
Interval Sorting

Conrado Martínez
U. Politècnica Catalunya

GREYC, U. Caen, June 1st, 2010

Dedicated to Brigitte Vallée

Joint work with:

R.M. Jiménez

Introduction

The problem:
Input: An array A[1..n] of n items drawn from a totally

ordered domain; a set I = {[`t,ut] |1 6 t 6 p} of p
disjoint intervals with

1 6 `1 6 u1 < `2 6 u2 < · · · < `p 6 up 6 n,

Output: The array A rearranged in such a way that
1 A[`t..ut] contains the `tth,. . . ,utth smallest

elements of A in nondecreasing order, for all
t, 1 6 t 6 p

2 A[ut + 1..`t+1 − 1] contains the (ut + 1)th,
. . . , (`t+1 − 1)th smallest elements of A, for
all t, 0 6 t 6 p (u0 = 0, `p+1 = n+ 1)

Introduction

Example
p = 2, I1 = [5, 8], I2 = [12, 12]

3 11 5 7 8 4 9 1 13 10 12 14 15 2 6

Introduction

Example
p = 2, I1 = [5, 8], I2 = [12, 12]

3 1 4 2 5 6 7 8 9 11 10 12 15 13 14
←− gap −→ ←− block −→ ←− gap −→ . . .

Introduction

The main interest of interval sorting is that it generalizes
several related fundamental problems:

Sorting: p = 1, I = {[1,n]}
Selection of the jth: p = 1, I = {[j, j]}
Multiple selection: I = {[j1, j1], [j2, j2], . . . , [jp, jp]}
Partial sorting: p = 1, I = {[1,m]},m < n

Introduction

The main interest of interval sorting is that it generalizes
several related fundamental problems:

Sorting: p = 1, I = {[1,n]}
Selection of the jth: p = 1, I = {[j, j]}
Multiple selection: I = {[j1, j1], [j2, j2], . . . , [jp, jp]}
Partial sorting: p = 1, I = {[1,m]},m < n

Introduction

The main interest of interval sorting is that it generalizes
several related fundamental problems:

Sorting: p = 1, I = {[1,n]}
Selection of the jth: p = 1, I = {[j, j]}
Multiple selection: I = {[j1, j1], [j2, j2], . . . , [jp, jp]}
Partial sorting: p = 1, I = {[1,m]},m < n

Introduction

The main interest of interval sorting is that it generalizes
several related fundamental problems:

Sorting: p = 1, I = {[1,n]}
Selection of the jth: p = 1, I = {[j, j]}
Multiple selection: I = {[j1, j1], [j2, j2], . . . , [jp, jp]}
Partial sorting: p = 1, I = {[1,m]},m < n

Introduction

Other instances of interval sorting might be useful:
Sort & filter: p = 1, I = [βn, (1 − β)n],β < 1/2
Outliers: p = 2, I = {[1,k], [n− k+ 1,n]}

Sorting A in (expected) time Θ(n logn) solves the
problem, but this is wasteful if m = |I1|+ . . . + |Ip|� n

Introduction

Other instances of interval sorting might be useful:
Sort & filter: p = 1, I = [βn, (1 − β)n],β < 1/2
Outliers: p = 2, I = {[1,k], [n− k+ 1,n]}

Sorting A in (expected) time Θ(n logn) solves the
problem, but this is wasteful if m = |I1|+ . . . + |Ip|� n

Introduction

Other instances of interval sorting might be useful:
Sort & filter: p = 1, I = [βn, (1 − β)n],β < 1/2
Outliers: p = 2, I = {[1,k], [n− k+ 1,n]}

Sorting A in (expected) time Θ(n logn) solves the
problem, but this is wasteful if m = |I1|+ . . . + |Ip|� n

Introduction

Other instances of interval sorting might be useful:
Sort & filter: p = 1, I = [βn, (1 − β)n],β < 1/2
Outliers: p = 2, I = {[1,k], [n− k+ 1,n]}

Sorting A in (expected) time Θ(n logn) solves the
problem, but this is wasteful if m = |I1|+ . . . + |Ip|� n

What’s ahead?

1 Chunksort: A simple divide & conquer algorithm for interval
sorting

2 Average performance of chunksort
3 A simple lower bound for interval sorting
4 Intermezzo:

Optimal sampling strategies for quicksort
Optimal sampling strategies for quickselect

5 “Optimal” chunksort
6 Disgression: How far from optimal?

What’s ahead?

1 Chunksort: A simple divide & conquer algorithm for interval
sorting

2 Average performance of chunksort
3 A simple lower bound for interval sorting
4 Intermezzo:

Optimal sampling strategies for quicksort
Optimal sampling strategies for quickselect

5 “Optimal” chunksort
6 Disgression: How far from optimal?

What’s ahead?

1 Chunksort: A simple divide & conquer algorithm for interval
sorting

2 Average performance of chunksort
3 A simple lower bound for interval sorting
4 Intermezzo:

Optimal sampling strategies for quicksort
Optimal sampling strategies for quickselect

5 “Optimal” chunksort
6 Disgression: How far from optimal?

What’s ahead?

1 Chunksort: A simple divide & conquer algorithm for interval
sorting

2 Average performance of chunksort
3 A simple lower bound for interval sorting
4 Intermezzo:

Optimal sampling strategies for quicksort
Optimal sampling strategies for quickselect

5 “Optimal” chunksort
6 Disgression: How far from optimal?

What’s ahead?

