Interval Sorting

Conrado Martínez U. Politècnica Catalunya

GREYC, U. Caen, June 1st, 2010

Dedicated to Brigitte Vallée

Joint work with:

R.M. Jiménez

The problem:

Input: An array A[1..n] of n items drawn from a totally ordered domain; a set $I = \{[\ell_t, u_t] \mid 1 \leqslant t \leqslant p\}$ of p disjoint intervals with

 $1 \leqslant \ell_1 \leqslant \mathfrak{u}_1 < \ell_2 \leqslant \mathfrak{u}_2 < \cdots < \ell_p \leqslant \mathfrak{u}_p \leqslant \mathfrak{n},$

Output: The array A rearranged in such a way that

- $A[\ell_t..u_t]$ contains the ℓ_t th,..., u_t th smallest elements of A in nondecreasing order, for all t, $1 \leq t \leq p$
- $$\label{eq:alpha} \begin{split} & \& A[\mathfrak{u}_t+1..\ell_{t+1}-1] \text{ contains the } (\mathfrak{u}_t+1)\text{th},\\ & \ldots, \, (\ell_{t+1}-1)\text{th smallest elements of } A, \text{ for all } t, \, 0 \leqslant t \leqslant p \; (\mathfrak{u}_0=0,\,\ell_{p+1}=n+1) \end{split}$$

• Sorting: $p = 1, I = \{[1, n]\}$

- Selection of the jth: $p = 1, I = \{[j, j]\}$
- Multiple selection: $I = \{[j_1, j_1], [j_2, j_2], \dots, [j_p, j_p]\}$
- Partial sorting: p = 1, I = {[1, m]}, m < n

- Sorting: $p = 1, I = \{[1, n]\}$
- Selection of the jth: $p = 1, I = \{[j, j]\}$
- Multiple selection: $I = \{[j_1, j_1], [j_2, j_2], \dots, [j_p, j_p]\}$
- Partial sorting: $p = 1, I = \{[1, m]\}, m < n$

- Sorting: $p = 1, I = \{[1, n]\}$
- Selection of the jth: $p = 1, I = \{[j, j]\}$
- Multiple selection: $I = \{[j_1, j_1], [j_2, j_2], \dots, [j_p, j_p]\}$
- Partial sorting: $p = 1, I = \{[1, m]\}, m < n$

- Sorting: $p = 1, I = \{[1, n]\}$
- Selection of the jth: $p = 1, I = \{[j, j]\}$
- Multiple selection: $I = \{[j_1, j_1], [j_2, j_2], \dots, [j_p, j_p]\}$
- Partial sorting: $p = 1, I = \{[1, m]\}, m < n$

Other instances of interval sorting might be useful:

- Sort & filter: $p = 1, I = [\beta n, (1 \beta)n], \beta < 1/2$
- Outliers: $p = 2, I = \{[1, k], [n k + 1, n]\}$
- Sorting A in (expected) time Θ(n log n) solves the problem, but this is wasteful if m = |I₁| + ... + |I_p| ≪ n

• Other instances of interval sorting might be useful:

- Sort & filter: $p = 1, I = [\beta n, (1 \beta)n], \beta < 1/2$
- Outliers: $p = 2, I = \{[1, k], [n k + 1, n]\}$
- Sorting A in (expected) time $\Theta(n \log n)$ solves the problem, but this is wasteful if $m = |I_1| + \ldots + |I_p| \ll n$

- Other instances of interval sorting might be useful:
 - Sort & filter: $p = 1, I = [\beta n, (1 \beta)n], \beta < 1/2$
 - Outliers: $p = 2, I = \{[1, k], [n k + 1, n]\}$
- Sorting A in (expected) time $\Theta(n \log n)$ solves the problem, but this is wasteful if $m = |I_1| + \ldots + |I_p| \ll n$

- Other instances of interval sorting might be useful:
 - Sort & filter: $p = 1, I = [\beta n, (1 \beta)n], \beta < 1/2$
 - Outliers: $p = 2, I = \{[1, k], [n k + 1, n]\}$
- Sorting A in (expected) time $\Theta(n \log n)$ solves the problem, but this is wasteful if $m = |I_1| + \ldots + |I_p| \ll n$

Chunksort: A simple divide & conquer algorithm for interval sorting

- Average performance of chunksort
- A simple lower bound for interval sorting
- Intermezzo:

- Optimal" chunksort
- Disgression: How far from optimal?

- Chunksort: A simple divide & conquer algorithm for interval sorting
- Average performance of chunksort
- A simple lower bound for interval sorting
- Intermezzo:
 - Optimal sampling strategies for quicksort
 Optimal sampling strategies for quickselect
- Optimal" chunksort
- Disgression: How far from optimal?

- Chunksort: A simple divide & conquer algorithm for interval sorting
- Average performance of chunksort
- A simple lower bound for interval sorting
 - Intermezzo:
 - Optimal sampling strategies for quicksort
 Optimal sampling strategies for quicksole
 - Optimal sampling strategies for quickselect
- Optimal" chunksort
- Disgression: How far from optimal?

- Chunksort: A simple divide & conquer algorithm for interval sorting
- Average performance of chunksort
- A simple lower bound for interval sorting
- Intermezzo:
 - Optimal sampling strategies for quicksort
 - Optimal sampling strategies for quickselect
- Optimal" chunksort
- Disgression: How far from optimal?

- Chunksort: A simple divide & conquer algorithm for interval sorting
- Average performance of chunksort
- A simple lower bound for interval sorting
- Intermezzo:
 - Optimal sampling strategies for quicksort
 - Optimal sampling strategies for quickselect
- Optimal" chunksort
- Disgression: How far from optimal?

- Chunksort: A simple divide & conquer algorithm for interval sorting
- Average performance of chunksort
- A simple lower bound for interval sorting
- Intermezzo:
 - Optimal sampling strategies for quicksort
 - Optimal sampling strategies for quickselect
- Optimal" chunksort
- Disgression: How far from optimal?

- Chunksort: A simple divide & conquer algorithm for interval sorting
- Average performance of chunksort
- A simple lower bound for interval sorting
- Intermezzo:
 - Optimal sampling strategies for quicksort
 - Optimal sampling strategies for quickselect
- Optimal" chunksort
- Disgression: How far from optimal?

