The Hiring Problem

Conrado Martínez
U. Politècnica Catalunya
Joint work with M. Archibald

July 2010
Univ. Cape Town, South Africa

The hiring problem

- The hiring problem is a simple model of decision-making under uncertainty
- It is closely related to the well-known Secretary Problem:
" A sequence of n candidates is to be interviewed to fill a post. For each interviewed candidate we only learn about his/her relative rank among the candidates we've seen so far. After each interview, hire and finish, or discard and interview a new candidate. The nth candidate must be hired if we have reached that far.
The goal: devise an strategy that maximizes the probability of hiring the best of the n candidates."

The hiring problem

- Originally introduced by Broder et al. (SODA 2008)
- The candidates are modellized by a (potentially infinite) sequence of i.i.d. random variables Q_{i} uniformly distributed in $[0,1]$
- At step i you either hire or discard candidate i with score Q_{i}
- Decisions are irrevocable
- Goals: hire candidates at some reasonable rate, improve the "mean" quality of the company's staff

The hiring problem

- Our model: a permutation σ of length n, candidate i has score $\sigma(i)$; the permutation is actually presented as a sequence of unknown length $S=s_{1}, s_{2}, s_{3}, \ldots$ with $1 \leq s_{i} \leq i+1, s_{i}$ is the rank of the ith candidate relative to the candidates seen so far (i included)

Example

$$
\begin{aligned}
\sigma & =62817435 \\
\sigma^{\prime} & = \\
S & =
\end{aligned}
$$

The hiring problem

- Our model: a permutation σ of length n, candidate i has score $\sigma(i)$; the permutation is actually presented as a sequence of unknown length $S=s_{1}, s_{2}, s_{3}, \ldots$ with $1 \leq s_{i} \leq i+1, s_{i}$ is the rank of the ith candidate relative to the candidates seen so far (i included)

Example

$$
\begin{aligned}
\sigma & =62817435 \\
\sigma^{\prime} & =1 \\
S & =1
\end{aligned}
$$

The hiring problem

- Our model: a permutation σ of length n, candidate i has score $\sigma(i)$; the permutation is actually presented as a sequence of unknown length $S=s_{1}, s_{2}, s_{3}, \ldots$ with $1 \leq s_{i} \leq i+1, s_{i}$ is the rank of the ith candidate relative to the candidates seen so far (i included)

Example

$$
\begin{aligned}
\sigma & =62817435 \\
\sigma^{\prime} & =21 \\
S & =11
\end{aligned}
$$

The hiring problem

- Our model: a permutation σ of length n, candidate i has score $\sigma(i)$; the permutation is actually presented as a sequence of unknown length $S=s_{1}, s_{2}, s_{3}, \ldots$ with $1 \leq s_{i} \leq i+1, s_{i}$ is the rank of the ith candidate relative to the candidates seen so far (i included)

Example

$$
\begin{aligned}
\sigma & =62817435 \\
\sigma^{\prime} & =213 \\
S & =113
\end{aligned}
$$

The hiring problem

- Our model: a permutation σ of length n, candidate i has score $\sigma(i)$; the permutation is actually presented as a sequence of unknown length $S=s_{1}, s_{2}, s_{3}, \ldots$ with $1 \leq s_{i} \leq i+1, s_{i}$ is the rank of the ith candidate relative to the candidates seen so far (i included)

Example

$$
\begin{aligned}
\sigma & =62817435 \\
\sigma^{\prime} & =3241 \\
S & =1131
\end{aligned}
$$

The hiring problem

- Our model: a permutation σ of length n, candidate i has score $\sigma(i)$; the permutation is actually presented as a sequence of unknown length $S=s_{1}, s_{2}, s_{3}, \ldots$ with $1 \leq s_{i} \leq i+1, s_{i}$ is the rank of the ith candidate relative to the candidates seen so far (i included)

Example

$$
\begin{aligned}
\sigma & =62817435 \\
\sigma^{\prime} & =32514 \\
S & =11314
\end{aligned}
$$

The hiring problem

- Our model: a permutation σ of length n, candidate i has score $\sigma(i)$; the permutation is actually presented as a sequence of unknown length $S=s_{1}, s_{2}, s_{3}, \ldots$ with $1 \leq s_{i} \leq i+1, s_{i}$ is the rank of the ith candidate relative to the candidates seen so far (i included)