1 Chunksort: A simple divide & conquer algorithm for interval
sorting

2 Average performance of chunksort
3 A simple lower bound for interval sorting
4 Intermezzo:

Optimal sampling strategies for quicksort
Optimal sampling strategies for quickselect

5 “Optimal” chunksort
6 Disgression: How far from optimal?

What’s ahead?

1 Chunksort: A simple divide & conquer algorithm for interval
sorting

2 Average performance of chunksort
3 A simple lower bound for interval sorting
4 Intermezzo:

Optimal sampling strategies for quicksort
Optimal sampling strategies for quickselect

5 “Optimal” chunksort
6 Disgression: How far from optimal?

What’s ahead?

1 Chunksort: A simple divide & conquer algorithm for interval
sorting

2 Average performance of chunksort
3 A simple lower bound for interval sorting
4 Intermezzo:

Optimal sampling strategies for quicksort
Optimal sampling strategies for quickselect

5 “Optimal” chunksort
6 Disgression: How far from optimal?

What’s ahead?

1 Chunksort: A simple divide & conquer algorithm for interval
sorting

2 Average performance of chunksort
3 A simple lower bound for interval sorting
4 Intermezzo:

Optimal sampling strategies for quicksort
Optimal sampling strategies for quickselect

5 “Optimal” chunksort
6 Disgression: How far from optimal?

1 Chunksort: A simple divide & conquer algorithm for interval
sorting

2 Average cost of chunksort

3 A simple lower bound for interval sorting

4 Intermezzo

5 “Optimal” chunksort

6 Disgression: How far from optimal?

7 Conclusions

Chunksort

procedure CHUNKSORT(A, i, j, I, r, s)
if i > j then return . A contains one or no

elements
if r 6 s then
pv← SELECTPIVOT(A, i, j)
PARTITION(A,pv, i, j,k)
t← LOCATE(I, r, s,k)

. Locate the value t such that `t 6 k 6 ut with
It = [`t,ut],
. or ut < k < `t+1

if ut < k then . k falls in the tth gap
CHUNKSORT(A, i,k− 1, I, r, t)
CHUNKSORT(A,k+ 1, j, I, t+ 1, s)

else . k falls in the tth interval
CHUNKSORT(A, i,k− 1, I, r, t)
CHUNKSORT(A,k+ 1, j, I, t, s)

Chunksort: An example

p< p > pA

k

 I

Chunksort: An example

p< p > pA

k
I

Chunksort: An example

p< p > pA

k

 I

Chunksort: An example

p< p > pA

I

k

Chunksort

Example (Using chunksort to sort)
p = 1, I1 = [1,n]
1 6 k 6 n =⇒ `1 6 k 6 u1 =⇒ r = s = t = 1

procedure CHUNKSORT(A, i, j, I, r, s)
. . .
if ut < k then . k falls in the tth gap

CHUNKSORT(A, i,k− 1, I, r, t)
CHUNKSORT(A,k+ 1, j, I, t+ 1, s)

else . k falls in the tth interval
CHUNKSORT(A, i,k− 1, I, r, t)
CHUNKSORT(A,k+ 1, j, I, t, s)

Chunksort

Example (Using chunksort for selection)
p = 1, I1 = [m,m]

m < k =⇒ t = 1,u1 < k

procedure CHUNKSORT(A, i, j, I, r, s)
. . .
if ut < k then . k falls in the tth gap

CHUNKSORT(A, i,k− 1, I, r, t)
CHUNKSORT(A,k+ 1, j, I, t+ 1, s)

else . k falls in the tth interval
CHUNKSORT(A, i,k− 1, I, r, t)
CHUNKSORT(A,k+ 1, j, I, t, s)

Chunksort

Example (Using chunksort for selection)
p = 1, I1 = [m,m]

m < k =⇒ t = 1,u1 < k

procedure CHUNKSORT(A, i, j, I, r, s)
. . .
if ut < k then . k falls in the tth gap

CHUNKSORT(A, i,k− 1, I, r, t)
CHUNKSORT(A,k+ 1, j, I, t+ 1, s)

else . k falls in the tth interval
CHUNKSORT(A, i,k− 1, I, r, t)
CHUNKSORT(A,k+ 1, j, I, t, s)

Chunksort

Example (Using chunksort for selection)
p = 1, I1 = [m,m]

k < m =⇒ t = 0,u0 < k < `1

procedure CHUNKSORT(A, i, j, I, r, s)
. . .
if ut < k then . k falls in the tth gap

CHUNKSORT(A, i,k− 1, I, r, t)
CHUNKSORT(A,k+ 1, j, I, t+ 1, s)

else . k falls in the tth interval
CHUNKSORT(A, i,k− 1, I, r, t)
CHUNKSORT(A,k+ 1, j, I, t, s)

Chunksort

Example (Using chunksort for selection)
p = 1, I1 = [m,m]

k < m =⇒ t = 0,u0 < k < `1

procedure CHUNKSORT(A, i, j, I, r, s)
. . .
if ut < k then . k falls in the tth gap

CHUNKSORT(A, i,k− 1, I, r, t)
CHUNKSORT(A,k+ 1, j, I, t+ 1, s)

else . k falls in the tth interval
CHUNKSORT(A, i,k− 1, I, r, t)
CHUNKSORT(A,k+ 1, j, I, t, s)

Chunksort

Example (Using chunksort for partial sorting)
p = 1, I1 = [1,m]

1 6 k 6 m =⇒ `1 6 k 6 u1 =⇒ r = s = t = 1,k 6 u1

procedure CHUNKSORT(A, i, j, I, r, s)
. . .
if ut < k then . k falls in the tth gap