- Chunksort: A simple divide & conquer algorithm for interval sorting
- Average performance of chunksort
- A simple lower bound for interval sorting
- Intermezzo:
 - Optimal sampling strategies for quicksort
 - Optimal sampling strategies for quickselect
- Optimal" chunksort
- Disgression: How far from optimal?

Chunksort: A simple divide & conquer algorithm for interval sorting

- 2 Average cost of chunksort
- 3 A simple lower bound for interval sorting
- Intermezzo
- 5 "Optimal" chunksort
- Disgression: How far from optimal?

Conclusions

```
procedure CHUNKSORT(A, i, j, I, r, s)
    if i \ge j then return \triangleright A contains one or no
elements
    if r \leq s then
         pv \leftarrow SELECTPIVOT(A, i, j)
         PARTITION(A, pv, i, j, k)
         t \leftarrow \text{LOCATE}(I, r, s, k)
\triangleright Locate the value t such that \ell_t \leq k \leq u_t with
\mathbf{I}_{\mathrm{t}} = [\ell_{\mathrm{t}}, \mathbf{u}_{\mathrm{t}}],
\triangleright or u_t < k < \ell_{t+1}
         if u_t < k then \triangleright k falls in the tth gap
              CHUNKSORT(A, i, k - 1, I, r, t)
              CHUNKSORT(A, k + 1, j, I, t + 1, s)
         else \triangleright k falls in the tth interval
              CHUNKSORT(A, i, k - 1, I, r, t)
              CHUNKSORT(A, k + 1, j, I, t, s)
```


Example (Using chunksort to sort)

•
$$p = 1, I_1 = [1, n]$$

 $\bullet \ 1 \leqslant k \leqslant n \implies \ell_1 \leqslant k \leqslant u_1 \implies r = s = t = 1$

```
procedure CHUNKSORT(A, i, j, I, r, s)
```

```
if u_t < k then \triangleright k falls in the tth gap

CHUNKSORT(A, i, k - 1, I, r, t)

CHUNKSORT(A, k + 1, j, I, t + 1, s)

else \triangleright k falls in the tth interval

CHUNKSORT(A, i, k - 1, I, r, t)

CHUNKSORT(A, k + 1, j, I, t, s)
```

•
$$p = 1, I_1 = [m, m]$$

•
$$\mathfrak{m} < k \implies \mathfrak{t} = 1, \mathfrak{u}_1 < k$$

procedure CHUNKSORT(A, i, j, I, r, s)

```
\label{eq:characteristic} \begin{array}{l} \text{if } u_t < k \text{ then } \triangleright \text{ } k \text{ falls in the tth gap} \\ \text{CHUNKSORT}(A, i, k-1, I, r, t) \\ \text{CHUNKSORT}(A, k+1, j, I, t+1, s) \\ \text{else } \triangleright \text{ } k \text{ falls in the tth interval} \\ \text{CHUNKSORT}(A, i, k-1, I, r, t) \\ \text{CHUNKSORT}(A, k+1, j, I, t, s) \end{array}
```

•
$$p = 1, I_1 = [m, m]$$

•
$$\mathfrak{m} < k \implies \mathfrak{t} = 1, \mathfrak{u}_1 < k$$

procedure CHUNKSORT(A, i, j, I, r, s)

```
\label{eq:constraint} \begin{array}{l} \text{if } u_t < k \text{ then } \triangleright \text{ } k \text{ falls in the tth gap} \\ \text{CHUNKSORT}(A, i, k-1, I, r, t) \end{array}
```

CHUNKSORT(A, k + 1, j, I, t + 1, s)

else \triangleright k falls in the tth interval

CHUNKSORT(A, i, k - 1, I, r, t)CHUNKSORT(A, k + 1, j, I, t, s)

•
$$p = 1, I_1 = [m, m]$$

•
$$k < m \implies t = 0, u_0 < k < \ell_1$$

```
procedure CHUNKSORT(A, i, j, I, r, s)
```

```
\label{eq:chunksort} \begin{array}{l} \text{if } u_t < k \text{ then } \triangleright \text{ } k \text{ falls in the tth gap} \\ & \text{CHUNKSORT}(A, i, k-1, I, r, t) \\ & \text{CHUNKSORT}(A, k+1, j, I, t+1, s) \\ & \text{else } \triangleright \text{ } k \text{ falls in the tth interval} \\ & \text{CHUNKSORT}(A, i, k-1, I, r, t) \\ & \text{CHUNKSORT}(A, k+1, j, I, t, s) \end{array}
```

•
$$p = 1, I_1 = [m, m]$$

•
$$k < m \implies t = 0, u_0 < k < \ell_1$$

```
procedure CHUNKSORT(A, i, j, I, r, s)
```

```
if u_t < k then \triangleright k falls in the tth gap

CHUNKSORT(A, i, k - 1, I, r, t)

CHUNKSORT(A, k + 1, j, I, t + 1, s)

else \triangleright k falls in the tth interval

CHUNKSORT(A, i, k - 1, I, r, t)

CHUNKSORT(A, k + 1, j, I, t, s)
```

Example (Using chunksort for partial sorting)

•
$$p = 1, I_1 = [1, m]$$

 $\bullet \ 1 \leqslant k \leqslant m \implies \ell_1 \leqslant k \leqslant u_1 \implies r = s = t = 1, k \leqslant u_1$

```
procedure CHUNKSORT(A, i, j, I, r, s)
```

```
if u_t < k then \triangleright k falls in the tth gap

CHUNKSORT(A, i, k - 1, I, r, t)

CHUNKSORT(A, k + 1, j, I, t + 1, s)

else \triangleright k falls in the tth interval

CHUNKSORT(A, i, k - 1, I, r, t)

CHUNKSORT(A, k + 1, j, I, t, s)
```

Example (Using chunksort for partial sorting)

