Updating K-d Trees

Amalia Duch
Conrado Martinez

Univ. Palitéenica de Catalunya, Spain

@ Introduction

o A relaxed K-d tree is a variant of K-d trees
(Bentley, 1973), where each node stores a random
diseriminant 7, 0 <1 < K

o A relaxed K-d tree is a variant of K-d trees
(Benttley, 1973), where each Nnode stores a random
diseriminant 7,0 < i < K

e They were introduced By Duch, Estivill-castro and
Martinez (1998) and sussequently analyzed By
Martinez, Panholzer and Prodinaer (200D, gy Duch
and Martinez (20023a, 200728, and By Broutin,
Dalal, Devroye and Mcleish (2006)

S

e Relaxation allows insertions at arsitrary positions

e Relaxation allows insertions at arsitrary positions

o Surtree sizes can Be used tO Guarantee
randomness under areitrary insertions or
deletions, hence we can provide Guarantees on
expected performance

e Relaxation allows insertions at arsitrary positions

o Surtree sizes can Be used tO Guarantee
randomness under areitrary insertions or
deletions, hence we can provide Guarantees on
expected performance

o The averace performance Of associative Queries
(e.@., partial match, orthogonal rance search,
nearest Neicgheors) is sliahtly worse than standard
K-d trees

struct node {
Elem key;
int discr, size;
nodex* left, * right;
};
typedef node* rkdt;

Insertion in relaxed K-d trees

rkdt insert(rkdt t, const Elem& x) {

int n = size(t);
int u = random(0,n);
if (u == n)

return insert_at_root(t, x);
else { // t cannot be empty

int i = t -> discr;

if (x[i] < t -> key[il])

t -> left = insert(t -> left, x);

else
t -> right = insert(t -> right,
return t;

x);

Deletion in relaxed K-d trees

rkdt

delete(rkdt t, const Elem& x) {

if (t == NULL) return NULL;
if (t -> key == x)

return delete_root(t);
int i = t -> discr;

if (x -> key[i]l < t -> key[il])

t -> left = delete(t -> left, x);
else

t -> right = delete(t -> right, x);
return t;

e Updatina with split and join

Insertion at root

rkdt insert_at_root (rkdt t,

const Elem& x)

rkdt r = new node;

r -> info = x;

r -> discr = random(0, K-1);
pair<rkdt, rkdt> p = split(t, r);
r -> left = p.first;

r -> right =
return r;

p.second;

Split

pair<rkdt,

rkdt> split(rkdt t, rkdt r) {

if (t == NULL) return make_pair (NULL, NULL);
int i = r -> discr; int j = t -> discr;
if (i == j) {
// Case I
} else {
// Case II
¥

Split: Case |

if (i == j) {
if (r -> key[i] < t -> key[i]) {
pair<rkdt ,rkdt> p = split(t -> left, r);
t -> left = p.second;
return make_pair(p.first, t);
} else {
pair<rkdt, rkdt> p = split(t -> right, r);
t -> right = p.first;
return make_pair(t, p.second);
}
} else {

}

Split: Case |l

if (i == j) {

} else {
pair<rkdt, rkdt> L =
pair<rkdt, rkdt> R =

if (r -> key[i] < ¢t

split(t -> left, r);
split(t -> right, r);
-> key[il) {

t -> left = L.second;

t -> right = R.second;

return make_pair(join(L.first, R.first, j),
} else {

t -> left= L.first;

t -> right = R.first;

return make_pair(t,

}

join(L.second, R.second,

®) g

i));

Deletion in relaxed K-d trees

rkdt

delete(rkdt t, const Elem& x) {

if (t == NULL) return NULL;
int i = t -> discr;
if (t -> key == x)

return join(t -> left, t -> right,
if (x -> key[i]l < t -> key[il])

t -> left = delete(t -> left, x);
else

t -> right = delete(t -> right, x);

return t;

i);

Joining two trees

rkdt join(rkdt L, rkdt R, int i) {

if (L == NULL) return R;

if (R == NULL) return L;

// L '= NULL and R != NULL

int m = size(L); int n = size(R);
int u = random(0, m+n-1);

if (u < m) // with probability m / (m + n)
// the joint root is that of L

else // with probability n / (m + n)
// the joint root is that of R

© Analysis of split and join

@ 5, = ava. NUMBer Of visited Nodes IN a split

@ 5, = ava. NUMBer Of visited Nodes IN a split
® M, = ava. Numier Of visited nodes in a join

Sy = 8VG. NUMBRer Of visited Nnodes in a split
m, = 8Va. NuWRer Of visited nodes in a join

j+1
n = Z n—i—lj Zs]

0<J<n 0<y<n

Z Tn,; My,

0<y<n

where m, ; is prog,agility of joinina two trees with
total size j.

o The recurrence for s, is

AR -

7+1
Sn = sj +
0<J<n n+1
2K — 1)
0<j<n

with sg = 0.