CHUNKSORT(A, i,k− 1, I, r, t)
CHUNKSORT(A,k+ 1, j, I, t+ 1, s)

else . k falls in the tth interval
CHUNKSORT(A, i,k− 1, I, r, t)
CHUNKSORT(A,k+ 1, j, I, t, s)

Chunksort

Example (Using chunksort for partial sorting)
p = 1, I1 = [1,m]

m < k 6 n =⇒ u1 < k 6 `2 =⇒ r = s = t = 1,u1 < k

procedure CHUNKSORT(A, i, j, I, r, s)
. . .
if ut < k then . k falls in the tth gap

CHUNKSORT(A, i,k− 1, I, r, t)
CHUNKSORT(A,k+ 1, j, I, t+ 1, s)

else . k falls in the tth interval
CHUNKSORT(A, i,k− 1, I, r, s)
CHUNKSORT(A,k+ 1, j, I, t, s)

Chunksort

Example (Using chunksort for partial sorting)
p = 1, I1 = [1,m]

m < k 6 n =⇒ u1 < k 6 `2 =⇒ r = s = t = 1,u1 < k

procedure CHUNKSORT(A, i, j, I, r, s)
. . .
if ut < k then . k falls in the tth gap

CHUNKSORT(A, i,k− 1, I, r, t)
CHUNKSORT(A,k+ 1, j, I, t+ 1, s)

else . k falls in the tth interval
CHUNKSORT(A, i,k− 1, I, r, s)
CHUNKSORT(A,k+ 1, j, I, t, s)

1 Chunksort: A simple divide & conquer algorithm for interval
sorting

2 Average cost of chunksort

3 A simple lower bound for interval sorting

4 Intermezzo

5 “Optimal” chunksort

6 Disgression: How far from optimal?

7 Conclusions

Quicksort: Average cost

C.A.R. Hoare

Probability that the selected pivot is the k-th of n elements:
πn,k; for the basic variants here πn,k = 1/n
Average number of comparisons Qn to sort n elements:

Qn = n− 1 +

n∑
k=1

πn,k · (Qk−1 +Qn−k)

Average number of comparisons Qn to sort n elements
(Hoare, 1962):

Qn = 2(n+1)Hn−4n = 2n lnn+(2γ−4)n+2 lnn+O(1)

where Hn =
∑

16k6n 1/k = lnn+O(1) is the n-th
harmonic number.

Quickselect: Average cost

D.E. Knuth

Average number of comparisons Cn,m to select the m-th
out of n:

Cn,m = n−1+
n∑

k=m+1

πn,k ·Ck−1,m+

m−1∑
k=1

πn,k ·Cn−k,m−k

Average number of comparisons Cn,m to select the m-th
out of n elements (Knuth, 1971):

Cn,m = 2
(
n+ 3 + (n+ 1)Hn

− (n+ 3 −m)Hn+1−m − (m+ 2)Hm

)

Partial quicksort: Average cost

Average number of comparisons Pn,m to sort the m
smallest elements out of n:

Pn,m = n− 1 +

n∑
k=m+1

πn,k · Pk−1,m

+

m∑
k=1

πn,k · (Pk−1,k−1 + Pn−k,m−k)

The solution is (Martínez, 2004):

Pn,m = 2n+ 2(n+ 1)Hn − 2(n+ 3 −m)Hn+1−m

− 6m+ 6

A Bit of Notation

It = [`t,ut]: the tth interval, 1 6 t 6 p

It = [ut + 1..`t+1 − 1]: the tth gap, 0 6 t 6 p

mt = |It| = ut − `t + 1: size of the tth interval
mt = |It| = `t+1 − ut − 1: size of the tth gap
m = m1 + . . . +mp: # of elements to be sorted
m = m0 + . . . +mp = n−m: # of elements not sorted

A Bit of Notation

It = [`t,ut]: the tth interval, 1 6 t 6 p

It = [ut + 1..`t+1 − 1]: the tth gap, 0 6 t 6 p

mt = |It| = ut − `t + 1: size of the tth interval
mt = |It| = `t+1 − ut − 1: size of the tth gap
m = m1 + . . . +mp: # of elements to be sorted
m = m0 + . . . +mp = n−m: # of elements not sorted

A Bit of Notation

It = [`t,ut]: the tth interval, 1 6 t 6 p

It = [ut + 1..`t+1 − 1]: the tth gap, 0 6 t 6 p

mt = |It| = ut − `t + 1: size of the tth interval
mt = |It| = `t+1 − ut − 1: size of the tth gap
m = m1 + . . . +mp: # of elements to be sorted
m = m0 + . . . +mp = n−m: # of elements not sorted

A Bit of Notation

It = [`t,ut]: the tth interval, 1 6 t 6 p

It = [ut + 1..`t+1 − 1]: the tth gap, 0 6 t 6 p

mt = |It| = ut − `t + 1: size of the tth interval
mt = |It| = `t+1 − ut − 1: size of the tth gap
m = m1 + . . . +mp: # of elements to be sorted
m = m0 + . . . +mp = n−m: # of elements not sorted

A Bit of Notation

It = [`t,ut]: the tth interval, 1 6 t 6 p

It = [ut + 1..`t+1 − 1]: the tth gap, 0 6 t 6 p

mt = |It| = ut − `t + 1: size of the tth interval
mt = |It| = `t+1 − ut − 1: size of the tth gap
m = m1 + . . . +mp: # of elements to be sorted
m = m0 + . . . +mp = n−m: # of elements not sorted