•
$$p = 1, I_1 = [1, m]$$

 $\bullet \ \mathfrak{m} < k \leqslant \mathfrak{n} \implies \mathfrak{u}_1 < k \leqslant \ell_2 \implies r = s = t = 1, \mathfrak{u}_1 < k$

procedure CHUNKSORT(A, i, j, I, r, s)

```
\label{eq:chunksort} \begin{array}{l} \text{if } u_t < k \text{ then } \triangleright \text{ k falls in the tth gap} \\ \text{CHUNKSORT}(A, i, k-1, I, r, t) \\ \text{CHUNKSORT}(A, k+1, j, I, t+1, s) \\ \text{else } \triangleright \text{ k falls in the tth interval} \\ \text{CHUNKSORT}(A, i, k-1, I, r, s) \\ \text{CHUNKSORT}(A, k+1, j, I, t, s) \\ \end{array}
```

Example (Using chunksort for partial sorting)

•
$$p = 1, I_1 = [1, m]$$

 $\bullet \ \mathfrak{m} < k \leqslant \mathfrak{n} \implies \mathfrak{u}_1 < k \leqslant \ell_2 \implies r = s = t = 1, \mathfrak{u}_1 < k$

procedure CHUNKSORT(A, i, j, I, r, s)

if $u_t < k$ then $\triangleright k$ falls in the tth gap CHUNKSORT(A, i, k - 1, I, r, t)CHUNKSORT(A, k + 1, j, I, t + 1, s)else $\triangleright k$ falls in the tth interval CHUNKSORT(A, i, k - 1, I, r, s)

CHUNKSORT(A, k + 1, j, I, t, s)

Chunksort: A simple divide & conquer algorithm for interval sorting

- 2 Average cost of chunksort
 - 3 A simple lower bound for interval sorting
- Intermezzo
- 5 "Optimal" chunksort
- Disgression: How far from optimal?

Conclusions

C.A.R. Hoare

- Probability that the selected pivot is the k-th of n elements: $\pi_{n,k}$; for the basic variants here $\pi_{n,k} = 1/n$
- Average number of comparisons Q_n to sort n elements:

$$Q_n = n - 1 + \sum_{k=1}^n \pi_{n,k} \cdot (Q_{k-1} + Q_{n-k})$$

 Average number of comparisons Q_n to sort n elements (Hoare, 1962):

$$\begin{split} Q_n &= 2(n+1)H_n - 4n = 2n\ln n + (2\gamma - 4)n + 2\ln n + O(1) \\ \text{where } H_n &= \sum_{1\leqslant k\leqslant n} 1/k = \ln n + O(1) \text{ is the n-th} \\ \text{harmonic number.} \end{split}$$

D.E. Knuth

 Average number of comparisons C_{n,m} to select the m-th out of n:

$$C_{n,m} = n - 1 + \sum_{k=m+1}^{n} \pi_{n,k} \cdot C_{k-1,m} + \sum_{k=1}^{m-1} \pi_{n,k} \cdot C_{n-k,m-k}$$

 Average number of comparisons C_{n,m} to select the m-th out of n elements (Knuth, 1971):

$$\begin{split} C_{n,m} = & 2 \big(n + 3 + (n+1) H_n \\ & - (n+3-m) H_{n+1-m} - (m+2) H_m \big) \end{split}$$

Partial quicksort: Average cost

 Average number of comparisons P_{n,m} to sort the m smallest elements out of n:

$$P_{n,m} = n - 1 + \sum_{k=m+1}^{n} \pi_{n,k} \cdot P_{k-1,m} + \sum_{k=1}^{m} \pi_{n,k} \cdot (P_{k-1,k-1} + P_{n-k,m-k})$$

• The solution is (Martínez, 2004):

$$P_{n,m} = 2n + 2(n+1)H_n - 2(n+3-m)H_{n+1-m} - 6m + 6$$

• $I_t = [\ell_t, u_t]$: the tth interval, $1 \leqslant t \leqslant p$

- $\bar{I}_t = [\mathfrak{u}_t + 1..\ell_{t+1} 1]$: the tth gap, $0 \leqslant t \leqslant p$
- $\mathfrak{m}_t = |I_t| = \mathfrak{u}_t \ell_t + 1$: size of the tth interval
- $\overline{\mathfrak{m}}_t = |\overline{I}_t| = \ell_{t+1} \mathfrak{u}_t 1$: size of the tth gap
- $m = m_1 + \ldots + m_p$: # of elements to be sorted
- $\overline{\mathfrak{m}} = \overline{\mathfrak{m}}_0 + \ldots + \overline{\mathfrak{m}}_p = \mathfrak{n} \mathfrak{m}$: # of elements not sorted

- $I_t = [\ell_t, u_t]$: the tth interval, $1 \leqslant t \leqslant p$
- $\overline{I}_t = [\mathfrak{u}_t + 1..\ell_{t+1} 1]$: the tth gap, 0 $\leqslant t \leqslant p$
- $\mathfrak{m}_t = |I_t| = \mathfrak{u}_t \ell_t + 1$: size of the tth interval
- $\overline{\mathfrak{m}}_t = |\overline{I}_t| = \ell_{t+1} \mathfrak{u}_t 1$: size of the tth gap
- $m = m_1 + \ldots + m_p$: # of elements to be sorted
- $\overline{\mathfrak{m}} = \overline{\mathfrak{m}}_0 + \ldots + \overline{\mathfrak{m}}_p = \mathfrak{n} \mathfrak{m}$: # of elements not sorted

- $I_t = [\ell_t, u_t]$: the tth interval, $1 \leqslant t \leqslant p$
- $\bar{I}_t = [\mathfrak{u}_t + 1..\ell_{t+1} 1]$: the tth gap, $0 \leqslant t \leqslant p$
- $m_t = |I_t| = u_t \ell_t + 1$: size of the tth interval
- $\overline{\mathfrak{m}}_t = |\overline{I}_t| = \ell_{t+1} \mathfrak{u}_t 1$: size of the tth gap
- $m = m_1 + \ldots + m_p$: # of elements to be sorted
- $\overline{m} = \overline{m}_0 + \ldots + \overline{m}_p = n m$: # of elements not sorted

