1)
\end{aligned}
\]

\section*{Median-of-three}

An important particular case is \(m=\lceil n / 2\rceil\) (the median) were the average number of comparisons is
\[
\frac{11}{4} n+o(n)
\]

Compare to \((2+2 \ln 2) n+o(n)\) for standard quickselect.

\section*{Median-of-three}

In general,
\[
m_{1}(\alpha)=\lim _{n \rightarrow \infty, m / n \rightarrow \alpha} \frac{C_{n, m}}{n}=2+3 \cdot \alpha \cdot(1-\alpha)
\]
with \(0 \leq \alpha \leq 1\). The mean value is \(\bar{m}_{1}=5 / 2\); compare to \(3 n+o(n)\) comparisons for standard quickselect on random ranks.

\section*{Optimal Sampling}

In (Martínez, Roura, 2001) we study what happens if we use samples of size \(s=2 t+1\) to pick the pivots, but \(t=t(n)\)

\section*{Optimal Sampling}

In (Martínez, Roura, 2001) we study what happens if we use samples of size \(s=2 t+1\) to pick the pivots, but \(t=t(n)\)

The comparisons needed to pick the pivots have to be taken into account:
\[
Q_{n}=n-1+\Theta(s)+\sum_{k=1}^{n} \pi_{n, k} \cdot\left(Q_{k-1}+Q_{n-k}\right)
\]

\section*{Optimal Sampling}

Traditional techniques to solve recurrences cannot be used here

\section*{Optimal Sampling}

Traditional techniques to solve recurrences cannot be used here

We make extensive use of the continuous master theorem (Roura, 1997)

\section*{Optimal Sampling}

Traditional techniques to solve recurrences cannot be used here

6 We make extensive use of the continuous master theorem (Roura, 1997)
6. We also study the cost of quickselect when the rank of the sought element is random

\section*{Optimal Sampling}

Traditional techniques to solve recurrences cannot be used here
- We make extensive use of the continuous master theorem (Roura, 1997)
- We also study the cost of quickselect when the rank of the sought element is random
© Total cost: \# of comparisons \(+\xi \cdot\) \# of exchanges

\section*{Optimal Sampling}

Theorem 1. If we use samples of size \(s\), with \(s=o(n)\) and \(s=\omega(1)\) then the average total cost \(Q_{n}\) of quicksort is
\[
Q_{n}=(1+\xi / 4) n \log _{2} n+o(n \log n)
\]
and the average total cost \(C_{n}\) of quickselect to find an element of given random rank is
\[
C_{n}=2(1+\xi / 4) n+o(n)
\]

\section*{Optimal Sampling}

Theorem 2. Let \(s^{*}=2 t^{*}+1\) denote the optimal sample size that minimizes the average total cost of quickselect; assume the average total cost of the algorithm to pick the medians from the samples is \(\beta s+o(s)\). Then
\[
t^{*}=\frac{1}{2 \sqrt{\beta}} \cdot \sqrt{n}+o(\sqrt{n})
\]

\section*{Optimal Sampling}

Theorem 3. Let \(s^{*}=2 t^{*}+1\) denote the optimal sample size that minimizes the average number of comparisons made by quicksort. Then
\[
\begin{aligned}
& \qquad t^{*}=\sqrt{\frac{1}{\beta}\left(\frac{4-\xi(2 \ln 2-1)}{8 \ln 2}\right)} \cdot \sqrt{n}+o(\sqrt{n}) \\
& \text { if } \xi<\tau=4 /(2 \ln 2-1) \approx 10.3548
\end{aligned}
\]

\section*{Optimal Sampling}


Optimal sample size (Theorem 3) vs. exact values

\section*{Optimal Sampling}

If exchanges are expensive ( \(\xi \geq \tau\) ) we have to use fixed-size samples and pick the median (not optimal) or pick the \((\psi \cdot s)\)-th element of a sample of size \(\Theta(\sqrt{n})\)

\section*{Optimal Sampling}

If exchanges are expensive ( \(\xi \geq \tau\) ) we have to use fixed-size samples and pick the median (not optimal) or pick the \((\psi \cdot s)\)-th element of a sample of size \(\Theta(\sqrt{n})\)

If the position of the pivot is close to either end of the array, then few exchanges are necessary on that stage, but a poor partition leads to more recursive steps. This trade-off is relevant if exchanges are very expensive

\section*{Optimal Sampling}

The variance of quickselect when \(s=s(n) \rightarrow \infty\) is
\[
V_{n}=\Theta\left(\max \left\{\frac{n^{2}}{s}, n \cdot s\right\}\right)
\]