Example

$$
\begin{aligned}
\sigma & =62817435 \\
\sigma^{\prime} & =426153 \\
S & =113143
\end{aligned}
$$

The hiring problem

- Our model: a permutation σ of length n, candidate i has score $\sigma(i)$; the permutation is actually presented as a sequence of unknown length $S=s_{1}, s_{2}, s_{3}, \ldots$ with $1 \leq s_{i} \leq i+1, s_{i}$ is the rank of the ith candidate relative to the candidates seen so far (i included)

Example

$$
\begin{aligned}
\sigma & =62817435 \\
\sigma^{\prime} & =5271643 \\
S & =1131433
\end{aligned}
$$

The hiring problem

- Our model: a permutation σ of length n, candidate i has score $\sigma(i)$; the permutation is actually presented as a sequence of unknown length $S=s_{1}, s_{2}, s_{3}, \ldots$ with $1 \leq s_{i} \leq i+1, s_{i}$ is the rank of the ith candidate relative to the candidates seen so far (i included)

Example

$$
\begin{aligned}
\sigma & =62817435 \\
\sigma^{\prime} & =62817435 \\
S & =11314335
\end{aligned}
$$

Rank-based hiring

A hiring strategy is rank-based if and only if it only depends on the relative rank of the current candidate compared to the candidates seen so far.

Rank-based hiring

- Rank-based strategies modelize actual restrictions to measure qualities
- Many natural strategies are rank-based, e.g.,
- above the best
- above the m th best
- above the median
- above the $P \%$ best
- Assume only relative ranks of candidates are known, like the standard secretary problem
- Some hiring strategies are not rank-based, e.g., above the average, above a threshold.

Intermezzo: A crash course on generating functions and the symbolic method

Two basic counting principles

Let \mathcal{A} and \mathcal{B} be two finite sets.
The Addition Principle
If \mathcal{A} and \mathcal{B} are disjoint then

$$
|\mathcal{A} \cup \mathcal{B}|=|\mathcal{A}|+|\mathcal{B}|
$$

The Multiplication Principle

$$
|\mathcal{A} \times \mathcal{B}|=|\mathcal{A}| \times|\mathcal{B}|
$$

Combinatorial classes

Definition

A combinatorial class is a pair $(\mathcal{A},|\cdot|)$, where \mathcal{A} is a finite or denumerable set of values (combinatorial objects, combinatorial structures), $|\cdot|: \mathcal{A} \rightarrow \mathbb{N}$ is the size function and for all $n \geq 0$

$$
\mathcal{A}_{n}=\{x \in \mathcal{A}| | x \mid=n\} \quad \text { is finite }
$$

Combinatorial classes

Example

- $\mathcal{A}=$ all finite strings from a binary alphabet;
$|s|=$ the length of string s
- $\mathcal{B}=$ the set of all permutations;
$|\sigma|=$ the order of the permutation σ
- $\mathcal{C}_{n}=$ the partitions of the integer $n ;|p|=n$ if $p \in \mathcal{C}_{n}$

Labelled and unlabelled classes

- In unlabelled classes, objects are made up of indistinguisable atoms; an atom is an object of size 1
- In labelled classes, objects are made up of distinguishable atoms; in an object of size n, each of its n atoms bears a distinct label from $\{1, \ldots, n\}$

Counting generating functions

Definition

Let $a_{n}=\# \mathcal{A}_{n}=$ the number of objects of size n in \mathcal{A}. Then the formal power series

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}=\sum_{\alpha \in \mathcal{A}} z^{|\alpha|}
$$

is the (ordinary) generating function of the class \mathcal{A}.
The coefficient of z^{n} in $A(z)$ is denoted $\left[z^{n}\right] A(z)$:

$$
\left[z^{n}\right] A(z)=\left[z^{n}\right] \sum_{n \geq 0} a_{n} z^{n}=a_{n}
$$

Counting generating functions

Ordinary generating functions (OGFs) are mostly used to enumerate unlabelled classes.