—J

n
+ nK Z n—i—lm

n

7

o The recurrence for s, is

jrl, 2AK-1)
o Y PP Ly P DI
0<J<n 0<5<n
2(K —1) n—j
D =
nK 0§j<nn+1

with sg = 0.

e The recurrence for m, has exactly the same shape
with the réles of s, and m, interchanaed; it easily
follows that s, = m,.

o Detine

n>0

o Detine

S(z) = Z 5p2"

n>0
o The recurrence for s, translates to

J#5 1 2ds
dz2 1—2 dz
K -2 2
()

K 1-2)2 (1-2)3

with initial conditions S(0) =0 and S'(0) = 1.

o The homoaeneous second order linear ODE is of
hyperaeomertric type.

o The homoaeneous second order linear ODE is of
hyperaeomertric type.

e An easy particular solution of the ODE is

_1<K> L
2\K—-1)1-2

Theorem
The generating function S(z) of the expected cost of
split is, for any K > 2,
) 1
z —
1-2

1 1 o l1-0,2 -«
S(Z)— 5@ |:(1—Z) -ZF]_(9

where o = a(K) =} (1+4/17-).

7

x|

Theorem

The expected cost s, Of splitting a relaxed K-d tree of

size n is

with

sn = (K)n¥") 1 o(n),

1.0—

10 20 30 40 50 60 70 80 90 100

Plot of ¢(K)

8(2) = 1 < (K) < ¢(c0) = (/1T — 1)/2 ~ 1.5615, K > 2

Ly
o
|

0.9

0.8

0.7

0.6

10 20 30 40 50 60 70 80 90 100

Plot of n(K)

n(2) = 1> n(K) > n(oc0) ~ 0.5107, K >2

Q@ Coryrased updates

Modified standard insertion

// inserts the tree z in the appropriate leaf of T
rkdt insert_std(rkdt T, rkdt z) {

if (T == NULL) returmn z;
else {
int i = T -> discr;

if (z -> key[i]l < T -> key[i])

T -> left = insert(T -> left, z);
else

T -> right = insert(T -> right, z);
return T;

Copy-rased insertion (N

rkdt insert_at_root(rkdt T, const Elem& x) {
rkdt result = new node(x, random(0, K-1));
int i = result -> discr;
queue<rkdt> Q;
Q.push(T);
while (!Q.empty()) {
rkdt z = Q.pop(); if (z == NULL) continue;

result = insert_std(result, z);

}

return result;

Copy-rased insertion ()

if (z -> discr !'= i) {
Q.push(z -> left);
Q.push(z -> right);
z -> left = z -> right = NULL;
} else {
if (x[i]l < z -> key[i]) {
Q.push(z -> left);
z -> left = NULL;
} else {
Q.push(z -> right);
z -> right = NULL;

Copy-Based deletion

rkdt delete_root (rkdt T) {

Elem x = T -> key;

int i = T -> discr;

queue<rkdt> QL, QR;

rkdt result = NULL;

QL.push(T -> left); QR.push(T -> right);

while (!'QL.empty() && !QR.empty()) {
rkdt U = QL.front(); rkdt V = QR.front();
int m = size(U); int n = size(V);
if (random(0,m+n-1) < m) {

QL .pop () ;

result = insert_std(result, U);
} else {

}
}

return result;

© Analysis of copy-eased updates

The cost of ruildinag T usina copy-Rased insertion:

L] +1
T +

e =1+ (

w (i (P + C(L)))

%)+ C(R)))

K (P(L) + P(R)+ C(L) + C(R)),

where P(T) denotes the numrer of nodes visited By a
partial match in a random tree T

—
o=y e L2 2etm
+ 2L ow) + ey,

K

The cost of making an insertion at root into a tree
of size n:
2 k+1 20K -1
nR e, T n 0<k<n
with P, the expected cost of a partial match in a
random relaxed K-d tree of size n with only one
specified coordinate out of K coordinates

Theorem ((Duch et al. 1998, Martinez et al. 200

The expected cost P, (measured as the numeer of key
comparisons) of a partial match Query with s out of K
attrirutes specified, 0 < s < K, in a randomly Buitt
relaxed K-d tree of size n is

P, = B(s/K) - nfF) 4+ 0(1),
where

p=p(z)=(Vo-82-1)/2

B I'2p+1)
PE) = T+ D (v 1)’

and I'(z) is Euler’'s Gamma function.

We will use R.oura’s Continuous Master Theorem to
solve recurrences of the form:

EF,=t,+ Z Wy ; F, n > No,
0<j<n

where t, is the so-called toll function and the
Quantities w,; > 0 are called weiahts

Theorem (Continuous master theorem, R.oura
200D

Let t, ~ Cn%log®n for some constants C, a > 0 and
b> —1,and let w(z) Be a real function over [0,1] such

that

(F+1)/n

Z 'wn,j—/ w(z)dz
0<j<n im

=0(n?)

for some constant d > 0. Let ¢(z) = [2° w(z)dz, and
define H =1— ¢(a). Then
QI#H>0then F, ~t, /H.
Q I# H=0+then F, ~t,lnn/H' where
H' = —(b+1) fy 2% Inzw(z)dz.
Q I# H <0 then F, = ©(n%), where a is the unique real
solution of ¢(z) = 1.