A Bit of Notation

It = [`t,ut]: the tth interval, 1 6 t 6 p

It = [ut + 1..`t+1 − 1]: the tth gap, 0 6 t 6 p

mt = |It| = ut − `t + 1: size of the tth interval
mt = |It| = `t+1 − ut − 1: size of the tth gap
m = m1 + . . . +mp: # of elements to be sorted
m = m0 + . . . +mp = n−m: # of elements not sorted

Chunksort: The recurrence

We only count element comparisons
Each partitioning stage needs n− 1 comparisons of the
pivot with all the other elements
We assume that pivots are chosen at random (πn,k = 1/n)
Cn;{Ir,...,Is} = the average number of comparisons needed
to do interval sort on n elements for the given set of
intervals {Ir, . . . , Is}

Chunksort: The recurrence

We only count element comparisons
Each partitioning stage needs n− 1 comparisons of the
pivot with all the other elements
We assume that pivots are chosen at random (πn,k = 1/n)
Cn;{Ir,...,Is} = the average number of comparisons needed
to do interval sort on n elements for the given set of
intervals {Ir, . . . , Is}

Chunksort: The recurrence

We only count element comparisons
Each partitioning stage needs n− 1 comparisons of the
pivot with all the other elements
We assume that pivots are chosen at random (πn,k = 1/n)
Cn;{Ir,...,Is} = the average number of comparisons needed
to do interval sort on n elements for the given set of
intervals {Ir, . . . , Is}

Chunksort: The recurrence

We only count element comparisons
Each partitioning stage needs n− 1 comparisons of the
pivot with all the other elements
We assume that pivots are chosen at random (πn,k = 1/n)
Cn;{Ir,...,Is} = the average number of comparisons needed
to do interval sort on n elements for the given set of
intervals {Ir, . . . , Is}

Chunksort: The recurrence

Cn;{Ir,...,Is} = n−1+
s∑

t=r−1

∑
k∈It

πn,k
(
Ck−1;{Ir,...,It}+Cn−k;{It+1,...,Is}

)
+

s∑
t=r

∑
k∈It

πn,k
(
Ck−1;{Ir,...,It} + Cn−k;{It,...,Is}

)
,

How to solve the recurrence . . .

We can solve this problem “iteratively”, using generating
functions
First we have p = 1 and I1 = [i, j] and we translate the
recurrence for Cn;{[i,j]} into a functional equation for

C(z; x,y) =
∑
n>0

∑
16i6j6n

Cn;{[i,j]}z
n xiyj,

which is actually a first-order linear differential equation

How to solve the recurrence . . .

We can solve this problem “iteratively”, using generating
functions
First we have p = 1 and I1 = [i, j] and we translate the
recurrence for Cn;{[i,j]} into a functional equation for

C(z; x,y) =
∑
n>0

∑
16i6j6n

Cn;{[i,j]}z
n xiyj,

which is actually a first-order linear differential equation

How to solve the recurrence . . .

Then you can do a similar thing for p = 2, by introducing

C(z; x1,y1, x2,y2) =
∑
n>0

∑
16i6j6i ′6j ′6n

Cn;{[i,j],[i ′,j ′]}z
n xi1y

j
1x

i ′

2 y
j ′

2 ,

which satisfies a similar ODE involving C(z; xr,yr)
A pattern emerges here, so that one can obtain a general
form for the ODE satisfied by C(z; x1,y1, . . . , xp,yp)
Solve and extract the coefficients

How to solve the recurrence . . .

Then you can do a similar thing for p = 2, by introducing

C(z; x1,y1, x2,y2) =
∑
n>0

∑
16i6j6i ′6j ′6n

Cn;{[i,j],[i ′,j ′]}z
n xi1y

j
1x

i ′

2 y
j ′

2 ,

which satisfies a similar ODE involving C(z; xr,yr)
A pattern emerges here, so that one can obtain a general
form for the ODE satisfied by C(z; x1,y1, . . . , xp,yp)
Solve and extract the coefficients

How to solve the recurrence . . .

Then you can do a similar thing for p = 2, by introducing

C(z; x1,y1, x2,y2) =
∑
n>0

∑
16i6j6i ′6j ′6n

Cn;{[i,j],[i ′,j ′]}z
n xi1y

j
1x

i ′

2 y
j ′

2 ,

which satisfies a similar ODE involving C(z; xr,yr)
A pattern emerges here, so that one can obtain a general
form for the ODE satisfied by C(z; x1,y1, . . . , xp,yp)
Solve and extract the coefficients

. . . but how we actually did solve it

We guessed the solution from the known solutions for quicksort,
quickselect, partial quicksort and multiple quickselect, some
trial-and-error, and finally proved it by induction. . .

Chunksort: Average cost

Theorem
The average number of element comparisons Cn := Cn;{I1,...,Ip}
needed by chunksort given the intervals {I1, . . . , Ip} is

Cn = 2n+ up − `1 + 2(n+ 1)Hn − 7m− 2 + 15p
− 2(`1 + 2)H`1 − 2(n+ 3 − up)Hn+1−up

− 2
p−1∑
k=1

(mk + 5)Hmk+2,

1 Chunksort: A simple divide & conquer algorithm for interval
sorting

2 Average cost of chunksort

3 A simple lower bound for interval sorting

4 Intermezzo

5 “Optimal” chunksort

6 Disgression: How far from optimal?

7 Conclusions

A simple lower bound for interval sorting

Λ(n, m, m) = minimum # of comparisons needed on
average to solve interval sorting of intervals with sizes
m = (m1, . . . ,mp) and gaps m = (m0, . . . ,mp)

The two vectors m, m and the value n univocally
determining the interval sorting instance
Suppose we perform an optimal interval sort of the array of
n elements, then we sort optimally the gaps; hence

Λ(n, m, m) +

p∑
t=0

log2(mt!) > log2(n!)