- $I_t = [\ell_t, u_t]$: the tth interval, $1 \le t \le p$ • $\overline{I}_t = [u_t + 1 .. \ell_{t+1} - 1]$: the tth gap, $0 \le t \le p$ • $m_t = |I_t| = u_t - \ell_t + 1$: size of the tth interval
- $\mathbf{e}_{\mathbf{r}} = |\mathbf{r}_{\mathbf{r}}| = u_{\mathbf{r}} \quad \mathbf{e}_{\mathbf{r}} + \mathbf{r} \quad \mathbf{b}_{\mathbf{r}} = \mathbf{e}_{\mathbf{r}} + \mathbf{e}_{\mathbf{$
- $\overline{\mathfrak{m}}_t = |\overline{I}_t| = \ell_{t+1} \mathfrak{u}_t 1$: size of the tth gap
- $m = m_1 + \ldots + m_p$: # of elements to be sorted
- $\overline{m} = \overline{m}_0 + \ldots + \overline{m}_p = n m$: # of elements not sorted

• $I_t = [\ell_t, u_t]$: the tth interval, $1 \le t \le p$ • $\overline{I}_t = [u_t + 1..\ell_{t+1} - 1]$: the tth gap, $0 \le t \le p$ • $m_t = |I_t| = u_t - \ell_t + 1$: size of the tth interval • $\overline{m}_t = |\overline{I}_t| = \ell_{t+1} - u_t - 1$: size of the tth gap • $m = m_1 + \ldots + m_p$: # of elements to be sorted • $\overline{m} = \overline{m}_0 + \ldots + \overline{m}_p = n - m$: # of elements not sorted

•
$$I_t = [\ell_t, u_t]$$
: the tth interval, $1 \le t \le p$
• $\overline{I}_t = [u_t + 1..\ell_{t+1} - 1]$: the tth gap, $0 \le t \le p$
• $m_t = |I_t| = u_t - \ell_t + 1$: size of the tth interval
• $\overline{m}_t = |\overline{I}_t| = \ell_{t+1} - u_t - 1$: size of the tth gap
• $m = m_1 + \ldots + m_p$: # of elements to be sorted
• $\overline{m} = \overline{m}_0 + \ldots + \overline{m}_p = n - m$: # of elements not sorted

• We only count element comparisons

- Each partitioning stage needs n 1 comparisons of the pivot with all the other elements
- We assume that pivots are chosen at random $(\pi_{n,k} = 1/n)$
- C_{n;[I_r,...,I_s]} = the average number of comparisons needed to do interval sort on n elements for the given set of intervals {I_r,..., I_s}

- We only count element comparisons
- Each partitioning stage needs n 1 comparisons of the pivot with all the other elements
- We assume that pivots are chosen at random $(\pi_{n,k} = 1/n)$
- C_{n;[I_r,...,I_s]} = the average number of comparisons needed to do interval sort on n elements for the given set of intervals {I_r,..., I_s}

- We only count element comparisons
- Each partitioning stage needs n 1 comparisons of the pivot with all the other elements
- We assume that pivots are chosen at random $(\pi_{n,k} = 1/n)$
- C_{n;{Ir,...,Is}} = the average number of comparisons needed to do interval sort on n elements for the given set of intervals {Ir,...,Is}

- We only count element comparisons
- Each partitioning stage needs n 1 comparisons of the pivot with all the other elements
- We assume that pivots are chosen at random $(\pi_{n,k} = 1/n)$
- $C_{n;\{I_r,...,I_s\}}$ = the average number of comparisons needed to do interval sort on n elements for the given set of intervals $\{I_r, \ldots, I_s\}$

$$\begin{split} C_{n;\{I_{r},...,I_{s}\}} &= n - 1 + \sum_{t=r-1}^{s} \sum_{k \in \overline{I}_{t}} \pi_{n,k} \big(C_{k-1;\{I_{r},...,I_{t}\}} + C_{n-k;\{I_{t+1},...,I_{s}\}} \big) \\ &+ \sum_{t=r}^{s} \sum_{k \in I_{t}} \pi_{n,k} \big(C_{k-1;\{I_{r},...,I_{t}\}} + C_{n-k;\{I_{t},...,I_{s}\}} \big), \end{split}$$

- We can solve this problem "iteratively", using generating functions
- First we have p = 1 and $I_1 = [i, j]$ and we translate the recurrence for $C_{n;\{[i,j]\}}$ into a functional equation for

$$C(z; x, y) = \sum_{n \ge 0} \sum_{1 \leqslant i \leqslant j \leqslant n} C_{n; \{[i,j]\}} z^n x^i y^j,$$

which is actually a first-order linear differential equation

- We can solve this problem "iteratively", using generating functions
- First we have p = 1 and $I_1 = [i, j]$ and we translate the recurrence for $C_{n;\{[i,j]\}}$ into a functional equation for

$$C(z; x, y) = \sum_{n \ge 0} \sum_{1 \leqslant i \leqslant j \leqslant n} C_{n; \{[i,j]\}} z^n x^i y^j,$$

which is actually a first-order linear differential equation

• Then you can do a similar thing for p = 2, by introducing

$$C(z; x_1, y_1, x_2, y_2) = \sum_{n \ge 0} \sum_{1 \leqslant i \leqslant j \leqslant i' \leqslant j' \leqslant n} C_{n; \{[i,j], [i',j']\}} z^n x_1^i y_1^j x_2^{i'} y_2^j$$

which satisfies a similar ODE involving $C(z;\boldsymbol{x}_r,\boldsymbol{y}_r)$

- A pattern emerges here, so that one can obtain a general form for the ODE satisfied by C(z; x₁, y₁,..., x_p, y_p)
- Solve and extract the coefficients

• Then you can do a similar thing for p = 2, by introducing

$$C(z; x_1, y_1, x_2, y_2) = \sum_{n \ge 0} \sum_{1 \le i \le j \le i' \le j' \le n} C_{n; \{[i,j], [i',j']\}} z^n x_1^i y_1^j x_2^{i'} y_2^j$$

which satisfies a similar ODE involving $C(z; x_r, y_r)$

- A pattern emerges here, so that one can obtain a general form for the ODE satisfied by C(z; x₁, y₁,..., x_p, y_p)
- Solve and extract the coefficients

• Then you can do a similar thing for p = 2, by introducing

$$C(z; x_1, y_1, x_2, y_2) = \sum_{n \ge 0} \sum_{1 \le i \le j \le i' \le j' \le n} C_{n; \{[i,j], [i',j']\}} z^n x_1^i y_1^j x_2^{i'} y_2^j$$

which satisfies a similar ODE involving $C(z; x_r, y_r)$

- A pattern emerges here, so that one can obtain a general form for the ODE satisfied by C(z; x₁, y₁,..., x_p, y_p)
- Solve and extract the coefficients

We guessed the solution from the known solutions for quicksort, quickselect, partial quicksort and multiple quickselect, some trial-and-error, and finally proved it by induction...