\section*{Optimal Sampling}

The variance of quickselect when \(s=s(n) \rightarrow \infty\) is
\[
V_{n}=\Theta\left(\max \left\{\frac{n^{2}}{s}, n \cdot s\right\}\right)
\]

The best choice is \(s=\Theta(\sqrt{n})\); then \(V_{n}=\Theta\left(n^{3 / 2}\right)\) and there is concentration in probability

\section*{Optimal Sampling}

The variance of quickselect when \(s=s(n) \rightarrow \infty\) is
\[
V_{n}=\Theta\left(\max \left\{\frac{n^{2}}{s}, n \cdot s\right\}\right)
\]

The best choice is \(s=\Theta(\sqrt{n})\); then \(V_{n}=\Theta\left(n^{3 / 2}\right)\) and there is concentration in probability
- We conjecture this type of result holds for quicksort too

\section*{Adaptive Sampling}

In (Martínez, Panario, Viola, 2004) we study choosing pivots with relative rank in the sample close to
\(\alpha=m / n\)

\section*{Adaptive Sampling}

In (Martínez, Panario, Viola, 2004) we study choosing pivots with relative rank in the sample close to \(\alpha=m / n\)

In general: \(r(\alpha)=\) rank of the pivot within the sample, when selecting the \(m\)-th out of \(n\) elements and
\(\alpha=m / n\)

\section*{Adaptive Sampling}

In (Martínez, Panario, Viola, 2004) we study choosing pivots with relative rank in the sample close to \(\alpha=m / n\)

In general: \(r(\alpha)=\) rank of the pivot within the sample, when selecting the \(m\)-th out of \(n\) elements and
\(\alpha=m / n\)
Divide \([0,1]\) into \(\ell\) intervals with endpoints \(0=a_{0}<a_{1}<a_{2}<\cdots<a_{\ell}=1\) and let \(r_{k}\) denote the value of \(r(\alpha)\) for \(\alpha\) in the \(k\)-th interval

\section*{Adaptive Sampling}

For median-of- \((2 t+1): \quad \ell=1\) and \(r_{1}=t+1\)

\section*{Adaptive Sampling}

For median-of- \((2 t+1): \quad \ell=1\) and \(r_{1}=t+1\)
For proportion-from- \(s: \ell=s, a_{k}=k / s\) and \(r_{k}=k\)

\section*{Adaptive Sampling}

For median-of- \((2 t+1): \quad \ell=1\) and \(r_{1}=t+1\)
For proportion-from- \(s\) : \(\ell=s, a_{k}=k / s\) and \(r_{k}=k\) "Proportion-from"-like strategies: \(\ell=s\) and \(r_{k}=k\), but the endpoints of the intervals \(a_{k} \neq k / s\)

\section*{Adaptive Sampling}
- For median-of- \((2 t+1): ~ \ell=1\) and \(r_{1}=t+1\)
© For proportion-from- \(s: \ell=s, a_{k}=k / s\) and \(r_{k}=k\) "Proportion-from"-like strategies: \(\ell=s\) and \(r_{k}=k\), but the endpoints of the intervals \(a_{k} \neq k / s\)
- A sampling strategy is symmetric if
\[
r(\alpha)=s+1-r(1-\alpha)
\]

\section*{Adaptive Sampling}

Theorem 4. Let \(f(\alpha)=\lim _{n \rightarrow \infty, m / n \rightarrow \alpha} \frac{C_{n, m}}{n}\). Then
\[
\begin{aligned}
f(\alpha)= & 1+\frac{s!}{(r(\alpha)-1)!(s-r(\alpha))!} \times \\
& {\left[\int_{\alpha}^{1} f\left(\frac{\alpha}{x}\right) x^{r(\alpha)}(1-x)^{s-r(\alpha)} d x\right.} \\
& \left.+\int_{0}^{\alpha} f\left(\frac{\alpha-x}{1-x}\right) x^{r(\alpha)-1}(1-x)^{s+1-r(\alpha)} d x\right] .
\end{aligned}
\]

\section*{Adaptive Sampling: \\ Proportion-from-2}

Here \(f(\alpha)\) is composed of two "pieces" \(f_{1}\) and \(f_{2}\) for the intervals \([0,1 / 2]\) and \((1 / 2,1]\)