A simple lower bound for interval sorting

Λ(n, m, m) = minimum # of comparisons needed on
average to solve interval sorting of intervals with sizes
m = (m1, . . . ,mp) and gaps m = (m0, . . . ,mp)

The two vectors m, m and the value n univocally
determining the interval sorting instance
Suppose we perform an optimal interval sort of the array of
n elements, then we sort optimally the gaps; hence

Λ(n, m, m) +

p∑
t=0

log2(mt!) > log2(n!)

A simple lower bound for interval sorting

Λ(n, m, m) = minimum # of comparisons needed on
average to solve interval sorting of intervals with sizes
m = (m1, . . . ,mp) and gaps m = (m0, . . . ,mp)

The two vectors m, m and the value n univocally
determining the interval sorting instance
Suppose we perform an optimal interval sort of the array of
n elements, then we sort optimally the gaps; hence

Λ(n, m, m) +

p∑
t=0

log2(mt!) > log2(n!)

A simple lower bound for interval sorting

Lemma

Λ(n, m, m) >
p∑

t=1

mt log2mt

+ nH ({m0/n,m1/n,m1/n, . . . ,mp/n,mp/n})

−m log2 e+ o(n)

with H({qt}) = −
∑

t qt log2 qt denoting the entropy of the
discrete probability distribution {qt} and m = m1 + . . . +mp.

1 Chunksort: A simple divide & conquer algorithm for interval
sorting

2 Average cost of chunksort

3 A simple lower bound for interval sorting

4 Intermezzo

5 “Optimal” chunksort

6 Disgression: How far from optimal?

7 Conclusions

Optimal quicksort

M. H. van Emden

Using the median of a small sample as the pivot of each
recursive call of quicksort improves the average cost of
quicksort (Singleton’s median-of-3, 1969)
Van Emden (1970) and Hennequin (1989) have studied the
performance of quicksort with median-of-(2t+ 1) showing
an steady improvement of performance

C
(t)
n = ctn log2 n, c0 = 2 ln 2 = 1.386, c1 = 1.188, . . . , c∞ = 1

Optimal quicksort

M. H. van Emden

Using the median of a small sample as the pivot of each
recursive call of quicksort improves the average cost of
quicksort (Singleton’s median-of-3, 1969)
Van Emden (1970) and Hennequin (1989) have studied the
performance of quicksort with median-of-(2t+ 1) showing
an steady improvement of performance

C
(t)
n = ctn log2 n, c0 = 2 ln 2 = 1.386, c1 = 1.188, . . . , c∞ = 1

Optimal quicksort

C. C. McGeoch S. Roura J.D. Tygar

McGeoch and Tygar (1995) considered using the median
of a variable-size sample for the first round, then fixed size
samples on subsequent calls
Martínez and Roura (2001) studied the use of variable-size
sampling for quicksort and quickselect, showing that
optimal expected performance can be achieved

Optimal quicksort

C. C. McGeoch S. Roura J.D. Tygar

McGeoch and Tygar (1995) considered using the median
of a variable-size sample for the first round, then fixed size
samples on subsequent calls
Martínez and Roura (2001) studied the use of variable-size
sampling for quicksort and quickselect, showing that
optimal expected performance can be achieved

Optimal quicksort

Theorem (Martínez, Roura, 2001)
The expected performance of quicksort using as pivots the
median of samples of size s = s(n), such that s→∞ and
s/n→ 0 as n→∞ is

n log2 n+ lower order terms

Optimal quicksort

0

5

10

15

20

25

500 1000 1500 2000 2500 3000

The lower order terms are minimized by choosing samples
of size Θ(

√
n)

The constant hidden in Θ(
√
n) depends on the (linear) time

algorithm used to find the median of the samples

Optimal quicksort

0

5

10

15

20

25

500 1000 1500 2000 2500 3000

The lower order terms are minimized by choosing samples
of size Θ(

√
n)

The constant hidden in Θ(
√
n) depends on the (linear) time

algorithm used to find the median of the samples

Optimal quickselect

R. Grübel P. Kirschenhofer H. Prodinger

Median-of-(2t+ 1) sampling can also be used for
quickselect
The improvements on the performance have been studied
by several authors: Kirschenhofer, Prodinger, Martínez
(1997), Grübel (1999), Martínez and Roura (2001)
But . . . is the median of the sample a good choice?

Optimal quickselect

R. Grübel P. Kirschenhofer H. Prodinger

Median-of-(2t+ 1) sampling can also be used for
quickselect
The improvements on the performance have been studied
by several authors: Kirschenhofer, Prodinger, Martínez
(1997), Grübel (1999), Martínez and Roura (2001)
But . . . is the median of the sample a good choice?

Optimal quickselect

R. Grübel P. Kirschenhofer H. Prodinger

Median-of-(2t+ 1) sampling can also be used for
quickselect
The improvements on the performance have been studied
by several authors: Kirschenhofer, Prodinger, Martínez
(1997), Grübel (1999), Martínez and Roura (2001)
But . . . is the median of the sample a good choice?