Theorem

The average number of element comparisons $C_n := C_{n;\{I_1,...,I_p\}}$ needed by chunksort given the intervals $\{I_1, \ldots, I_p\}$ is

$$\begin{split} C_n &= 2n + u_p - \ell_1 + 2(n+1)H_n - 7m - 2 + 15p \\ &- 2(\ell_1 + 2)H_{\ell_1} - 2(n+3 - u_p)H_{n+1 - u_p} \\ &- 2\sum_{k=1}^{p-1}(\overline{m}_k + 5)H_{\overline{m}_k + 2}, \end{split}$$

Chunksort: A simple divide & conquer algorithm for interval sorting

- 2 Average cost of chunksort
- A simple lower bound for interval sorting
 - Intermezzo
- 5 "Optimal" chunksort
- 6 Disgression: How far from optimal?

Conclusions

- Λ(n, m, m) = minimum # of comparisons needed on average to solve interval sorting of intervals with sizes m = (m₁,..., m_p) and gaps m = (m₀,..., m_p)
- The two vectors **m**, **m** and the value n univocally determining the interval sorting instance
- Suppose we perform an optimal interval sort of the array of n elements, then we sort optimally the gaps; hence

$$\Lambda(n, \boldsymbol{m}, \overline{\boldsymbol{m}}) + \sum_{t=0}^p \text{log}_2(\overline{\boldsymbol{m}}_t!) \geqslant \text{log}_2(n!)$$

- Λ(n, m, m) = minimum # of comparisons needed on average to solve interval sorting of intervals with sizes m = (m₁,..., m_p) and gaps m = (m₀,..., m_p)
- The two vectors **m**, **m** and the value n univocally determining the interval sorting instance
- Suppose we perform an optimal interval sort of the array of n elements, then we sort optimally the gaps; hence

$$\Lambda(n, \boldsymbol{m}, \boldsymbol{\overline{m}}) + \sum_{t=0}^{p} \log_{2}(\boldsymbol{\overline{m}}_{t}!) \geqslant \log_{2}(n!)$$

- Λ(n, m, m) = minimum # of comparisons needed on average to solve interval sorting of intervals with sizes m = (m₁,..., m_p) and gaps m = (m₀,..., m_p)
- The two vectors **m**, **m** and the value n univocally determining the interval sorting instance
- Suppose we perform an optimal interval sort of the array of n elements, then we sort optimally the gaps; hence

$$\Lambda(n, \boldsymbol{m}, \overline{\boldsymbol{m}}) + \sum_{t=0}^p \text{log}_2(\overline{\boldsymbol{m}}_t!) \geqslant \text{log}_2(n!)$$

Lemma

$$\begin{split} \Lambda(n, \boldsymbol{m}, \overline{\boldsymbol{m}}) & \geqslant \sum_{t=1}^{p} m_t \log_2 m_t \\ & + n \mathcal{H}\left(\{\overline{m}_0/n, m_1/n, \overline{m}_1/n, \dots, m_p/n, \overline{m}_p/n\}\right) \\ & - m \log_2 e + o(n) \end{split}$$

with $\mathcal{H}(\{q_t\}) = -\sum_t q_t \log_2 q_t$ denoting the entropy of the discrete probability distribution $\{q_t\}$ and $m = m_1 + \ldots + m_p$.

Chunksort: A simple divide & conquer algorithm for interval sorting

- 2 Average cost of chunksort
 - A simple lower bound for interval sorting

Intermezzo

- 5 "Optimal" chunksort
- 6 Disgression: How far from optimal?

7 Conclusions

M. H. van Emden

- Using the median of a small sample as the pivot of each recursive call of quicksort improves the average cost of quicksort (Singleton's median-of-3, 1969)
- Van Emden (1970) and Hennequin (1989) have studied the performance of quicksort with median-of-(2t + 1) showing an steady improvement of performance

$$C_n^{(t)} = c_t n \log_2 n,$$
 $c_0 = 2 \ln 2 = 1.386, c_1 = 1.188, \dots, c_{\infty} = 100$

M. H. van Emden

- Using the median of a small sample as the pivot of each recursive call of quicksort improves the average cost of quicksort (Singleton's median-of-3, 1969)
- Van Emden (1970) and Hennequin (1989) have studied the performance of quicksort with median-of-(2t + 1) showing an steady improvement of performance

$$C_n^{(t)} = c_t n \log_2 n, \qquad c_0 = 2 \ln 2 = 1.386, c_1 = 1.188, \dots, c_\infty = 1$$

C. C. McGeoch S. Roura J.D. Tygar

- McGeoch and Tygar (1995) considered using the median of a variable-size sample for the first round, then fixed size samples on subsequent calls
- Martínez and Roura (2001) studied the use of variable-size sampling for quicksort and quickselect, showing that optimal expected performance can be achieved

C. C. McGeoch S. Roura J.D. Tygar

- McGeoch and Tygar (1995) considered using the median of a variable-size sample for the first round, then fixed size samples on subsequent calls
- Martínez and Roura (2001) studied the use of variable-size sampling for quicksort and quickselect, showing that optimal expected performance can be achieved

Theorem (Martínez, Roura, 2001)

The expected performance of quicksort using as pivots the median of samples of size s = s(n), such that $s \to \infty$ and $s/n \to 0$ as $n \to \infty$ is

 $n \log_2 n + \textit{lower order terms}$

Optimal quicksort

- The lower order terms are minimized by choosing samples of size $\Theta(\sqrt{n})$
- The constant hidden in Θ(√n) depends on the (linear) time algorithm used to find the median of the samples

Optimal quicksort

- The lower order terms are minimized by choosing samples of size $\Theta(\sqrt{n})$
- The constant hidden in Θ(√n) depends on the (linear) time algorithm used to find the median of the samples

Optimal quickselect

R. Grübel P. Kirschenhofer H. Prodinger

- $\bullet \mbox{ Median-of-}(2t+1)$ sampling can also be used for quickselect
- The improvements on the performance have been studied by several authors: Kirschenhofer, Prodinger, Martínez (1997), Grübel (1999), Martínez and Roura (2001)
- But ... is the median of the sample a good choice?