<

Applying the CMT 10 our recurrence we have

o w(z) =%+ 72(12_1)

o tn=P, — a=p=p(1/K)=(/I-8/K —1)/2
Thus H=0

Applying the CMT 10 our recurrence we have

o w(z) =%+ 2(I§<_1)

ot,=P, — a=p=p(1/K)=(/9-8/K —1)/2
Thus H =0
We have to compute H' with b =0

1
H =—(b+ 1)/ 2°w(z)Inzdz
0

and et
, 2Kg2 + (4K —2)p+4K —3

T Kot 220+ 12

Theorem

The averace cost C, Of copy-Based insertion at root
of a random relaxed K-d tree is

Cn =7 -n°lnn+o(nlnn),

where
o= oK)= p(1/K) = (/o-8/K -1) 2,
_ BU/K) _ T(20+1)K(e+2)*(e+1)
T3 2(1— 2)[3(o + 1)(Kg® + (4K — 2)o + (4K — 3))|

The averaae cost C), of copy-rased deletion of the
root of a random relaxed K-d tree of size n+1is C,.

@ The cost of insertions and deletions

o The recurrence for the expected cost of an
insertion is

Z, 1 2 J+1
I, = 1— —— =
" n—|—1+(n+1)< nz<n+1>
1 2 j+1
— L.
(n)+n+1 Z n+1"7

0<5<n

:n+1

with Z,, the average cost of an insertion at root

o The expected cost of deletions satisfies a similar
recurrence; it is asywmptotically equivalent to the
averace cost of insertions

o We supstitute 7, By the costs ortained previously
and apply the CMT to solve

Theorem
Let I, and D,, denote the averace cost of a
randomized insertion and randomized deletion in a
random relaxed K-d tree of size n using split and join
Then

Qif K=2then I, ~ D, =4lnn+ O(1).

Q if K > 2then

¢p—1

I, ~ D, = T —n? 14 oo n),
Uy O(logn)

where Z, = nn® + O(1).

Theorem
Let I, and D,, denote the averace cost of a
randomized insertion and randomized deletion in a
random relaxed K-d tree of size n using split and join
Then

Qif K=2then I, ~ D, =4Inn+ O(1).

Q if K > 2 then

¢p—1

I, ~D,= nmn‘p_l + O(log n),

where Z, = nn® + O(1).

Note that for K > 2, ¢(K) > 1!

Theorem

For any fixed dimension K > 2, the average cost of a
randomized insertion or deletion in random relaxed
K-d tree of size n using copy-Rased updates is

I, ~ D, =2lnn+ 6(1).

Theorem

For any fixed dimension K > 2, the average cost of a
randomized insertion or deletion in random relaxed
K-d tree of size n using copy-rased updates is

I, ~ D, =2Ilnn+ 6(1).

The "reconstruction” phase has constant cost on the
averaace!

Summary:

e Updatina with split and join is only practical for
K = 2 despite the alaorithms are elegant and
simple; But their use induces expected cost O(n?)
with ¢ > 1 for insertions and deletions in higher
dimensions

Summary:

e Updatina with split and join is only practical for
K = 2 despite the alaorithms are elegant and
simple; But their use induces expected cost O(n?)
with ¢ > 1 for insertions and deletions in higher
dimensions

e Copy-rased updates are also simple and practical,
yielding expected loaarithmic cost of insertions and
deletions for any fixed dimension K

Summary:

e Updatina with split and join is only practical for
K = 2 despite the algorithms are elecant and
simple; But their use induces expected cost O(n?)
with ¢ > 1 for insertions and deletions in higher
dimensions

e Copy-rased updates are also simple and practical,
yielding expected loaarithmic cost of insertions and
deletions for any fixed dimension K

o The optimization of copy-Based updates does only
apply to relaxed K-d trees; without the
optimization it yields insertions and deletions with
expect cost O(log?n)

Summary:

e Updatina with split and join is only practical for
K = 2 despite the alaorithms are elegant and
simple; But their use induces expected cost O(n?)
with ¢ > 1 for insertions and deletions in higher
dimensions

e Copy-rased updates are also simvple and practical,
yielding expected loaarithmic cost of insertions and
deletions for any fixed dimension K

o The optimization of copy-Based updates does only
apply to relaxed K-d trees; without the
optimization it yields insertions and deletions with
expect cost O(log?n)

o Logarithmic time for insertions and deletions had

only Been achieved refore using rather complex
schemes (ea. pseudo K-d trees, divided K-d trees)

	Introduction
	Updating with split and join
	Analysis of split and join
	Copy-based updates
	Analysis of copy-based updates
	The cost of insertions and deletions

