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Introduction

Quickselect finds the k th smallest element out of n given
elements with average cost �(n)

Approximate Quickselect selects, out of n given elements,
an element whose rank k fails within a prespecified rank
[i ::j]

We analyze the exact number of passes (recursive calls)
and number of key comparisons made by AQS, for
arbitrary i , j and n

Asymptotic estimates follow easily from the exact results
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Introduction

The techniques we use to analyze Approximate
Quickselect prove useful to analyze other problems as well

1 The number of moves in which the i th element gets
involved when selecting the j th smallest element out of n

2 The number of common ancestors of the nodes of rank i
and j in a random binary search tree (BST) of size n

3 The size of the smallest subtree containing the nodes i and
j in a random BST of size n

4 The distance (number of edges) between the nodes i and j
in a random BST of size n

We analyze also Approximate Multiple Quickselect, an
algorithm to find q elements with ranks failing in
prespecified ranges [i1::j1]; [i2::j2]; : : : ; [iq::jq]
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The algorithm

Ensure: Array A[l ::r ], integers i and j with l � i � j � r
Require: Returns a value k , with i � k � j , A[k ] has rank between

i � l + 1 and j � l + 1 in the array A[l ::r ]

procedure AQS(A, i , j , l , r )
if r � l � j � i then return l
end if
PARTITION(A, l , r , k )
{ 8m : (l � m < k)) A[m] � A[k ], and

8m : (k < m � r)) A[k ] � A[m] }
if j < k then return AQS(A, i , j , l , k � 1)
else if i > k then return AQS(A, i , j , k + 1, r )
else return k
end if

end procedure



The number of passes

Pn;i;j = the average number of recursive calls to AQS to select
an element of rank k 2 [i ::j] out of n

Pn;i;j = 1+
1
n

i�1X
k=1

Pn�k ;i�k ;j�k+
1
n

nX
k=j+1

Pk�1;i;j ; for 1 � i � j � n
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If the pivot lands at k < i we continue in the right subarray of
n � k elements looking for an element with rank in [i � k ::j � k ]
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The number of passes

Pn;i;j = the average number of recursive calls to AQS to select
an element of rank k 2 [i ::j] out of n

Pn;i;j = 1+
1
n

i�1X
k=1

Pn�k ;i�k ;j�k+
1
n

nX
k=j+1

Pk�1;i;j ; for 1 � i � j � n

If the pivots lands at k , i � k � j , we are done



The number of comparisons

Cn;i;j = the average number of key comparisons in AQS to
select an element of rank k 2 [i ::j] out of n

Cn;i;j = n�1+
1
n

i�1X
k=1

Cn�k ;i�k ;j�k+
1
n

nX
k=j+1

Ck�1;i;j ; for 1 � i � j � n



The generic trivariate recurrence

Tn;i;j = generic “toll” function

Xn;i;j = Tn;i;j+
1
n

i�1X
k=1

Xn�k ;i�k ;j�k+
1
n

nX
k=j+1

Xk�1;i;j ; for 1 � i � j � n

Example
Tn;i;j = 1 ) passes

Tn;i;j = n � 1 ) comparisons

Tn;i;j =
n
6 + O(1)) swaps

i = j ) Quickselect



The generic trivariate recurrence

Define:

X (z;u1;u2) :=
X
i�1

X
j�i

X
n�j

Xn;i;jz
nui

1uj
2;

T (z;u1;u2) :=
X
i�1

X
j�i

X
n�j

Tn;i;jz
nui

1uj
2:

The trivariate recurrence translates to

@

@z
X (z;u1;u2) =

�
1

1� z
+

u1u2

1� zu1u2

�
X (z;u1;u2)+

@

@z
T (z;u1;u2);

with initial condition X (0;u1;u2) = 0.
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The generic trivariate recurrence

Lemma

X (z;u1;u2) =
1

(1� z)(1� zu1u2)

�

Z z

0
(1� t)(1� u1u2t)

� @

@t
T (t ;u1;u2)

�
dt :



The generic trivariate recurrence

Theorem

Xn;i;j =
i�1X
`=1

n�i+`�1X
k=j�i+`

2Tk ;`;j�i+`

(k + 1)(k + 2)

+
i�1X
`=1

Tn�i+`;`;j�i+`

n � i + `+ 1

+
n�1X
k=j

Tk ;i;j

k + 1
+ Tn;i;j

Setting i = j we rederive the generic solution for
Quickselect-like recurrences by Kuba (2006).



Analyzing AQS

Theorem
The expected number of passes in AQS is�

Pn;i;j = Hj + Hn�i+1 � 2Hj�i+1 + 1:

The expected number of comparisons in AQS is

Cn;i;j = 2(n + 1)Hn + 2(j � i + 4)Hj�i+1 � 2(j + 2)Hj

� 2(n � i + 3)Hn�i+1 + 2n � j + i � 2:

(�) Hn :=
X

1�k�n

1
k
; nth harmonic number



Moves in Quickselect

Consider the i th smallest element in the array A[1::n]. How
many times do we move it around when selecting the j th
smallest element in A?