Optimal quickselect

R. Grübel P. Kirschenhofer H. Prodinger

- $\bullet \mbox{ Median-of-}(2t+1)$ sampling can also be used for quickselect
- The improvements on the performance have been studied by several authors: Kirschenhofer, Prodinger, Martínez (1997), Grübel (1999), Martínez and Roura (2001)
- But ... is the median of the sample a good choice?

Optimal quickselect

R. Grübel P. Kirschenhofer H. Prodinger

- Median-of-(2t + 1) sampling can also be used for quickselect
- The improvements on the performance have been studied by several authors: Kirschenhofer, Prodinger, Martínez (1997), Grübel (1999), Martínez and Roura (2001)
- But ... is the median of the sample a good choice?

D. N. Panario A. T. Viola

 In 2004, Martínez, Panario and Viola consider variants of quickselect where the rank r of the pivot within the sample of size s is proportional to the rank j of the sought element in the array n:

$$r\approx \frac{j}{n}\cdot s$$

• More in general, they consider all variants where r is a function of $\alpha=j/n$

Optimal quickselect

For all variants

$$C_{n,j} = f(\alpha) \cdot n + o(n), \alpha = j/n,$$

for instance, $f(\alpha)=m_0(\alpha)=2+2\mathcal{H}(\alpha)$ for standard quickselect and $f(\alpha)=m_1(\alpha)=2+3\alpha(1-\alpha)$ for median-of-three

- Optimal expected performance can be achieve with 3 basic "ingredients:"
 - Using variable-sample sizes s = s(n) with $s \to \infty$, $s/n \to 0$
 - The rank of the pivot withis the sample must be $r \sim \alpha \cdot s$
 - If the soundst element has rank j > n/2 take r = α ⋅ s − δ; if j < n/2 then r = α ⋅ s + δ, for some "small" δ, say δ = √s
 - You want the chosen pivot to land very close to j on the correct side with high probability

- Optimal expected performance can be achieve with 3 basic "ingredients:"
 - Using variable-sample sizes s=s(n) with $s\rightarrow\infty,\,s/n\rightarrow0$
 - The rank of the pivot withis the sample must be $r \sim \alpha \cdot s$
 - If the soundst element has rank j > n/2 take r = α ⋅ s − δ; if j < n/2 then r = α ⋅ s + δ, for some "small" δ, say δ = √s
 - You want the chosen pivot to land very close to j on the correct side with high probability

- Optimal expected performance can be achieve with 3 basic "ingredients:"
 - Using variable-sample sizes s=s(n) with $s\rightarrow\infty,\,s/n\rightarrow0$
 - The rank of the pivot withis the sample must be $r\sim \alpha\cdot s$
 - If the souhgt element has rank j > n/2 take $r = \alpha \cdot s \delta$; if j < n/2 then $r = \alpha \cdot s + \delta$, for some "small" δ , say $\delta = \sqrt{s}$
 - You want the chosen pivot to land very close to j on the correct side with high probability

- Optimal expected performance can be achieve with 3 basic "ingredients:"
 - Using variable-sample sizes s=s(n) with $s\rightarrow\infty,\,s/n\rightarrow0$
 - The rank of the pivot withis the sample must be $r\sim \alpha\cdot s$
 - If the soundst element has rank j > n/2 take r = α ⋅ s − δ; if j < n/2 then r = α ⋅ s + δ, for some "small" δ, say δ = √s
 - You want the chosen pivot to land very close to j on the correct side with high probability

- Optimal expected performance can be achieve with 3 basic "ingredients:"
 - Using variable-sample sizes s=s(n) with $s\rightarrow\infty,\,s/n\rightarrow0$
 - The rank of the pivot withis the sample must be $r\sim \alpha\cdot s$
 - If the souhgt element has rank j > n/2 take $r = \alpha \cdot s \delta$; if j < n/2 then $r = \alpha \cdot s + \delta$, for some "small" δ , say $\delta = \sqrt{s}$
 - You want the chosen pivot to land very close to j on the correct side with high probability

Theorem (Martínez, Panario, Viola, 2004)

Any variant of quickselect using biased proportion-from-s with variable-size sampling has

$$f(\alpha) = 1 + \min(\alpha, 1 - \alpha)$$

Thus $C_{n,j} \sim n + min(j, n - j) + \textit{lower order terms}$

- Chunksort: A simple divide & conquer algorithm for interval sorting
- 2 Average cost of chunksort
- 3 A simple lower bound for interval sorting
- Intermezzo
- 5 "Optimal" chunksort
 - 6 Disgression: How far from optimal?

Conclusions

- Merge small gaps: replace two intervals separated by a gap of size o(n) by a single interval
- If there is only one interval to sort and it contains m = n - o(n) elements pick a pivot whose rank is close to n/2; use the median of a large (\sqrt{n}) sample
- If not, choose some endpoint l_r , u_r , ..., l_s , u_s , say ρ
 - If $\rho = r_{c}$ pick is pixel from a large sample with value proportional to ρ and biased to land to the left of ρ . If $\rho = r_{c}$ pick is pixel from a large sample with rank proportional to ρ and biased to lead to the right of ρ .