Example

$$
\begin{aligned}
\mathcal{L} & =\left\{w \in(0+1)^{*} \mid w \text { does not contain two consecutive } 0^{\prime} \text { 's }\right\} \\
& =\{\epsilon, 0,1,01,10,11,010,011,101,110,111, \ldots\} \\
L(z) & =z^{|\epsilon|}+z^{|0|}+z^{|1|}+z^{|01|}+z^{|10|}+z^{|11|}+\cdots \\
& =1+2 z+3 z^{2}+5 z^{3}+8 z^{4}+\cdots
\end{aligned}
$$

Exercise: Can you guess the value of $L_{n}=\left[z^{n}\right] L(z)$?

Counting generating functions

Definition

Let $a_{n}=\# \mathcal{A}_{n}=$ the number of objects of size n in \mathcal{A}. Then the formal power series

$$
\hat{A}(z)=\sum_{n \geq 0} a_{n} \frac{z^{n}}{n!}=\sum_{\alpha \in \mathcal{A}} \frac{z^{|\alpha|}}{|\alpha|!}
$$

is the exponential generating function of the class \mathcal{A}.

Counting generating functions

Exponential generating functions (EGFs) are used to enumerate labelled classes.

Example

$$
\begin{aligned}
C & =\text { circular permutations } \\
= & \{\epsilon, 1,12,123,132,1234,1243,1324,1342, \\
& 1423,1432,12345, \ldots\} \\
\hat{C}(z) & =\frac{1}{0!}+\frac{z}{1!}+\frac{z^{2}}{2!}+2 \frac{z^{3}}{3!}+6 \frac{z^{4}}{4!}+\cdots \\
c_{n}= & n!\cdot\left[z^{n}\right] \hat{C}(z)=(n-1)!, \quad n>0
\end{aligned}
$$

Disjoint union

Let $\mathcal{C}=\mathcal{A}+\mathcal{B}$, the disjoint union of the unlabelled classes \mathcal{A} and $\mathcal{B}(\mathcal{A} \cap \mathcal{B}=\emptyset)$. Then

$$
C(z)=A(z)+B(z)
$$

And

$$
c_{n}=\left[z^{n}\right] C(z)=\left[z^{n}\right] A(z)+\left[z^{n}\right] B(z)=a_{n}+b_{n}
$$

Cartesian product

Let $\mathcal{C}=\mathcal{A} \times \mathcal{B}$, the Cartesian product of the unlabelled classes \mathcal{A} and \mathcal{B}. The size of $(\alpha, \beta) \in \mathcal{C}$, where $a \in \mathcal{A}$ and $\beta \in \mathcal{B}$, is the sum of sizes: $|(\alpha, \beta)|=|\alpha|+|\beta|$.
Then

$$
C(z)=A(z) \cdot B(z)
$$

Proof.

$$
\begin{aligned}
C(z) & =\sum_{\gamma \in \mathcal{C}} z^{|\gamma|}=\sum_{(\alpha, \beta) \in \mathcal{A} \times \mathcal{B}} z^{|\alpha|+|\beta|}=\sum_{\alpha \in \mathcal{A}} \sum_{\beta \in \mathcal{B}} z^{|\alpha|} \cdot z^{|\beta|} \\
& =\left(\sum_{\alpha \in \mathcal{A}} z^{|\alpha|}\right) \cdot\left(\sum_{\beta \in \mathcal{B}} z^{|\mathcal{\beta}|}\right)=A(z) \cdot B(z)
\end{aligned}
$$

Cartesian product

The nth coefficient of the OGF for a Cartesian product is the convolution of the coefficients $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$:

$$
\begin{aligned}
c_{n} & =\left[z^{n}\right] C(z)=\left[z^{n}\right] A(z) \cdot B(z) \\
& =\sum_{k=0}^{n} a_{k} b_{n-k}
\end{aligned}
$$

Sequences

Let \mathcal{A} be a class without any empty object $\left(\mathcal{A}_{0}=\emptyset\right)$. The class $\mathcal{C}=\operatorname{Seq}(\mathcal{A})$ denotes the class of sequences of \mathcal{A} 's.

