Conrado Martinez
Univ. Politécnica Catalunya

Joint work with A. Panholzer and H. Prodinger

LIP6, Paris, April 2009

@ Quickselect finds the kth smallest element out of n given
elements with average cost ©(n)

Introduction

@ Quickselect finds the kth smallest element out of n given
elements with average cost ©(n)

@ Approximate Quickselect selects, out of n given elements,
an element whose rank k fails within a prespecified rank

-]

Introduction

@ Quickselect finds the kth smallest element out of n given
elements with average cost ©(n)

@ Approximate Quickselect selects, out of n given elements,
an element whose rank k fails within a prespecified rank
[i-]

@ We analyze the exact number of passes (recursive calls)
and number of key comparisons made by AQS, for
arbitrary i, j and n

Introduction

@ Quickselect finds the kth smallest element out of n given
elements with average cost ©(n)

@ Approximate Quickselect selects, out of n given elements,
an element whose rank k fails within a prespecified rank
[i-]

@ We analyze the exact number of passes (recursive calls)
and number of key comparisons made by AQS, for
arbitrary i, j and n

@ Asymptotic estimates follow easily from the exact results

@ The techniques we use to analyze Approximate
Quickselect prove useful to analyze other problems as well

Introduction

@ The techniques we use to analyze Approximate
Quickselect prove useful to analyze other problems as well
© The number of moves in which the ith element gets
involved when selecting the jth smallest element out of n

Introduction

@ The techniques we use to analyze Approximate
Quickselect prove useful to analyze other problems as well

© The number of moves in which the ith element gets
involved when selecting the jth smallest element out of n

@ The number of common ancestors of the nodes of rank i
and j in a random binary search tree (BST) of size n

Introduction

@ The techniques we use to analyze Approximate
Quickselect prove useful to analyze other problems as well

© The number of moves in which the ith element gets
involved when selecting the jth smallest element out of n

@ The number of common ancestors of the nodes of rank i
and j in a random binary search tree (BST) of size n

© The size of the smallest subtree containing the nodes i and
j in a random BST of size n

Introduction

@ The techniques we use to analyze Approximate
Quickselect prove useful to analyze other problems as well

© The number of moves in which the ith element gets
involved when selecting the jth smallest element out of n

@ The number of common ancestors of the nodes of rank i
and j in a random binary search tree (BST) of size n

© The size of the smallest subtree containing the nodes i and
j in a random BST of size n

© The distance (number of edges) between the nodes i and |
in a random BST of size n

Introduction

@ The techniques we use to analyze Approximate
Quickselect prove useful to analyze other problems as well

© The number of moves in which the ith element gets
involved when selecting the jth smallest element out of n

@ The number of common ancestors of the nodes of rank i
and j in a random binary search tree (BST) of size n

© The size of the smallest subtree containing the nodes i and
j in a random BST of size n

© The distance (number of edges) between the nodes i and |
in a random BST of size n

@ We analyze also Approximate Multiple Quickselect, an
algorithm to find g elements with ranks failing in
prespecified ranges [i1..j1], [i2-.j2], - - - ; [ig--iq]

The algorithm

Ensure: Array A[l..r], integersiandjwith| <i <j<r
Require: Returns a value k, with i < k < j, A[k] has rank between
i—l+21andj—I+1inthearray A[l..r]

procedure AQS(A,i,j, I, r)
if r—1<j—ithenreturn |
end if
PARTITION(A, I, r, k)
{Vm: (I <m < k)= Alm] <A[K], and
vm: (k <m <r)= Ak] <A[m]}
if j <k thenreturn AQS(A, i, j, |,k —1)
else if i > k thenreturn AQS(A,i,j, k +1,r)
else return k
end if
end procedure

The number of passes

Pn,ij = the average number of recursive calls to AQS to select
an element of rank k € [i..j] out of n

i—1

Pnij=1+- an Kji—k,j— k‘|‘ Zpk Lij, forl1<i<j<n
k 1 kH—l

The number of passes

Pn,ij = the average number of recursive calls to AQS to select
an element of rank k € [i..j] out of n

Pnij=1+— an Kji—k,j— k‘|‘ Zpk Lij, forl1<i<j<n
k =j+1

The initial recursive call

The number of passes

Pn,ij = the average number of recursive calls to AQS to select
an element of rank k € [i..j] out of n

Pnjij =1+- an Koi—k,j— k‘|‘ Zpk 1ij, forl<i<j<n
kH—l

If the pivot lands at k < i we continue in the right subarray of
n — k elements looking for an element with rank in [i — k..j — k]

The number of passes

Pn,ij = the average number of recursive calls to AQS to select
an element of rank k € [i..j] out of n

i—1

Pnij=1+— an Ki—kj— k-l- Z P 1 forl1<i<j<n
k 1 k =j+1

If the pivot lands at k > j we continue in the left subarray of k — 1
elements looking for an element with rank in [i..j]