\section*{Adaptive Sampling: \\ Proportion-from-2}

Here \(f(\alpha)\) is composed of two "pieces" \(f_{1}\) and \(f_{2}\) for the intervals \([0,1 / 2]\) and ( \(1 / 2,1]\)
- Because of symmetry we need only to solve for \(f_{1}\)
\[
\begin{aligned}
f_{1}(x)=a((x-1) \ln (1-x) & \left.+\frac{x^{3}}{6}+\frac{x^{2}}{2}-x\right) \\
& -b(1+\mathcal{H}(x))+c x+d .
\end{aligned}
\]

\section*{Adaptive Sampling: Proportion-from-2}

The maximum is at \(\alpha=1 / 2\). There \(f(1 / 2)=3.112 \ldots\)

\section*{Adaptive Sampling: Proportion-from-2}

The maximum is at \(\alpha=1 / 2\). There \(f(1 / 2)=3.112 \ldots\)
- Proportion-from-2 beats standard quickselect:
\(f(\alpha) \leq m_{0}(\alpha)\)

\section*{Adaptive Sampling: Proportion-from-2}

The maximum is at \(\alpha=1 / 2\). There \(f(1 / 2)=3.112 \ldots\)
- Proportion-from-2 beats standard quickselect: \(f(\alpha) \leq m_{0}(\alpha)\)
Proportion-from-2 beats median-of-three in some regions: \(f(\alpha) \leq m_{1}(\alpha)\) if \(\alpha \leq 0.140 \ldots\) or \(\alpha \geq 0.860 \ldots\)

\section*{Adaptive Sampling: Proportion-from-2}

The maximum is at \(\alpha=1 / 2\). There \(f(1 / 2)=3.112 \ldots\)
© Proportion-from-2 beats standard quickselect:
\(f(\alpha) \leq m_{0}(\alpha)\)
Proportion-from-2 beats median-of-three in some regions: \(f(\alpha) \leq m_{1}(\alpha)\) if \(\alpha \leq 0.140 \ldots\) or \(\alpha \geq 0.860 \ldots\)

The grand-average: \(C_{n}=2.598 \cdot n+o(n)\)

\section*{Adaptive Sampling:}

Proportion-from-2


\section*{Adaptive Sampling: Proportion-from-3}

For proportion-from-3,
\[
\begin{aligned}
f_{1}(x) & =-C_{0}(1+\mathcal{H}(x))+C_{1}+C_{2} x \\
& +C_{3} K_{1}(x)+C_{4} K_{2}(x) \\
f_{2}(x) & =-C_{5}(1+\mathcal{H}(x))+C_{6} x(1-x)+C_{7}
\end{aligned}
\]
with
\[
\begin{aligned}
& K_{1}(x)=\cos (\sqrt{2} \ln x) \cdot \sum_{n \geq 0} A_{n} x^{n+4}+\sin (\sqrt{2} \ln x) \cdot \sum_{n \geq 0} B_{n} x^{n+4} \\
& K_{2}(x)=\sin (\sqrt{2} \ln x) \cdot \sum_{n \geq 0} A_{n} x^{n+4}-\cos (\sqrt{2} \ln x) \cdot \sum_{n \geq 0} B_{n} x^{n+4}
\end{aligned}
\]

\section*{Adaptive Sampling: Proportion-from-3}

Two maxima at \(\alpha=1 / 3\) and \(\alpha=2 / 3\). There \(f(1 / 3)=f(2 / 3)=2.883 \ldots\)

\section*{Adaptive Sampling: Proportion-from-3}

Two maxima at \(\alpha=1 / 3\) and \(\alpha=2 / 3\). There \(f(1 / 3)=f(2 / 3)=2.883 \ldots\)

The median is not the most difficult rank: \(f(1 / 2)=2.723 \ldots\)

\section*{Adaptive Sampling: Proportion-from-3}

Two maxima at \(\alpha=1 / 3\) and \(\alpha=2 / 3\). There \(f(1 / 3)=f(2 / 3)=2.883 \ldots\)

The median is not the most difficult rank: \(f(1 / 2)=2.723 \ldots\)
© Proportion-from-3 beats median-of-three in some regions: \(f(\alpha) \leq m_{1}(\alpha)\) if \(\alpha \leq 0.201 \ldots, \alpha \geq 0.798 \ldots\) or \(1 / 3<\alpha<2 / 3\)

\section*{Adaptive Sampling: Proportion-from-3}

Two maxima at \(\alpha=1 / 3\) and \(\alpha=2 / 3\). There \(f(1 / 3)=f(2 / 3)=2.883 \ldots\)

The median is not the most difficult rank: \(f(1 / 2)=2.723 \ldots\)
© Proportion-from-3 beats median-of-three in some regions: \(f(\alpha) \leq m_{1}(\alpha)\) if \(\alpha \leq 0.201 \ldots, \alpha \geq 0.798 \ldots\) or \(1 / 3<\alpha<2 / 3\)