$$
\begin{aligned}
\mathcal{C} & =\left\{\left(\alpha_{1}, \ldots, \alpha_{k}\right) \mid k \geq 0, \alpha_{i} \in \mathcal{A}\right\} \\
& =\{\epsilon\}+\mathcal{A}+(\mathcal{A} \times \mathcal{A})+(\mathcal{A} \times \mathcal{A} \times \mathcal{A})+\cdots=\{\epsilon\}+\mathcal{A} \times \mathcal{C}
\end{aligned}
$$

Then

$$
C(z)=\frac{1}{1-A(z)}
$$

Proof.

$$
C(z)=1+A(z)+A^{2}(z)+A^{3}(z)+\cdots=1+A(z) \cdot C(z)
$$

Labelled objects

Disjoint unions of labelled classes are defined as for unlabelled classes and $\hat{C}(z)=\hat{A}(z)+\hat{B}(z)$, for $\mathcal{C}=\mathcal{A}+\mathcal{B}$. Also, $c_{n}=a_{n}+b_{n}$.

To define labelled products, we must take into account that for each pair (α, β) where $|\alpha|=k$ and $|\alpha|+|\beta|=n$, we construct $\binom{n}{k}$ distinct pairs by consistently relabelling the atoms of α and β :

$$
\begin{aligned}
\alpha= & (2,1,4,3), \quad \beta=(1,3,2) \\
\alpha \times \beta= & \{(2,1,4,3,5,7,6),(2,1,5,3,4,7,6), \ldots, \\
& (5,4,7,6,1,3,2)\} \\
\#(\alpha \times \beta)= & \binom{7}{4}=35
\end{aligned}
$$

The size of an element in $\alpha \times \beta$ is $|\alpha|+|\beta|$.

Labelled products

For a class \mathcal{C} that is labelled product of two labelled classes \mathcal{A} and \mathcal{B}

$$
\mathcal{C}=\mathcal{A} \times \mathcal{B}=\bigcup_{\substack{\alpha \in \mathcal{A} \\ \beta \in \mathcal{B}}} \alpha \times \beta
$$

the following relation holds for the corresponding EGFs

$$
\begin{aligned}
\hat{C}(z) & =\sum_{\gamma \in \mathcal{C}} \frac{z^{|\gamma|!}}{|\gamma|!}=\sum_{\alpha \in \mathcal{A}} \sum_{\beta \in \mathcal{B}}\binom{|\alpha|+|\beta|}{|\alpha|} \frac{z^{|\alpha|+|\beta|}}{(|\alpha|+|\beta|)!} \\
& =\sum_{\alpha \in \mathcal{A}} \sum_{\beta \in \mathcal{B}} \frac{1}{|\alpha|!|\beta|!} z^{|\alpha|+|\beta|}=\left(\sum_{\alpha \in \mathcal{A}} \frac{z^{|\alpha|}}{|\alpha|!}\right) \cdot\left(\sum_{\beta \in \mathcal{B}} \frac{z^{|\beta|}}{|\beta|!}\right) \\
& =\hat{A}(z) \cdot \hat{B}(z)
\end{aligned}
$$

Labelled products

The nth coefficient of $\hat{C}(z)=\hat{A}(z) \cdot \hat{B}(z)$ is also a convolution

$$
c_{n}=\left[z^{n}\right] \hat{C}(z)=\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k}
$$

Sequences

Sequences of labelled object are defined as in the case of unlabelled objects. The construction $\mathcal{C}=\operatorname{Seq}(\mathcal{A})$ is well defined if $\mathcal{A}_{0}=\emptyset$. If $\mathcal{C}=\operatorname{Seq}(\mathcal{A})=\{\epsilon\}+\mathcal{A} \times \mathcal{C}$ then

$$
\hat{C}(z)=\frac{1}{1-\hat{A}(z)}
$$

Example

Permutations are labelled sequences of atoms, $\mathcal{P}=\operatorname{Seq}(Z)$. Hence,

$$
\begin{aligned}
\hat{P}(z) & =\frac{1}{1-z}=\sum_{n \geq 0} z^{n} \\
n!\cdot\left[z^{n}\right] \hat{P}(z) & =n!
\end{aligned}
$$