The number of passes

Pn,ij = the average number of recursive calls to AQS to select
an element of rank k € [i..j] out of n

i—1

Pnij=1+- an Kji—k,j— k‘|‘ Zpk Lij, forl1<i<j<n
k 1 kH—l

If the pivots lands at k, i <k < j, we are done

The number of comparisons

Cn,ij = the average number of key comparisons in AQS to
select an element of rank k € [i..j] out of n

1 .
2 1 -
Cnjij = n—1+ﬁ ch—k,i—k,j_kJrﬁ Z Ck_1jj, forl1<i<j<n
k=1 k=j+1

The generic trivariate recurrence

Th,ij = generic “toll” function

1
Xnij = Tnijt+ an it Z X¢ 1jj, forl<i<j<n
k=j+1

@ Thij = 1= passes

@ Tpij =n— 1= comparisons
@ Thij =g+ 0O(1) = swaps

@ i = = Quickselect

@ Define:

X(z,ug,up) = 3 3> Xnjjz"ubul,

i>1 j>i n>j

T(z,u1,uz) ZZZTMJZ u1

i>1 j>i n>j

The generic trivariate recurrence

@ Define:

(z,ug,up) ZZZXMJZ uluJZ’

i>1 j>i n>j

(Z,ug,up) = Y) Tz Lub.

i>1 j>i n>j
@ The trivariate recurrence translates to

1 uqUo
-z 1-zuiuy

) X(Z7U17U2)+3T(27U1,'

0
EX(Z,Ul,Uz)— (1 oz

with initial condition X (0, u,uy) = 0.

1
(T—2)(1 - zuyuy)

X /02(1 —t)(1 - u1u2t)(§T(t, ug, uz))dt.

X(Z, usg, UZ) =

The generic trivariate recurrence

Theorem
i—1 n—i+£—1
2Ty pjite
X =2 > WDk
= |+z (k +1)(k +2)
Thitejive
+ Z n—i+4+1
=1
n—1 "
5'5]
+ Z k + l + n,i,
k:j
Setting i = j we rederive the generic solution for

Quickselect-like recurrences by Kuba (2006).

Analyzing AQS

Theorem
The expected number of passes in AQS is*

Prjij = Hj +Hnija —2Hj 41 + 1.
The expected number of comparisons in AQS is

Chij =2(n+1)Hn +2(j —i +4)Hj_i11 — 2(j + 2)H;
-2n—i+3)H_iz1+2n—j+i-—2.

. 1 :
(") Ho= > > Nth harmonic number
1<k<n

Moves in Quickselect

Consider the ith smallest element in the array A[1..n]. How
many times do we move it around when selecting the jth
smallest element in A?

Moves in Quickselect

We make a case analysis, comparing with the position k where
the pivot lands after a partitioning step:
@ ifk <i <jork <j <i, Quickselect continues recursively
in A[k + 1..n] that does contain ith element

Moves in Quickselect

We make a case analysis, comparing with the position k where
the pivot lands after a partitioning step:
@ ifk <i <jork <j <i, Quickselect continues recursively
in A[k + 1..n] that does contain ith element
o ifj <i<kori<j<k, Quickselect continues in
A[l..k — 1] that does contain the ith element

Moves in Quickselect

We make a case analysis, comparing with the position k where
the pivot lands after a partitioning step:
@ ifk <i <jork <j <i, Quickselect continues recursively
in A[k + 1..n] that does contain ith element
o ifj <i<kori<j<k, Quickselect continues in
A[l..k — 1] that does contain the ith element
@ ifi <k <jorj <k <i, either Quickselect stops or
continues in a subarray not containing ith element

Moves in Quickselect

To find the toll function (number of moves where i participates)
in a single partitioning step, we also consider three cases:

© i = k = the element i is moved (once)

@ i < k = the element i is moved if it were in A[k..n] = prob
=(n-k+1)/(n-1)

© i > k = the element is moved if it were in A[2..k] = prob =

(k —1)/(n-1)

Moves in Quickselect

M. j:= The expected number of moves of the ith element when
selecting the jth smallest out of n

1 i—1 1 n
Mnij = o Z Mn_k,i—k,j—k + 0 Z Mi_1,i
k=1 k=j+1

(i-1)(i-2) (n—i)n—i+1) 1 o
2n(n - 1) on(n—1) " LSP<isn

Analogous recurrences fori = j and j < i, all three solved using
the theorem for trivariate recurrences