Optimal quickselect

D. N. Panario A. T. Viola

In 2004, Martínez, Panario and Viola consider variants of
quickselect where the rank r of the pivot within the sample
of size s is proportional to the rank j of the sought element
in the array n:

r ≈ j

n
· s

More in general, they consider all variants where r is a
function of α = j/n

Optimal quickselect

For all variants

Cn,j = f(α) · n+ o(n),α = j/n,

for instance, f(α) = m0(α) = 2 + 2H(α) for standard
quickselect and f(α) = m1(α) = 2 + 3α(1 − α) for
median-of-three

0.0 0.5 1.0
α

2.75
2.723 . . .

2

4/3
0.202 . . .

0.276 . . .

f(α)

m1(α)

.

Optimal quickselect

Optimal expected performance can be achieve with 3 basic
“ingredients:”

Using variable-sample sizes s = s(n) with s→∞, s/n→ 0
The rank of the pivot withis the sample must be r ∼ α · s
If the souhgt element has rank j > n/2 take r = α · s− δ; if
j < n/2 then r = α · s+ δ, for some “small” δ, say δ =

√
s

You want the chosen pivot to land very close to j on the
correct side with high probability

Optimal quickselect

Optimal expected performance can be achieve with 3 basic
“ingredients:”

Using variable-sample sizes s = s(n) with s→∞, s/n→ 0
The rank of the pivot withis the sample must be r ∼ α · s
If the souhgt element has rank j > n/2 take r = α · s− δ; if
j < n/2 then r = α · s+ δ, for some “small” δ, say δ =

√
s

You want the chosen pivot to land very close to j on the
correct side with high probability

Optimal quickselect

Optimal expected performance can be achieve with 3 basic
“ingredients:”

Using variable-sample sizes s = s(n) with s→∞, s/n→ 0
The rank of the pivot withis the sample must be r ∼ α · s
If the souhgt element has rank j > n/2 take r = α · s− δ; if
j < n/2 then r = α · s+ δ, for some “small” δ, say δ =

√
s

You want the chosen pivot to land very close to j on the
correct side with high probability

Optimal quickselect

Optimal expected performance can be achieve with 3 basic
“ingredients:”

Using variable-sample sizes s = s(n) with s→∞, s/n→ 0
The rank of the pivot withis the sample must be r ∼ α · s
If the souhgt element has rank j > n/2 take r = α · s− δ; if
j < n/2 then r = α · s+ δ, for some “small” δ, say δ =

√
s

You want the chosen pivot to land very close to j on the
correct side with high probability

Optimal quickselect

Optimal expected performance can be achieve with 3 basic
“ingredients:”

Using variable-sample sizes s = s(n) with s→∞, s/n→ 0
The rank of the pivot withis the sample must be r ∼ α · s
If the souhgt element has rank j > n/2 take r = α · s− δ; if
j < n/2 then r = α · s+ δ, for some “small” δ, say δ =

√
s

You want the chosen pivot to land very close to j on the
correct side with high probability

Optimal quickselect

Theorem (Martínez, Panario, Viola, 2004)
Any variant of quickselect using biased proportion-from-s with
variable-size sampling has

f(α) = 1 + min(α, 1 − α)

Thus Cn,j ∼ n+ min(j,n− j) + lower order terms

1 Chunksort: A simple divide & conquer algorithm for interval
sorting

2 Average cost of chunksort

3 A simple lower bound for interval sorting

4 Intermezzo

5 “Optimal” chunksort

6 Disgression: How far from optimal?

7 Conclusions

Optimal chunksort

The recipy for optimality:
1 Merge small gaps: replace two intervals separated by a

gap of size o(n) by a single interval
2 If there is only one interval to sort and it contains
m = n− o(n) elements pick a pivot whose rank is close to
n/2; use the median of a large (

√
n) sample

3 If not, choose some endpoint `r, ur, . . . , `s, us, say ρ
If ρ = `t, pick a pivot from a large sample with rank
proportional to ρ and biased to land to the left of ρ
If ρ = ut, pick a pivot from a large sample with rank
proportional to ρ and biased to land to the right of ρ

Optimal chunksort

The recipy for optimality:
1 Merge small gaps: replace two intervals separated by a

gap of size o(n) by a single interval
2 If there is only one interval to sort and it contains
m = n− o(n) elements pick a pivot whose rank is close to
n/2; use the median of a large (

√
n) sample

3 If not, choose some endpoint `r, ur, . . . , `s, us, say ρ
If ρ = `t, pick a pivot from a large sample with rank
proportional to ρ and biased to land to the left of ρ
If ρ = ut, pick a pivot from a large sample with rank
proportional to ρ and biased to land to the right of ρ

Optimal chunksort

The recipy for optimality:
1 Merge small gaps: replace two intervals separated by a

gap of size o(n) by a single interval
2 If there is only one interval to sort and it contains
m = n− o(n) elements pick a pivot whose rank is close to
n/2; use the median of a large (

√
n) sample

3 If not, choose some endpoint `r, ur, . . . , `s, us, say ρ
If ρ = `t, pick a pivot from a large sample with rank
proportional to ρ and biased to land to the left of ρ
If ρ = ut, pick a pivot from a large sample with rank
proportional to ρ and biased to land to the right of ρ

Optimal chunksort

The recipy for optimality:
1 Merge small gaps: replace two intervals separated by a

gap of size o(n) by a single interval
2 If there is only one interval to sort and it contains
m = n− o(n) elements pick a pivot whose rank is close to
n/2; use the median of a large (