A dictionary of admissible unlabelled operators

Class	OGF	Name
ϵ	1	Epsilon
Z	z	Atomic
$\mathcal{A}+\mathcal{B}$	$A(z)+B(z)$	Disjoint union
$\mathcal{A} \times \mathcal{B}$	$A(z) \cdot B(z)$	Product
$\operatorname{Seq}(\mathcal{A})$	$\frac{1}{1-A(z)}$	Sequence
$\Theta \mathcal{A}$	$\Theta A(z)=z A^{\prime}(z)$	Marking
$\operatorname{MSet}(\mathcal{A})$	$\exp \left(\sum_{k>0} A\left(z^{k}\right) / k\right)$	Multiset
$\operatorname{PSet}(\mathcal{A})$	$\exp \left(\sum_{k>0}(-1)^{k} A\left(z^{k}\right) / k\right)$	Powerset
$\operatorname{Cycle}(\mathcal{A})$	$\sum_{k>0} \frac{\phi(k)}{k} \ln \frac{1}{1-A\left(z^{k}\right)}$	Cycle

A dictionary of admissible labelled operators

Class	EGF	Name
ϵ	1	Epsilon
Z	z	Atomic
$\mathcal{A}+\mathcal{B}$	$\hat{A}(z)+\hat{B}(z)$	Disjoint union
$\mathcal{A} \times \mathcal{B}$	$\hat{A}(z) \cdot \hat{B}(z)$	Product
$\operatorname{Seq}(\mathcal{A})$	$\frac{1}{1-\hat{A}(z)}$	Sequence
$\Theta \mathcal{A}$	$\Theta \hat{A}(z)=z \hat{A}^{\prime}(z)$	Marking
$\operatorname{Set}(\mathcal{A})$	$\exp (\hat{A}(z))$	Set
$\operatorname{Cycle}(\mathcal{A})$	$\ln \left(\frac{1}{1-\hat{A}(z)}\right)$	Cycle

Bivariate generating functions

We need often to study some characteristic of combinatorial structures, e. g., the number of left-to-right maxima in a permutation, the height of a rooted tree, the number of complex components in a graph, etc.
Suppose $X: \mathcal{A}_{n} \rightarrow \mathbb{N}$ is a characteristic under study. Let

$$
a_{n, k}=\#\{\alpha \in \mathcal{A}| | \alpha \mid=n, X(\alpha)=k\}
$$

We can view the restriction $X_{n}: \mathcal{A}_{n} \rightarrow \mathbb{N}$ as a random variable. Then under the usual uniform model

$$
\mathbb{P}\left[X_{n}=k\right]=\frac{a_{n, k}}{a_{n}}
$$

Bivariate generating functions

Define

$$
\begin{aligned}
A(z, u) & =\sum_{n, k \geq 0} a_{n, k} z^{n} u^{k} \\
& =\sum_{\alpha \in \mathcal{A}} z^{|\alpha|} u^{X(\alpha)}
\end{aligned}
$$

Then $a_{n, k}=\left[z^{n} u^{k}\right] A(z, u)$ and

$$
\mathbb{P}\left[X_{n}=k\right]=\frac{\left[z^{n} u^{k}\right] A(z, u)}{\left[z^{n}\right] A(z, 1)}
$$

Bivariate generating functions

We can also define

$$
\begin{aligned}
B(z, u) & =\sum_{n, k \geq 0} \mathbb{P}\left[X_{n}=k\right] z^{n} u^{k} \\
& =\sum_{\alpha \in \mathcal{A}} \mathbb{P}[\alpha] z^{|\alpha|} u^{X(\alpha)}
\end{aligned}
$$

and thus $B(z, u)$ is a generating function whose coefficient of z^{n} is the probability generating function of the r.v. X_{n}

$$
\begin{aligned}
B(z, u) & =\sum_{n \geq 0} P_{n}(u) z^{n} \\
P_{n}(u) & =\left[z^{n}\right] B(z, u)=\sum_{k \geq 0} \mathbb{P}\left[X_{n}=k\right] u^{k}
\end{aligned}
$$

Bivariate generating functions

Proposition

If $P(u)$ is the probability generating function of a random variable X then

$$
\begin{aligned}
P(1) & =1 \\
P^{\prime}(1) & =\mathbb{E}[X] \\
P^{\prime \prime}(1) & =\mathbb{E}\left[X^{2}\right]=\mathbb{E}[X(X-1)] \\
\mathbb{V}[X] & =P^{\prime \prime}(1)+P^{\prime}(1)-\left(P^{\prime}(1)\right)^{2}
\end{aligned}
$$