The grand-average: \(C_{n}=2.421 \cdot n+o(n)\)

\section*{Adaptive Sampling: Batfind}


\section*{Adaptive Sampling: Batfind}


\section*{Adaptive Sampling: \(\nu\)-find}

Like proportion-from-3, but \(a_{1}=\nu\) and \(a_{2}=1-\nu\)

\section*{Adaptive Sampling: \(\nu\)-find}

Like proportion-from-3, but \(a_{1}=\nu\) and \(a_{2}=1-\nu\)
Same differential equation, same \(f_{i}\) 's, with \(C_{i}=C_{i}(\nu)\)

\section*{Adaptive Sampling: \(\nu\)-find}

Like proportion-from-3, but \(a_{1}=\nu\) and \(a_{2}=1-\nu\)
Same differential equation, same \(f_{i}\) 's, with \(C_{i}=C_{i}(\nu)\)
If \(\nu \rightarrow 0\) then \(f_{\nu} \rightarrow m_{1}\) (median-of-three)

\section*{Adaptive Sampling: \(\nu\)-find}

Like proportion-from-3, but \(a_{1}=\nu\) and \(a_{2}=1-\nu\)
- Same differential equation, same \(f_{i}\) 's, with \(C_{i}=C_{i}(\nu)\)

6 If \(\nu \rightarrow 0\) then \(f_{\nu} \rightarrow m_{1}\) (median-of-three)
6 If \(\nu \rightarrow 1 / 2\) then \(f_{\nu}\) is similar to proportion-from-2, but it is not the same

\section*{Adaptive Sampling: \(\nu\)-find}

Theorem 5. There exists a value \(\nu^{*}\), namely, \(\nu^{*}=0.182 \ldots\), such that for any \(\nu, 0<\nu<1 / 2\), and any \(\alpha\),
\[
f_{\nu^{*}}(\alpha) \leq f_{\nu}(\alpha)
\]

Furthermore, \(\nu^{*}\) is the unique value of \(\nu\) such that \(f_{\nu}\) is continuous,i.e.,
\[
f_{\nu^{*}, 1}\left(\nu^{*}\right)=f_{\nu^{*}, 2}\left(\nu^{*}\right) .
\]

\section*{Adaptive Sampling: \(\nu\)-find}

Obviously, the value \(\nu^{*}\) minimizes the maximum
\[
f_{\nu^{*}}(1 / 2)=2.659 \ldots
\]
and the mean
\[
\bar{f}_{\nu^{*}}=2.342 \ldots
\]

\section*{Adaptive Sampling: \(\nu\)-find}

Obviously, the value \(\nu^{*}\) minimizes the maximum
\[
f_{\nu^{*}}(1 / 2)=2.659 \ldots
\]
and the mean
\[
\bar{f}_{\nu^{*}}=2.342 \ldots
\]

If \(\nu>\tilde{\nu}=0.268 \ldots\) then \(f_{\nu}\) has two absolute maxima at \(\alpha=\nu\) and \(\alpha=1-\nu\); otherwise there is one absolute maximum at \(\alpha=1 / 2\)

\section*{Adaptive Sampling: \(\nu\)-find}

If \(\nu \leq \bar{\nu}^{\prime}=0.404 \ldots\) then \(\nu\)-find beats median-of-3 on average ranks: \(\bar{f}_{\nu} \leq 5 / 2\)

\section*{Adaptive Sampling: \(\nu\)-find}

If \(\nu \leq \bar{\nu}^{\prime}=0.404 \ldots\) then \(\nu\)-find beats median-of-3 on average ranks: \(\bar{f}_{\nu} \leq 5 / 2\)

If \(\nu \leq \nu_{m}^{\prime}=0.364 \ldots\) then \(\nu\)-find beats median-of-3 to find the median: \(f_{\nu}(1 / 2) \leq 11 / 4\)

\section*{Adaptive Sampling: \(\nu\)-find}

If \(\nu \leq \bar{\nu}^{\prime}=0.404 \ldots\) then \(\nu\)-find beats median-of-3 on average ranks: \(\bar{f}_{\nu} \leq 5 / 2\)

If \(\nu \leq \nu_{m}^{\prime}=0.364 \ldots\) then \(\nu\)-find beats median-of-3 to find the median: \(f_{\nu}(1 / 2) \leq 11 / 4\)

If \(\nu \leq \nu^{\prime}=0.219 \ldots\) then \(\nu\)-find beats median-of-3 for all ranks: \(f_{\nu}(\alpha) \leq m_{1}(\alpha)\)

