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A relaxed K-d tree is a variant of K-d trees

(Bentley, 1975), where each node stores a random

discriminant i, 0 � i < K

They were introduced by Duch, Estivill-castro and

Martínez (1998) and subsequently analyzed by

Martínez, Panholzer and Prodinger (2001), by Duch

and Martínez (2002a, 2002b), and by Broutin,

Dalal, Devroye and McLeish (2006)
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Relaxation allows insertions at arbitrary positions

Subtree sizes can be used to guarantee

randomness under arbitrary insertions or

deletions, hence we can provide guarantees on

expected performance

The average performance of associative queries

(e.g., partial match, orthogonal range search,

nearest neighbors) is slightly worse than standard

K-d trees
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struct node {
Elem key;
int discr , size;
node* left , * right;

};
typedef node* rkdt;

Insertion in relaxed K-d trees

rkdt insert(rkdt t, const Elem& x) {

int n = size(t);

int u = random(0,n);

if (u == n)

return insert_at_root(t, x);

else { // t cannot be empty

int i = t -> discr;

if (x[i] < t -> key[i])

t -> left = insert(t -> left , x);

else

t -> right = insert(t -> right , x);

return t;

}

}



Deletion in relaxed K-d trees

rkdt delete(rkdt t, const Elem& x) {

if (t == NULL) return NULL;

if (t -> key == x)

return delete_root(t);

int i = t -> discr;

if (x -> key[i] < t -> key[i])

t -> left = delete(t -> left , x);

else

t -> right = delete(t -> right , x);

return t;

}
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Insertion at root

rkdt insert_at_root(rkdt t, const Elem& x) {

rkdt r = new node;

r -> info = x;

r -> discr = random(0, K-1);

pair <rkdt , rkdt > p = split(t, r);

r -> left = p.first;

r -> right = p.second;

return r;

}



Split

pair <rkdt , rkdt > split(rkdt t, rkdt r) {

if (t == NULL) return make_pair(NULL , NULL);

int i = r -> discr; int j = t -> discr;

if (i == j) {

// Case I

...

} else {

// Case II

...

}

}



Split: Case I

if (i == j) {

if (r -> key[i] < t -> key[i]) {

pair <rkdt ,rkdt > p = split(t -> left , r);

t -> left = p.second;

return make_pair(p.first , t);

} else {

pair <rkdt , rkdt > p = split(t -> right , r);

t -> right = p.first;

return make_pair(t, p.second );

}

} else { // i != j

...

}
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Split: Case II

if (i == j) {

...

} else { // i != j

pair <rkdt , rkdt > L = split(t -> left , r);

pair <rkdt , rkdt > R = split(t -> right , r);

if (r -> key[i] < t -> key[i]) {

t -> left = L.second;

t -> right = R.second;

return make_pair(join(L.first , R.first , j), t);

} else {

t -> left= L.first;

t -> right = R.first;

return make_pair(t, join(L.second , R.second , j));

}

}
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Deletion in relaxed K-d trees

rkdt delete(rkdt t, const Elem& x) {

if (t == NULL) return NULL;

int i = t -> discr;

if (t -> key == x)

return join(t -> left , t -> right , i);

if (x -> key[i] < t -> key[i])

t -> left = delete(t -> left , x);

else

t -> right = delete(t -> right , x);

return t;

}



Joining two trees

rkdt join(rkdt L, rkdt R, int i) {

if (L == NULL) return R;

if (R == NULL) return L;

// L != NULL and R != NULL

int m = size(L); int n = size(R);

int u = random(0, m+n-1);

if (u < m) // with probability m / (m + n)

// the joint root is that of L

...

else // with probability n / (m + n)

// the joint root is that of R

}
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sn = avg. number of visited nodes in a split

mn = avg. number of visited nodes in a join

sn = 1 +
2

nK
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X
0�j<n

�n;jmj ;

where �n;j is probability of joining two trees with

total size j .



sn = avg. number of visited nodes in a split

mn = avg. number of visited nodes in a join

sn = 1 +
2

nK

X
0�j<n

j + 1

n+ 1
sj +

2(K � 1)

nK

X
0�j<n

sj

+
K � 1

K

X
0�j<n

�n;jmj ;

where �n;j is probability of joining two trees with

total size j .



sn = avg. number of visited nodes in a split

mn = avg. number of visited nodes in a join

sn = 1 +
2

nK

X
0�j<n

j + 1

n+ 1
sj +

2(K � 1)

nK

X
0�j<n

sj

+
K � 1

K

X
0�j<n

�n;jmj ;

where �n;j is probability of joining two trees with

total size j .