Bivariate generating functions

We can study the moments of X_{n} by successive differentiation of $B(z, u)$ (or $A(z, u)$). For instance,

$$
\bar{B}(z)=\sum_{n \geq 0} \mathbb{E}\left[X_{n}\right] z^{n}=\left.\frac{\partial B}{\partial u}\right|_{u=1}
$$

For the r th factorial moments of X_{n}

$$
B^{(r)}(z)=\sum_{n \geq 0} \mathbb{E}\left[X_{n}{ }^{\underline{r}}\right] z^{n}=\left.\frac{\partial^{r} B}{\partial u^{r}}\right|_{u=1}
$$

$$
X_{n} \frac{r}{2}=X_{n}\left(X_{n}-1\right) \cdots\left(X_{n}-r+1\right)
$$

The number of left-to-right maxima in a permutation

Consider the following specification for permutations

$$
\mathcal{P}=\{\emptyset\}+\mathcal{P} \times Z
$$

The BGF for the probability that a random permutation of size n has k left-to-right maxima is

$$
M(z, u)=\sum_{\sigma \in \mathcal{P}} \frac{z^{|\sigma|}}{|\sigma|!} u^{X(\sigma)}
$$

where $X(\sigma)=$ \# of left-to-right maxima in σ

The number of left-to-right maxima in a permutation

With the recursive descomposition of permutations and since the last element of a permutation of size n is a left-to-right maxima iff its label is n

$$
M(z, u)=\sum_{\sigma \in \mathcal{P}} \sum_{1 \leq j \leq|\sigma|+1} \frac{z^{|\sigma|+1}}{(|\sigma|+1)!} u^{X(\sigma)+\llbracket j=|\sigma|+1 \rrbracket}
$$

$\llbracket P \rrbracket=1$ if P is true, $\llbracket P \rrbracket=0$ otherwise.

The number of left-to-right maxima in a permutation

$$
\begin{aligned}
M(z, u) & =\sum_{\sigma \in \mathcal{P}} \frac{z^{|\sigma|+1}}{(|\sigma|+1)!} u^{X(\sigma)} \sum_{1 \leq j \leq|\sigma|+1} u^{\llbracket j=|\sigma|+1 \rrbracket} \\
& =\sum_{\sigma \in \mathcal{P}} \frac{z^{|\sigma|+1}}{(|\sigma|+1)!} u^{X \sigma)}(|\sigma|+u)
\end{aligned}
$$

Taking derivatives w.r.t. z

$$
\frac{\partial}{\partial z} M=\sum_{\sigma \in \mathcal{P}} \frac{z^{|\sigma|}}{|\sigma|!} u^{X \sigma)}(|\sigma|+u)=z \frac{\partial}{\partial z} M+u M
$$

Hence,

$$
(1-z) \frac{\partial}{\partial z} M(z, u)-u M(z, u)=0
$$

The number of left-to-right maxima in a permutation

Solving, since $M(0, u)=1$

$$
M(z, u)=\left(\frac{1}{1-z}\right)^{u}=\sum_{n, k \geq 0}\left[\begin{array}{l}
n \\
k
\end{array}\right] \frac{z^{n}}{n!} u^{k}
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]$ denote the (signless) Stirling numbers of the first kind, also called Stirling cycle numbers.
Taking the derivative w.r.t. u and setting $u=1$

$$
m(z)=\left.\frac{\partial}{\partial z} M(z, u)\right|_{u=1}=\frac{1}{1-z} \ln \frac{1}{1-z}
$$

Thus the average number of left-to-right maxima in a random permutation of size n is

$$
\left[z^{n}\right] m(z)=\mathbb{E}\left[X_{n}\right]=H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\ln n+\gamma+O(1 / n)
$$

$$
\frac{1}{1-z} \ln \frac{1}{1-z}=\sum_{\ell} z^{\ell} \sum_{m>0} \frac{z^{m}}{m}=\sum_{n \geq 0} z^{n} \sum_{k=1}^{n} \frac{1}{k}
$$

... back to bussiness now!