Moves in Quickselect

M. j:= The expected number of moves of the ith element when
selecting the jth smallest out of n

Mn,i,j ZMn k,i—k,j— k+* Z IVlk 1,i,j

k =j+1
(|—1)(|—2) (n—i)(n—i+1) 1 o
— < <
2n(n — 1) 2n(n — 1) T lsi<isn
Analogous recurrences fori = j and j < i, all three solved using

the theorem for trivariate recurrences

@ A, ;.= average # of common ancestors of nodes i and |

@ A, ;.= average # of common ancestors of nodes i and |

@ S, ;.= average size of smallest subtree containing nodes i
and j

Binary search trees

@ A, ;.= average # of common ancestors of nodes i and j

@ S, ;.= average size of smallest subtree containing nodes i
and j

@ D, ;;:= average distance (# of edges) between nodes i and
J

Atgg12 =3 (nodes 15, 5, 10)
Si6812 =9 (subtree rooted at 10)

Digg12 =3

Binary search trees

if T = o(L, R) is random binary search tree (BST) of size n > 0,
then

© Any element has identical probability of being the root, thus

Pr{]L]:k—lHT!:n}:%, 1<k<n

Binary search trees

if T = o(L, R) is random binary search tree (BST) of size n > 0,
then

© Any element has identical probability of being the root, thus

Pr{]L]:k—lHT!:n}:%, 1<k<n
@ L and R are independent random BSTs of sizes k — 1 and
n—k,1<k<n

Common ancestors

Suppose that the root of the BST is the kth element.

@ ifi <j < k the number of common ancestors is 1 + the
number of common ancestors in a random of BST of size
k-1

Common ancestors

Suppose that the root of the BST is the kth element.

@ ifi <j < k the number of common ancestors is 1 + the
number of common ancestors in a random of BST of size
k-1

@ ifk < i <jthe number of common ancestors is 1 + the
number of common ancestors in a random of BST of size
n — 1 — k (of the nodes of ranks i — k and j — k!)

Common ancestors

Suppose that the root of the BST is the kth element.

@ ifi <j < k the number of common ancestors is 1 + the
number of common ancestors in a random of BST of size
k-1

@ ifk < i <jthe number of common ancestors is 1 + the
number of common ancestors in a random of BST of size
n — 1 — k (of the nodes of ranks i — k and j — k!)

@ ifi <k <j, then there is only one common ancestor (k)

Common ancestors

Suppose that the root of the BST is the kth element.

@ ifi <j < k the number of common ancestors is 1 + the
number of common ancestors in a random of BST of size
k-1

@ ifk < i <jthe number of common ancestors is 1 + the
number of common ancestors in a random of BST of size
n — 1 — k (of the nodes of ranks i — k and j — k!)

@ ifi <k <j, then there is only one common ancestor (k)

Lemma

An,ij = Pn,j = passes in AQS

Size of subtree of LCA

The recurrence for Sy, ; follows the usual pattern:

Snjij = an K,i—k,j— k‘|‘* Z Sk-1,ij + Zn

kJ+l
|1

an K,i—k,j— k"‘ Z Sk 1I7]+J_|+1
k=1 kH-l

Size of subtree of LCA

The recurrence for Sy, ; follows the usual pattern:

Snjij = an K,i—k,j— k‘|‘* Z Sk-1,ij + - Zn

kJ+1
|1
an K,i—k,j— k"‘ Z Sk-1ijtl—1+1
k=1 kH-l

The toll function is n only when the pivot k satisfies i < k <

Apply the theorem for trivariate recurrences with
Tn,i,j =j—i+1

Sn,i,j = (] —i+ 1)(Hj + Hn7i+1 - 2Hj7i+1 + 1) = (J —i+ 1) 'An,i
~ (j—i+1)(logj+log(n—i+1)—2log(j —i+1)+1)

The recurrence for Dy, j:

n,|,j ZDn K i—k,j— k+_ Z Dk 1,i,

k j+1

|

S|k

j
Z(Ak—l,i,i + An_kj—kj—k + 2)
ki

Distance

The recurrence for Dy j

n,|,1 ZDn K,i—Kk,j— k"‘* Z Dk 1,i,

k j+1

j
1
fEA_-- An_ki—ki— 2
+nk7| k l,|,|+ n—k,j—k,j k +)

If k is the LCA of i and j, the distance between i and j is the
depth of i in the left subtree (Ax_1,,), plus the depth of j (the
(j — k)th element) in the right subtree (A,_k j—k j—k), plus 2

Since we know A, ;, we can obtain the toll function for
distances

1 J
o > (Ac—wii + Ancij—kj—k +2)
k=i

j—i+1
=L (H o Hoa g+ 2H - 2)

The last step is to apply the theorem of trivariate recurrences
with the toll function above (quite laboriously!)

Dnjij = 4Hj41-i — (Hj — Hi) = (Hnyai = Hnpaj) =3