√
n) sample

3 If not, choose some endpoint `r, ur, . . . , `s, us, say ρ
If ρ = `t, pick a pivot from a large sample with rank
proportional to ρ and biased to land to the left of ρ
If ρ = ut, pick a pivot from a large sample with rank
proportional to ρ and biased to land to the right of ρ

Optimal chunksort

The recipy for optimality:
1 Merge small gaps: replace two intervals separated by a

gap of size o(n) by a single interval
2 If there is only one interval to sort and it contains
m = n− o(n) elements pick a pivot whose rank is close to
n/2; use the median of a large (

√
n) sample

3 If not, choose some endpoint `r, ur, . . . , `s, us, say ρ
If ρ = `t, pick a pivot from a large sample with rank
proportional to ρ and biased to land to the left of ρ
If ρ = ut, pick a pivot from a large sample with rank
proportional to ρ and biased to land to the right of ρ

Optimal chunksort

Optimal chunksort

Optimal chunksort

Optimal chunksort

Optimal chunksort

Optimal chunksort

Optimal chunksort

The problem is thus to find the optimal order =⇒ dynamic
programming
Given the collection of endpoints ρi = ur−1, ρi+1 = `r, . . . ,
ρj−1 = us, ρj = `s+1 find the endpoint ρk such that
minimizes c(i, j):

c(i, j) = ρj − ρi + min
i<k<j

(c(i,k) + c(k, j))

Optimal chunksort

The problem is thus to find the optimal order =⇒ dynamic
programming
Given the collection of endpoints ρi = ur−1, ρi+1 = `r, . . . ,
ρj−1 = us, ρj = `s+1 find the endpoint ρk such that
minimizes c(i, j):

c(i, j) = ρj − ρi + min
i<k<j

(c(i,k) + c(k, j))

Optimal chunksort

F.F. Yao

The dynamic programming to find the optimal order to “cut
the bar” has cost O(p3); it is almost analogous to building
an optimal search tree where the weights of the leaves are
the sizes of the intervals
The efficiency of the algorithm can be greatly improved to
O(p2) using Knuth-Yao’s technique

Optimal chunksort

We can use some heuristic to find a near-optimal solution
to the “cut the bar” problem with cost O(p logp)
For instance, at each step, we can choose the endpoint `k
or uk which is closer to (ρj − ρi)/2; some care must be
taken if we have ties, e.g., if `k = uk

The analysis of the heuristic provides a useful upper bound
on c(0, 2p+ 1), the optimal cost of the “cut the bar” phase
The total cost of chunksort becomes

p∑
t=1

mt log2mt + c(0, 2p+ 1) +O(p
√
n)

6
p∑

t=1

mt log2mt + n ·H+ n+ lower order terms

Optimal chunksort

We can use some heuristic to find a near-optimal solution
to the “cut the bar” problem with cost O(p logp)
For instance, at each step, we can choose the endpoint `k
or uk which is closer to (ρj − ρi)/2; some care must be
taken if we have ties, e.g., if `k = uk

The analysis of the heuristic provides a useful upper bound
on c(0, 2p+ 1), the optimal cost of the “cut the bar” phase
The total cost of chunksort becomes

p∑
t=1

mt log2mt + c(0, 2p+ 1) +O(p
√
n)

6
p∑

t=1

mt log2mt + n ·H+ n+ lower order terms

Optimal chunksort

We can use some heuristic to find a near-optimal solution
to the “cut the bar” problem with cost O(p logp)
For instance, at each step, we can choose the endpoint `k
or uk which is closer to (ρj − ρi)/2; some care must be
taken if we have ties, e.g., if `k = uk

The analysis of the heuristic provides a useful upper bound
on c(0, 2p+ 1), the optimal cost of the “cut the bar” phase
The total cost of chunksort becomes

p∑
t=1

mt log2mt + c(0, 2p+ 1) +O(p
√
n)

6
p∑

t=1

mt log2mt + n ·H+ n+ lower order terms

Optimal chunksort

We can use some heuristic to find a near-optimal solution
to the “cut the bar” problem with cost O(p logp)
For instance, at each step, we can choose the endpoint `k
or uk which is closer to (ρj − ρi)/2; some care must be
taken if we have ties, e.g., if `k = uk

The analysis of the heuristic provides a useful upper bound
on c(0, 2p+ 1), the optimal cost of the “cut the bar” phase
The total cost of chunksort becomes

p∑
t=1

mt log2mt + c(0, 2p+ 1) +O(p
√
n)

6
p∑

t=1

mt log2mt + n ·H+ n+ lower order terms

Optimal chunksort

Together with the lower bound for Λ

p∑
t=1

mt log2mt + n ·H−m log2 e+ o(n) 6 Λ(n, m, m)

6
p∑

t=1

mt log2mt + c(0, 2p+ 1) +O(p
√
n)

6
p∑

t=1

mt log2mt + n ·H+ n+ lower order terms.

The lower and upper bounds differ by n+ o(n)
comparisons if p�

√
n (which indeed is the case, as we

collapsed all “small” gaps!)

Optimal chunksort

Together with the lower bound for Λ

p∑
t=1

mt log2mt + n ·H−m log2 e+ o(n) 6 Λ(n, m, m)

6
p∑

t=1

mt log2mt + c(0, 2p+ 1) +O(p
√
n)

6
p∑

t=1

mt log2mt + n ·H+ n+ lower order terms.