Rank-based hiring

- The recursive decomposition of permutations

$$
\mathcal{P}=\epsilon+\mathcal{P} \times Z
$$

is the natural choice for the analysis of rank-based strategies, with \times denoting the labelled product.

- For each σ in $\mathcal{P},\{\sigma\} \times Z$ is the set of $|\sigma|+1$ permutations

$$
\{\sigma \star 1, \sigma \star 2, \ldots, \sigma \star(n+1)\}, \quad n=|\sigma|
$$

$\sigma \star j$ denotes the permutation one gets after relabelling j, $j+1, \ldots, n=|\sigma|$ in σ to $j+1, j+2, \ldots, n+1$ and appending j at the end

Example

$$
\begin{aligned}
& 32451 \star 3=425613 \\
& 32451 \star 2=435612
\end{aligned}
$$

Rank-based hiring

- $\mathcal{H}(\sigma)=$ the set of candidates hired in permutation σ
- $h(\sigma)=\# \mathcal{H}(\sigma)$
- Let $X_{j}(\sigma)=1$ if candidate with score j is hired after σ and $X_{j}(\sigma)=0$ otherwise.
- $h(\sigma \star j)=h(\sigma)+X_{j}(\sigma)$

Rank-based hiring

Theorem

Let $H(z, u)=\sum_{\sigma \in \mathcal{P}} \frac{z^{|\sigma|} \mid}{\mid \sigma!} u^{h(\sigma)}$.
Then

$$
(1-z) \frac{\partial}{\partial z} H(z, u)-H(z, u)=(u-1) \sum_{\sigma \in \mathcal{P}} X(\sigma) \frac{z^{|\sigma|}}{|\sigma|!} u^{h(\sigma)},
$$

where $X(\sigma)$ the number of j such that $X_{j}(\sigma)=1$.

Rank-based hiring

We can write $h(\sigma)=0$ if σ is the empty permutation and $h(\sigma \star j)=h(\sigma)+X_{j}(\sigma)$.

$$
\begin{aligned}
H(z, u) & =\sum_{\sigma \in \mathcal{P}} \frac{z^{|\sigma|}}{|\sigma|!} u^{h(\sigma)}=1+\sum_{n>0} \sum_{\sigma \in \mathcal{P}_{n}} \frac{z^{|\sigma|}}{|\sigma|!} u^{h(\sigma)} \\
& =1+\sum_{n>0} \sum_{1 \leq j \leq n} \sum_{\sigma \in \mathcal{P}_{n-1}} \frac{z^{|\sigma \star j|}}{|\sigma \star j|!} u^{h(\sigma \star j)} \\
& =1+\sum_{n>0} \sum_{1 \leq j \leq n} \sum_{\sigma \in \mathcal{P}_{n-1}} \frac{z^{|\sigma|+1}}{(|\sigma|+1)!} u^{h(\sigma)+x_{j}(\sigma)} \\
& =1+\sum_{n>0} \sum_{\sigma \in \mathcal{P}_{n-1}} \frac{z^{|\sigma|+1}}{(|\sigma|+1)!} u^{h(\sigma)} \sum_{1 \leq j \leq n} u^{X_{j}(\sigma)} .
\end{aligned}
$$

Rank-based hiring

Since $X_{j}(\sigma)$ is either 0 or 1 for all j and all σ, we have

$$
\sum_{1 \leq j \leq n} u^{X_{j}(\sigma)}=(|\sigma|+1-X(\sigma))+u X(\sigma)
$$

where $X(\sigma)=\sum_{1 \leq j \leq|\sigma|+1} X_{j}(\sigma)$.
$H(z, u)=1+\sum_{n>0} \sum_{\sigma \in \mathcal{P}_{n-1}} \frac{z^{|\sigma|+1}}{(|\sigma|+1)!} u^{h(\sigma)}((|\sigma|+1-X(\sigma))+u X(\sigma))$.
The theorem follows after differentiation and a few additional algebraic manipulations.