The recurrence for sn is
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The recurrence for mn has exactly the same shape

with the rôles of sn and mn interchanged; it easily

follows that sn = mn .
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Theorem

The generating function S(z) of the expected cost of

split is, for any K � 2,

S(z) =
1

2

1

1� 1
K

�
(1� z)�� � 2F1

�
1� �; 2� �

2

���� z
�
� 1

1� z

�
;

where � = �(K) = 1
2

�
1 +

q
17� 16

K

�
.



Theorem

The expected cost sn of splitting a relaxed K-d tree of

size n is

sn = �(K)n�(K) + o(n);

with

� =
1

2

1

1� 1
K

�(2�� 1)

��3(�)
;

� = �� 1 =
1

2

0
@
s
17� 16

K
� 1
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Modified standard insertion

// inserts the tree z in the appropriate leaf of T

rkdt insert_std(rkdt T, rkdt z) {

if (T == NULL) return z;

else {

int i = T -> discr;

if (z -> key[i] < T -> key[i])

T -> left = insert(T -> left , z);

else

T -> right = insert(T -> right , z);

return T;

}

}



Copy-based insertion (1)

rkdt insert_at_root(rkdt T, const Elem& x) {

rkdt result = new node(x, random(0, K-1));

int i = result -> discr;

queue <rkdt > Q;

Q.push(T);

while (!Q.empty ()) {

rkdt z = Q.pop (); if (z == NULL) continue;

// insert one or both subtrees of z

// back to Q

result = insert_std(result , z);

}

return result;

}



Copy-based insertion (2)

...

if (z -> discr != i) {

Q.push(z -> left);

Q.push(z -> right);

z -> left = z -> right = NULL;

} else {

if (x[i] < z -> key[i]) {

Q.push(z -> left);

z -> left = NULL;

} else {

Q.push(z -> right);

z -> right = NULL;

}

}

...



Copy-based deletion

rkdt delete_root(rkdt T) {

Elem x = T -> key;

int i = T -> discr;

queue <rkdt > QL, QR;

rkdt result = NULL;

QL.push(T -> left); QR.push(T -> right);

while (!QL.empty() && !QR.empty ()) {

rkdt U = QL.front (); rkdt V = QR.front ();

int m = size(U); int n = size(V);

if (random(0,m+n-1) < m) {

QL.pop();

// insert U (and eventually one of

// its subtrees) into the current result;

// insert one or two subtrees of U back into

// QL

result = insert_std(result , U);

} else {

// symmetric code with QR and V

}

}

return result;

}
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The cost of building T using copy-based insertion:

C(T ) = 1 +
1

K

� jLj+ 1

jT j+ 1
(P (L) + C(L))

�

+
1

K

� jRj+ 1

jT j+ 1
(P (R) + C(R))

�

+
K � 1

K
(P (L) + P (R) + C(L) + C(R)) ;

where P (T ) denotes the number of nodes visited by a

partial match in a random tree T
=)

C(T ) = P (T ) +
1

K

jLj+ 1

jT j+ 1
C(L) +

1

K

jRj+ 1

jT j+ 1
C(R)

+
K � 1

K
(C(L) + C(R)) ;



The cost of making an insertion at root into a tree

of size n:

Cn = Pn +
2

nK

X
0�k<n

k + 1

n+ 1
Ck +

2(K � 1)

nK

X
0�k<n

Ck:

with Pn the expected cost of a partial match in a

random relaxed K-d tree of size n with only one

specified coordinate out of K coordinates



Theorem ((Duch et al. 1998, Martínez et al. 2001))

The expected cost Pn (measured as the number of key

comparisons) of a partial match query with s out of K
attributes specified, 0 < s < K , in a randomly built

relaxed K-d tree of size n is

Pn = �(s=K) � n�(s=K) +O(1);

where

� = �(x) =
�p

9� 8x� 1
�
=2;

�(x) =
�(2�+ 1)

(1� x)(�+ 1)�3 (�+ 1)
;

and �(x) is Euler’s Gamma function.