- Merge small gaps: replace two intervals separated by a gap of size o(n) by a single interval
- If there is only one interval to sort and it contains
 m = n o(n) elements pick a pivot whose rank is close to n/2; use the median of a large (\sqrt{n}) sample
- If not, choose some endpoint l_r, u_r, ..., l_s, u_s, say ρ
 If ρ = l_i, pick a pivot from a large sample with rank proportional to p and biased to land to the left of p
 If ρ = u_i pick a pivot from a large sample with rank proportional to p and biased to land to the nett of p

- Merge small gaps: replace two intervals separated by a gap of size o(n) by a single interval
- If there is only one interval to sort and it contains
 m = n o(n) elements pick a pivot whose rank is close to n/2; use the median of a large (\sqrt{n}) sample
- **③** If not, choose some endpoint ℓ_r , u_r , ..., ℓ_s , u_s , say ρ
 - If $\rho = \ell_t$, pick a pivot from a large sample with rank proportional to ρ and biased to land to the left of ρ
 - If $\rho = u_t$, pick a pivot from a large sample with rank proportional to ρ and biased to land to the right of ρ

- Merge small gaps: replace two intervals separated by a gap of size o(n) by a single interval
- If there is only one interval to sort and it contains
 m = n o(n) elements pick a pivot whose rank is close to n/2; use the median of a large (\sqrt{n}) sample
- **3** If not, choose some endpoint ℓ_r , u_r , ..., ℓ_s , u_s , say ρ
 - If $\rho = \ell_t$, pick a pivot from a large sample with rank proportional to ρ and biased to land to the left of ρ
 - If $\rho = u_t$, pick a pivot from a large sample with rank proportional to ρ and biased to land to the right of ρ

- Merge small gaps: replace two intervals separated by a gap of size o(n) by a single interval
- If there is only one interval to sort and it contains
 m = n o(n) elements pick a pivot whose rank is close to n/2; use the median of a large (\sqrt{n}) sample
- If not, choose some endpoint ℓ_r , u_r , ..., ℓ_s , u_s , say ρ
 - If $\rho = \ell_t$, pick a pivot from a large sample with rank proportional to ρ and biased to land to the left of ρ
 - If $\rho = u_t$, pick a pivot from a large sample with rank proportional to ρ and biased to land to the right of ρ

- The problem is thus to find the optimal order programming
- Given the collection of endpoints ρ_i = u_{r-1}, ρ_{i+1} = l_r, ..., ρ_{j-1} = u_s, ρ_j = l_{s+1} find the endpoint ρ_k such that minimizes c(i, j):

$$c(i,j) = \rho_j - \rho_i + \min_{i < k < j} (c(i,k) + c(k,j))$$

- The problem is thus to find the optimal order programming
- Given the collection of endpoints $\rho_i = u_{r-1}$, $\rho_{i+1} = \ell_r$, ..., $\rho_{j-1} = u_s$, $\rho_j = \ell_{s+1}$ find the endpoint ρ_k such that minimizes c(i, j):

$$c(i,j) = \rho_j - \rho_i + \min_{i < k < j} (c(i,k) + c(k,j))$$

F.F. Yao

- The dynamic programming to find the optimal order to "cut the bar" has cost O(p³); it is almost analogous to building an optimal search tree where the weights of the leaves are the sizes of the intervals
- The efficiency of the algorithm can be greatly improved to O(p²) using Knuth-Yao's technique

- We can use some heuristic to find a near-optimal solution to the "cut the bar" problem with cost $O(p \log p)$
- For instance, at each step, we can choose the endpoint l_k or u_k which is closer to (ρ_j ρ_i)/2; some care must be taken if we have ties, e.g., if l_k = u_k
- The analysis of the heuristic provides a useful upper bound on *c*(0, 2p + 1), the optimal cost of the "cut the bar" phase
- The total cost of chunksort becomes

$$\begin{split} \sum_{i=1}^{p} m_t \log_2 m_t + c(0, 2p + 1) + O(p\sqrt{n}) \\ \leqslant \sum_{t=1}^{p} m_t \log_2 m_t + n \cdot H + n + \text{lower order terms} \end{split}$$

- We can use some heuristic to find a near-optimal solution to the "cut the bar" problem with cost O(p log p)
- For instance, at each step, we can choose the endpoint ℓ_k or u_k which is closer to (ρ_j ρ_i)/2; some care must be taken if we have ties, e.g., if ℓ_k = u_k
- The analysis of the heuristic provides a useful upper bound on c(0, 2p + 1), the optimal cost of the "cut the bar" phase
- The total cost of chunksort becomes

$$\begin{split} \sum_{i=1}^{p} m_t \log_2 m_t + c(0, 2p+1) + O(p\sqrt{n}) \\ \leqslant \sum_{t=1}^{p} m_t \log_2 m_t + n \cdot H + n + \text{lower order terms} \end{split}$$

- We can use some heuristic to find a near-optimal solution to the "cut the bar" problem with cost O(p log p)
- For instance, at each step, we can choose the endpoint ℓ_k or u_k which is closer to (ρ_j ρ_i)/2; some care must be taken if we have ties, e.g., if ℓ_k = u_k
- The analysis of the heuristic provides a useful upper bound on c(0, 2p + 1), the optimal cost of the "cut the bar" phase

• The total cost of chunksort becomes

$$\sum_{i=1}^{p} m_t \log_2 m_t + c(0, 2p + 1) + O(p\sqrt{n})$$
$$\leqslant \sum_{t=1}^{p} m_t \log_2 m_t + n \cdot H + n + \text{lower order terms}$$

- We can use some heuristic to find a near-optimal solution to the "cut the bar" problem with cost O(p log p)
- For instance, at each step, we can choose the endpoint ℓ_k or u_k which is closer to (ρ_j ρ_i)/2; some care must be taken if we have ties, e.g., if ℓ_k = u_k
- The analysis of the heuristic provides a useful upper bound on c(0, 2p + 1), the optimal cost of the "cut the bar" phase
- The total cost of chunksort becomes

$$\begin{split} \sum_{t=1}^p m_t \log_2 m_t + c(0, 2p+1) + O(p\sqrt{n}) \\ \leqslant \sum_{t=1}^p m_t \log_2 m_t + n \cdot H + n + \text{lower order terms} \end{split}$$

• Together with the lower bound for Λ

$$\begin{split} \sum_{t=1}^p m_t \log_2 m_t + n \cdot H - m \log_2 e + o(n) \leqslant \Lambda(n, \boldsymbol{m}, \overline{\boldsymbol{m}}) \\ \leqslant \sum_{t=1}^p m_t \log_2 m_t + c(0, 2p+1) + O(p\sqrt{n}) \\ \leqslant \sum_{t=1}^p m_t \log_2 m_t + n \cdot H + n + \text{lower order terms.} \end{split}$$

• The lower and upper bounds differ by n + o(n) comparisons if $p \ll \sqrt{n}$ (which indeed is the case, as we collapsed all "small" gaps!)