Pragmatic strategies

A hiring strategy is pragmatic if and only if

- Whenever it would hire a candidate with score j, it would hire a candidate with a larger score

$$
X_{j}(\sigma)=1 \Longrightarrow X_{j^{\prime}}(\sigma)=1 \quad \text { for all } j^{\prime} \geq j
$$

- The number of scores it would potentially hire increases at most by one if and only if the candidate in the previous step was hired

$$
X(\sigma \star j) \leq X(\sigma)+X_{j}(\sigma)
$$

Pragmatic strategies

- The first condition is very natural and reasonable; the second one is technically necessary for several results we discuss later
- Above the best, above the m th best, above the $P \%$ best, ... are all pragmatic

Pragmatic strategies

Theorem
For any pragmatic hiring strategy and any permutation σ, the $X(\sigma)$ best candidates of σ have been hired (and possibly others).

Pragmatic strategies

Pragmatic strategies

Let r_{n} denote the rank of the last hired candidate in a random permutation, and

$$
g_{n}=1-\frac{r_{n}}{n}
$$

is called the gap.

Theorem

For any pragmatic hiring strategy,

$$
\mathbb{E}\left[g_{n}\right]=\frac{1}{2 n}\left(\mathbb{E}\left[X_{n}\right]-1\right),
$$

where $\mathbb{E}\left[X_{n}\right]=\left[z^{n}\right] \sum_{\sigma \in \mathcal{P}} X(\sigma) z^{|\sigma|} /|\sigma|!$.

Hiring above the maximum

Candidate i is hired if and only if her score is above the score of the best currently hired candidate.

- $X(\sigma)=1$
- $\mathcal{H}(\sigma)=\{i: i$ is a left-to-right maximum $\}$
- $\mathbb{E}\left[h_{n}\right]=\left.\left[z^{n}\right] \frac{\partial H}{\partial u}\right|_{u=1}=\ln n+O(1)$
- Variance of h_{n} is also $\ln n+O(1)$ and after proper normalization h_{n}^{*} converges to $\mathcal{N}(0,1)$

Hiring above the m th best

Candidate i is hired if and only if her score is above the score of the m th best currently hired candidate.

- $X(\sigma)=|\sigma|+1$ if $|\sigma|<m ; X(\sigma)=m$ if $|\sigma| \geq m$
- $\mathbb{E}\left[h_{n}\right]=\left.\left[z^{n}\right] \frac{\partial H}{\partial u}\right|_{u=1}=m \ln n+O(1)$ for fixed m
- Variance of h_{n} is also $m \ln n+O(1)$ and after proper normalization h_{n}^{*} converges to $\mathcal{N}(0,1)$
- The case of arbitrary m can be studied by introducing $\mathrm{H}(z, u, v)=\sum_{m \geq 1} v^{m} H^{(m)}(z, u)$, where $H^{(m)}(z, u)$ is the GF that corresponds to a given particular m.
- We can show that
$\mathbb{E}\left[h_{n}\right]=m\left(H_{n}-H_{m}+1\right) \sim m \ln (n / m)+m+O(1)$, with H_{n} the nth harmonic number

Hiring above the median

Candidate i is hired if and only if her score is above the score of the median of the scores of currently hired candidates.

- $X(\sigma)=\lceil(h(\sigma)+1) / 2\rceil$
- $\sqrt{\frac{n}{\pi}}\left(1+O\left(n^{-1}\right)\right) \leq \mathbb{E}\left[h_{n}\right] \leq 3 \sqrt{\frac{n}{\pi}}\left(1+O\left(n^{-1}\right)\right)$
- This result follows easily by using previous theorem with $X_{L}(\sigma)=(h(\sigma)+1) / 2$ and $X_{U}(\sigma)=(h(\sigma)+3) / 2$ to lower and upper bound

Hiring above the median

$n \in\{1000, \ldots, 10000\}, M=100$ random permutations for each n

In red: lower bound (using X_{L}); in green: upper bound (using X_{U}); in yellow: simulation

Final remarks

- Other quantities, e.g. time of the last hiring, etc. can also be analyzed using techniques from analytic combinatorics
- We have also analyzed hiring above the $P \%$ best candidate with the same machinery, actually we have explicit solutions for $H(z, u)$
- We have extensions of these results to cope with randomized hiring strategies
- Many variants of the problem are interesting and natural; for instance, include firing policies

Thanks for your attention!