Moves in Quickselect

We make a case analysis, comparing with the position k where
the pivot lands after a partitioning step:

if k < i � j or k < j � i , Quickselect continues recursively
in A[k + 1::n] that does contain i th element

if j � i < k or i � j < k , Quickselect continues in
A[1::k � 1] that does contain the i th element

if i � k � j or j � k � i , either Quickselect stops or
continues in a subarray not containing i th element
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Moves in Quickselect

To find the toll function (number of moves where i participates)
in a single partitioning step, we also consider three cases:

1 i = k ) the element i is moved (once)
2 i < k ) the element i is moved if it were in A[k ::n]) prob

= (n � k + 1)=(n � 1)
3 i > k ) the element is moved if it were in A[2::k ]) prob =

(k � 1)=(n � 1)



Moves in Quickselect

Mn;i;j := The expected number of moves of the i th element when
selecting the j th smallest out of n

Mn;i;j =
1
n

i�1X
k=1

Mn�k ;i�k ;j�k +
1
n

nX
k=j+1

Mk�1;i;j

+
(i � 1)(i � 2)

2n(n � 1)
+

(n � i)(n � i + 1)
2n(n � 1)

+
1
n
; 1 � i < j � n

Analogous recurrences for i = j and j < i , all three solved using
the theorem for trivariate recurrences
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Binary search trees

An;i;j := average # of common ancestors of nodes i and j

Sn;i;j := average size of smallest subtree containing nodes i
and j

Dn;i;j := average distance (# of edges) between nodes i and
j
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Binary search trees

15

5 16

102

41

3

8 13

96

7

12

11

14

Example

A16;8;12 = 3 (nodes 15, 5, 10)

S16;8;12 = 9 (subtree rooted at 10)

D16;8;12 = 3



Binary search trees

if T = �(L;R) is random binary search tree (BST) of size n > 0,
then

1 Any element has identical probability of being the root, thus

PrfjLj = k � 1 j jT j = ng =
1
n
; 1 � k � n

2 L and R are independent random BSTs of sizes k � 1 and
n � k , 1 � k � n
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Common ancestors

Suppose that the root of the BST is the k th element.

if i � j < k the number of common ancestors is 1 + the
number of common ancestors in a random of BST of size
k � 1

if k < i � j the number of common ancestors is 1 + the
number of common ancestors in a random of BST of size
n � 1� k (of the nodes of ranks i � k and j � k !)

if i � k � j , then there is only one common ancestor (k )

Lemma

An;i;j = Pn;i;j = passes in AQS
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Size of subtree of LCA

The recurrence for Sn;i;j follows the usual pattern:

Sn;i;j =
1
n

i�1X
k=1

Sn�k ;i�k ;j�k +
1
n

nX
k=j+1

Sk�1;i;j +
1
n

jX
k=i

n

=
1
n

i�1X
k=1

Sn�k ;i�k ;j�k +
1
n

nX
k=j+1

Sk�1;i;j + j � i + 1



Size of subtree of LCA

The recurrence for Sn;i;j follows the usual pattern:

Sn;i;j =
1
n

i�1X
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Sn�k ;i�k ;j�k +
1
n

nX
k=j+1

Sk�1;i;j +
1
n
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n
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1
n

i�1X
k=1

Sn�k ;i�k ;j�k +
1
n

nX
k=j+1

Sk�1;i;j + j � i + 1

The toll function is n only when the pivot k satisfies i � k � j



Size of subtree of LCA

Apply the theorem for trivariate recurrences with
Tn;i;j := j � i + 1

Theorem

Sn;i;j = (j � i + 1)
�
Hj + Hn�i+1 � 2Hj�i+1 + 1

�
= (j � i + 1) � An;i;j

� (j � i + 1)
�

log j + log(n � i + 1)� 2 log(j � i + 1) + 1
�



Distance

The recurrence for Dn;i;j :

Dn;i;j =
1
n

i�1X
k=1

Dn�k ;i�k ;j�k +
1
n

nX
k=j+1

Dk�1;i;j

+
1
n

jX
k=i

(Ak�1;i;i + An�k ;j�k ;j�k + 2)
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The recurrence for Dn;i;j :

Dn;i;j =
1
n

i�1X
k=1

Dn�k ;i�k ;j�k +
1
n

nX
k=j+1

Dk�1;i;j

+
1
n

jX
k=i

(Ak�1;i;i + An�k ;j�k ;j�k + 2)

If k is the LCA of i and j , the distance between i and j is the
depth of i in the left subtree (Ak�1;i;i ), plus the depth of j (the
(j � k)th element) in the right subtree (An�k ;j�k ;j�k ), plus 2



Distance

Since we know An;i;j , we can obtain the toll function for
distances

1
n

jX
k=i

(Ak�1;i;i + An�k ;j�k ;j�k + 2)

=
j � i + 1

n

�
Hi + Hn+1�j + 2Hj+1�i � 2

�



Distance

The last step is to apply the theorem of trivariate recurrences
with the toll function above (quite laboriously!)

Theorem

Dn;i;j = 4Hj+1�i � (Hj � Hi)� (Hn+1�i � Hn+1�j)� 3