• Together with the lower bound for Λ

$$\begin{split} \sum_{t=1}^p m_t \log_2 m_t + n \cdot H - m \log_2 e + o(n) &\leq \Lambda(n, \boldsymbol{m}, \overline{\boldsymbol{m}}) \\ &\leq \sum_{t=1}^p m_t \log_2 m_t + c(0, 2p+1) + O(p\sqrt{n}) \\ &\leq \sum_{t=1}^p m_t \log_2 m_t + n \cdot H + n + \text{lower order terms.} \end{split}$$

• The lower and upper bounds differ by n + o(n) comparisons if $p \ll \sqrt{n}$ (which indeed is the case, as we collapsed all "small" gaps!)

K. Kaligosi K. Mehlhorn J. I. Munro P. Sanders

- Kaligosi, Mehlhorn, Munro and Sanders (2005) have considered optimal multiple selection; they use similar techniques, but they propose an algorithm which picks a pivot close to the median for each recursive stage
- This yields a solution (for multiple selection) which is off by O(n) comparisons from the optimal; our solution —which generalizes multiple selection— is off by at most n + o(n) comparisons

K. Kaligosi K. Mehlhorn J. I. Munro P. Sanders

- Kaligosi, Mehlhorn, Munro and Sanders (2005) have considered optimal multiple selection; they use similar techniques, but they propose an algorithm which picks a pivot close to the median for each recursive stage
- This yields a solution (for multiple selection) which is off by O(n) comparisons from the optimal; our solution —which generalizes multiple selection— is off by at most n + o(n) comparisons

- Chunksort: A simple divide & conquer algorithm for interval sorting
- 2 Average cost of chunksort
- 3 A simple lower bound for interval sorting
- Intermezzo
- 5 "Optimal" chunksort
- Disgression: How far from optimal?

7 Conclusions

 $\textcircled{\ }$ The lower bound for $\Lambda(n,m,\overline{m})$ is not tight, for instance, for selection

$$\begin{split} \Lambda(n, \langle 1 \rangle, \langle j-1, n-j \rangle) &= n + \min(j-1, n-j) + l.o.t. &\leftarrow \text{ on avg!} \\ &\gg n \mathcal{H}\left(\{(j-1)/n, 1/n, (n-j)/n\}\right) + l.o.t. \end{split}$$

The upper bound corresponds to the heuristic for "cutting the bar", and isn't tight either

 The lower bound for $\Lambda(n,m,\overline{m})$ is not tight, for instance, for selection

$$\begin{split} \Lambda(n, \langle 1 \rangle, \langle j-1, n-j \rangle) &= n + \min(j-1, n-j) + \text{l.o.t.} &\leftarrow \text{ on avg!} \\ & \gg n \mathcal{H}\left(\{(j-1)/n, 1/n, (n-j)/n\}\right) + \text{l.o.t.} \end{split}$$

The upper bound corresponds to the heuristic for "cutting the bar", and isn't tight either

- The algorithm that we propose optimally solves sorting and selection
- We conjecture that it is optimal up to o(n) comparisons for all interval sort instances, not just sorting and selection

- The algorithm that we propose optimally solves sorting and selection
- We conjecture that it is optimal up to o(n) comparisons for all interval sort instances, not just sorting and selection
- Chunksort: A simple divide & conquer algorithm for interval sorting
- 2 Average cost of chunksort
- 3 A simple lower bound for interval sorting
- Intermezzo
- 5 "Optimal" chunksort
- 6 Disgression: How far from optimal?

Conclusions

- Interval sort's main interest is that it smoothly generalizes several fundamental problems: sorting, selection, multiple selection and partial sorting
- Chunksort (its basic variant) is a simple and elegant algorithm in the spirit of quicksort; its average performance is $\leq 2 + 2 \ln 2 = 3.386$ times the optimal

- Interval sort's main interest is that it smoothly generalizes several fundamental problems: sorting, selection, multiple selection and partial sorting
- Chunksort (its basic variant) is a simple and elegant algorithm in the spirit of quicksort; its average performance is $\leq 2 + 2 \ln 2 = 3.386$ times the optimal

- Carefully choosing the pivots yields near-optimal performance; we conjecture it is optimal up to o(n) comparisons
- For the choice of pivots we need to "orchestrate" two ingredients:
 - large samples and proportion-from to choose pivots landing near the places where we need them
 - dynamic programming/heuristic to find the optimal order to "cut the bar"

- Carefully choosing the pivots yields near-optimal performance; we conjecture it is optimal up to o(n) comparisons
- For the choice of pivots we need to "orchestrate" two ingredients:
 - large samples and proportion-from to choose pivots landing near the places where we need them
 - dynamic programming/heuristic to find the optimal order to "cut the bar"

- Carefully choosing the pivots yields near-optimal performance; we conjecture it is optimal up to o(n) comparisons
- For the choice of pivots we need to "orchestrate" two ingredients:
 - large samples and proportion-from to choose pivots landing near the places where we need them
 - dynamic programming/heuristic to find the optimal order to "cut the bar"

- Carefully choosing the pivots yields near-optimal performance; we conjecture it is optimal up to o(n) comparisons
- For the choice of pivots we need to "orchestrate" two ingredients:
 - large samples and proportion-from to choose pivots landing near the places where we need them
 - dynamic programming/heuristic to find the optimal order to "cut the bar"

• There are several open problems remaining:

Better lower bounds

- Proving the conjecture
- Other randomized or deterministic algorithms

• . . .

- There are several open problems remaining:
 - Better lower bounds
 - Proving the conjecture
 - Other randomized or deterministic algorithms
 - . . .

- There are several open problems remaining:
 - Better lower bounds
 - Proving the conjecture
 - Other randomized or deterministic algorithms

• . . .

- There are several open problems remaining:
 - Better lower bounds
 - Proving the conjecture
 - Other randomized or deterministic algorithms
 - ...

purea icc!uMoboe

Merci beaucoup!