The lower and upper bounds differ by n+ o(n)
comparisons if p�

√
n (which indeed is the case, as we

collapsed all “small” gaps!)

Optimal chunksort

K. Kaligosi K. Mehlhorn J. I. Munro P. Sanders

Kaligosi, Mehlhorn, Munro and Sanders (2005) have
considered optimal multiple selection; they use similar
techniques, but they propose an algorithm which picks a
pivot close to the median for each recursive stage
This yields a solution (for multiple selection) which is off by
O(n) comparisons from the optimal; our solution —which
generalizes multiple selection— is off by at most n+ o(n)
comparisons

Optimal chunksort

K. Kaligosi K. Mehlhorn J. I. Munro P. Sanders

Kaligosi, Mehlhorn, Munro and Sanders (2005) have
considered optimal multiple selection; they use similar
techniques, but they propose an algorithm which picks a
pivot close to the median for each recursive stage
This yields a solution (for multiple selection) which is off by
O(n) comparisons from the optimal; our solution —which
generalizes multiple selection— is off by at most n+ o(n)
comparisons

1 Chunksort: A simple divide & conquer algorithm for interval
sorting

2 Average cost of chunksort

3 A simple lower bound for interval sorting

4 Intermezzo

5 “Optimal” chunksort

6 Disgression: How far from optimal?

7 Conclusions

How far from optimal

1 The lower bound for Λ(n, m, m) is not tight, for instance, for
selection

Λ(n, 〈1〉, 〈j−1,n−j〉) = n+min(j−1,n−j)+l.o.t. ← on avg!
� nH ({(j− 1)/n, 1/n, (n− j)/n}) + l.o.t.

2 The upper bound corresponds to the heuristic for “cutting
the bar”, and isn’t tight either

How far from optimal

1 The lower bound for Λ(n, m, m) is not tight, for instance, for
selection

Λ(n, 〈1〉, 〈j−1,n−j〉) = n+min(j−1,n−j)+l.o.t. ← on avg!
� nH ({(j− 1)/n, 1/n, (n− j)/n}) + l.o.t.

2 The upper bound corresponds to the heuristic for “cutting
the bar”, and isn’t tight either

How far from optimal

The algorithm that we propose optimally solves sorting and
selection
We conjecture that it is optimal up to o(n) comparisons for
all interval sort instances, not just sorting and selection

How far from optimal

The algorithm that we propose optimally solves sorting and
selection
We conjecture that it is optimal up to o(n) comparisons for
all interval sort instances, not just sorting and selection

1 Chunksort: A simple divide & conquer algorithm for interval
sorting

2 Average cost of chunksort

3 A simple lower bound for interval sorting

4 Intermezzo

5 “Optimal” chunksort

6 Disgression: How far from optimal?

7 Conclusions

Conclusions

Interval sort’s main interest is that it smoothly generalizes
several fundamental problems: sorting, selection, multiple
selection and partial sorting
Chunksort (its basic variant) is a simple and elegant
algorithm in the spirit of quicksort; its average performance
is 6 2 + 2 ln 2 = 3.386 times the optimal

Conclusions

Interval sort’s main interest is that it smoothly generalizes
several fundamental problems: sorting, selection, multiple
selection and partial sorting
Chunksort (its basic variant) is a simple and elegant
algorithm in the spirit of quicksort; its average performance
is 6 2 + 2 ln 2 = 3.386 times the optimal

Conclusions

Carefully choosing the pivots yields near-optimal
performance; we conjecture it is optimal up to o(n)
comparisons
For the choice of pivots we need to “orchestrate” two
ingredients:

large samples and proportion-from to choose pivots landing
near the places where we need them
dynamic programming/heuristic to find the optimal order to
“cut the bar”

Conclusions

Carefully choosing the pivots yields near-optimal
performance; we conjecture it is optimal up to o(n)
comparisons
For the choice of pivots we need to “orchestrate” two
ingredients:

large samples and proportion-from to choose pivots landing
near the places where we need them
dynamic programming/heuristic to find the optimal order to
“cut the bar”

Conclusions

Carefully choosing the pivots yields near-optimal
performance; we conjecture it is optimal up to o(n)
comparisons
For the choice of pivots we need to “orchestrate” two
ingredients:

large samples and proportion-from to choose pivots landing
near the places where we need them
dynamic programming/heuristic to find the optimal order to
“cut the bar”

Conclusions

Carefully choosing the pivots yields near-optimal
performance; we conjecture it is optimal up to o(n)
comparisons
For the choice of pivots we need to “orchestrate” two
ingredients:

large samples and proportion-from to choose pivots landing
near the places where we need them
dynamic programming/heuristic to find the optimal order to
“cut the bar”

Conclusions

There are several open problems remaining:
Better lower bounds
Proving the conjecture
Other randomized or deterministic algorithms
. . .

Conclusions

There are several open problems remaining:
Better lower bounds
Proving the conjecture
Other randomized or deterministic algorithms
. . .

Conclusions

There are several open problems remaining:
Better lower bounds
Proving the conjecture
Other randomized or deterministic algorithms
. . .

Conclusions

There are several open problems remaining:
Better lower bounds
Proving the conjecture
Other randomized or deterministic algorithms
. . .

purea icc!uMoboe

Merci beaucoup!

	Chunksort: A simple divide & conquer algorithm for interval sorting
	Average cost of chunksort
	A simple lower bound for interval sorting
	Intermezzo
	``Optimal'' chunksort
	Disgression: How far from optimal?
	Conclusions