We will use Roura’s Continuous Master Theorem to

solve recurrences of the form:

Fn = tn +
X

0�j<n

wn;jFj ; n � n0;

where tn is the so-called toll function and the

quantities wn;j � 0 are called weights



Theorem (Continuous master theorem, Roura

2001)

Let tn � Cna logb n for some constants C , a � 0 and

b > �1, and let !(z) be a real function over [0; 1] such

that X
0�j<n

�����wn;j �
Z (j+1)=n

j=n
!(z) dz

����� = O(n�d)

for some constant d > 0. Let �(x) =
R 1
0 z

x !(z) dz, and

define H = 1� �(a). Then

1 If H > 0 then Fn � tn =H.

2 If H = 0 then Fn � tn lnn=H0, where

H0 = �(b+ 1)
R 1
0 z

a ln z !(z) dz .

3 If H < 0 then Fn = �(n�), where � is the unique real

solution of �(x) = 1.



Applying the CMT to our recurrence we have

!(z) = 2z
K + 2(K�1)
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tn = Pn =) a = % = �(1=K) = (
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Applying the CMT to our recurrence we have

!(z) = 2z
K + 2(K�1)

K

tn = Pn =) a = % = �(1=K) = (
p
9� 8=K � 1)=2

Thus H = 0
We have to compute H0 with b = 0

H0 = �(b+ 1)

Z 1

0
za!(z) ln z dz

and get

H0 = 2
K%2 + (4K � 2)%+ 4K � 3

K(%+ 2)2(%+ 1)2
:



Theorem

The average cost Cn of copy-based insertion at root

of a random relaxed K-d tree is

Cn =  � n% lnn+ o(n lnn);

where

% = %(K) = �(1=K) =

�q
9� 8=K � 1

�
=2;

 =
�(1=K)

H0
=

�(2%+ 1)K(%+ 2)2(%+ 1)

2(1� 1
K )�3(%+ 1)(K%2 + (4K � 2)%+ (4K � 3))

:

The average cost C 0
n of copy-based deletion of the

root of a random relaxed K-d tree of size n+ 1 is Cn .
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The recurrence for the expected cost of an

insertion is

In =
In

n+ 1
+

�
1� 1

n+ 1

�0@1 + 2

n

X
0�j<n

j + 1

n+ 1
Ij

1
A

=
In

n+ 1
+ 1 +O

�
1

n

�
+

2

n+ 1

X
0�j<n

j + 1

n+ 1
Ij :

with In the average cost of an insertion at root

The expected cost of deletions satisfies a similar

recurrence; it is asymptotically equivalent to the

average cost of insertions

We substitute In by the costs obtained previously

and apply the CMT to solve



Theorem

Let In and Dn denote the average cost of a

randomized insertion and randomized deletion in a

random relaxed K-d tree of size n using split and join.

Then

1 if K = 2 then In � Dn = 4 lnn+O(1).

2 if K > 2 then

In � Dn = �
�� 1

�+ 1
n��1 +O(logn);

where In = � n� +O(1).



Theorem

Let In and Dn denote the average cost of a

randomized insertion and randomized deletion in a

random relaxed K-d tree of size n using split and join.

Then

1 if K = 2 then In � Dn = 4 lnn+O(1).

2 if K > 2 then

In � Dn = �
�� 1

�+ 1
n��1 +O(logn);

where In = � n� +O(1).

Note that for K > 2, �(K) > 1!



Theorem

For any fixed dimension K � 2, the average cost of a

randomized insertion or deletion in random relaxed

K-d tree of size n using copy-based updates is

In � Dn = 2 lnn+�(1):



Theorem

For any fixed dimension K � 2, the average cost of a

randomized insertion or deletion in random relaxed

K-d tree of size n using copy-based updates is

In � Dn = 2 lnn+�(1):

The “reconstruction” phase has constant cost on the

average!



Summary:

Updating with split and join is only practical for

K = 2 despite the algorithms are elegant and

simple; but their use induces expected cost �(n�)
with � > 1 for insertions and deletions in higher

dimensions

Copy-based updates are also simple and practical,

yielding expected logarithmic cost of insertions and

deletions for any fixed dimension K

The optimization of copy-based updates does only

apply to relaxed K-d trees; without the

optimization it yields insertions and deletions with

expect cost �(log2 n)

Logarithmic time for insertions and deletions had

only been achieved before using rather complex

schemes (e.g. pseudo K-d trees, divided K-d trees)
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