\section*{Adaptive Sampling: \(\nu\)-find}


\section*{Adaptive Sampling: proportion-from-s}

Theorem 6. Let \(f^{(s)}(\alpha)=\lim _{n \rightarrow \infty, m / n \rightarrow \alpha} \frac{C_{n, m}}{n}\) when using samples of size \(s\). Then for any adaptive sampling strategy such that \(\lim _{s \rightarrow \infty} r(\alpha) / s=\alpha\)
\[
f^{(\infty)}(\alpha)=\lim _{s \rightarrow \infty} f^{(s)}(\alpha)=1+\min (\alpha, 1-\alpha)
\]

\section*{Partial Sort}

Partial sort: Given an array \(A\) of \(n\) elements, return the \(m\) smallest elements in \(A\) in ascending order

\section*{Partial Sort}

Partial sort: Given an array \(A\) of \(n\) elements, return the \(m\) smallest elements in \(A\) in ascending order

Heapsort-based partial sort: Build a heap, extract \(m\) times the minimum; the cost is \(\Theta(n+m \log n)\)

\section*{Partial Sort}
- Partial sort: Given an array \(A\) of \(n\) elements, return the \(m\) smallest elements in \(A\) in ascending order
© Heapsort-based partial sort: Build a heap, extract \(m\) times the minimum; the cost is \(\Theta(n+m \log n)\)

6 "Quickselsort": find the \(m\)-th with quickselect, then quicksort \(m-1\) elements to its left; the cost is \(\Theta(n+m \log m)\)

\section*{Partial Quicksort}
```

void partial_quicksort(vector<Elem>\& A,
int i, int j, int m)
{
if (i < j) {
int p = get_pivot(A, i, j);
swap(A[p], A[l]);
int k;
partition(A, i, jr k);
partial_quicksort(A, i, k - 1, m);
if (k < m-1)
partial_quicksort(A, k + 1, j, m);

```
\} \}

\section*{Partial Quicksort}

Average number of comparisons \(P_{n, m}\) to sort the \(m\) smallest elements:
\[
\begin{aligned}
P_{n, m}=n-1+ & \sum_{k=m+1}^{n} \pi_{n, k} \cdot P_{k-1, m} \\
& +\sum_{k=1}^{m} \pi_{n, k} \cdot\left(P_{k-1, k-1}+P_{n-k, m-k}\right)
\end{aligned}
\]

\section*{Partial Quicksort}

Average number of comparisons \(P_{n, m}\) to sort the \(m\) smallest elements:
\[
\begin{aligned}
P_{n, m}=n-1+ & \sum_{k=m+1}^{n} \pi_{n, k} \cdot P_{k-1, m} \\
& \quad+\sum_{k=1}^{m} \pi_{n, k} \cdot\left(P_{k-1, k-1}+P_{n-k, m-k}\right)
\end{aligned}
\]

But \(P_{n, n}=Q_{n}=2(n+1) H_{n}-4 n\) !

\section*{Partial Quicksort}

The recurrence for \(P_{n, m}\) is the same as for quickselect but the toll function is
\[
n-1+\sum_{0 \leq k<m} \pi_{n, k} Q_{k}
\]

\section*{Partial Quicksort}

The recurrence for \(P_{n, m}\) is the same as for quickselect but the toll function is
\[
n-1+\sum_{0 \leq k<m} \pi_{n, k} Q_{k}
\]

For \(\pi_{n, k}=1 / n\), the solution is
\[
\begin{aligned}
P_{n, m}=2 n+2(n+1) & H_{n} \\
& -2(n+3-m) H_{n+1-m}-6 m+6
\end{aligned}
\]

\section*{Partial Quicksort}

\section*{Partial quicksort makes}
\[
2 m-4 H_{m}+2
\]
comparisons less than "quickselsort"

\section*{Partial Quicksort}

Partial quicksort makes
\[
2 m-4 H_{m}+2
\]
comparisons less than "quickselsort"
- It makes \(m / 3-5 H_{m} / 6+1 / 2\) exchanges less than "quickselsort"

\section*{Partial Quicksort}
- Partial quicksort makes
\[
2 m-4 H_{m}+2
\]
comparisons less than "quickselsort"
6 It makes \(m / 3-5 H_{m} / 6+1 / 2\) exchanges less than "quickselsort"
"Quickselsort" forgets the position of the pivots used for the selection of the \(m\)-th to the left of \(m\); partial quicksort leaves these at their correct positions and does not compare them against other elements afterwards```

