Combinatorics and the hiring problem

Conrado Martínez
U. Politècnica Catalunya

Joint work with M. Archibald, U. Cape Town, South Africa

Ottawa, May 2009

The hiring problem

- Originally introduced by Broder et al. (SODA 2008)
- A (potentially infinite) sequence of i.i.d. random variables Q_{i} uniformly distributed in $[0,1]$

The hiring problem

- Originally introduced by Broder et al. (SODA 2008)
- A (potentially infinite) sequence of i.i.d. random variables Q_{i} uniformly distributed in $[0,1]$
- At step i you either hire or discard candidate i with score Q_{i}
- Decisions are irrevocable

The hiring problem

- Originally introduced by Broder et al. (SODA 2008)
- A (potentially infinite) sequence of i.i.d. random variables Q_{i} uniformly distributed in $[0,1]$
- At step i you either hire or discard candidate i with score Q_{i}
- Decisions are irrevocable
- Goals: hire candidates at some reasonable rate, improve the "mean" quality of the company's staff

The hiring problem

- Originally introduced by Broder et al. (SODA 2008)
- A (potentially infinite) sequence of i.i.d. random variables Q_{i} uniformly distributed in $[0,1]$
- At step i you either hire or discard candidate i with score Q_{i}
- Decisions are irrevocable
- Goals: hire candidates at some reasonable rate, improve the "mean" quality of the company's staff

The hiring problem

- Originally introduced by Broder et al. (SODA 2008)
- A (potentially infinite) sequence of i.i.d. random variables Q_{i} uniformly distributed in $[0,1]$
- At step i you either hire or discard candidate i with score Q_{i}
- Decisions are irrevocable
- Goals: hire candidates at some reasonable rate, improve the "mean" quality of the company's staff

The hiring problem

- Here: a permutation σ of length n, candidate i has score $\sigma(i)$; the permutation is actually presented as a sequence of unknown length $S=s_{1}, s_{2}, s_{3}, \ldots$ with $1 \leq s_{i} \leq i+1, s_{i}$ is the rank of the ith candidate relative to the candidates seen so far (i included)
- Our model is equivalent after "normalization", but is amenable to techniques from analytic combinatorics

The hiring problem

- Here: a permutation σ of length n, candidate i has score $\sigma(i)$; the permutation is actually presented as a sequence of unknown length $S=s_{1}, s_{2}, s_{3}, \ldots$ with $1 \leq s_{i} \leq i+1, s_{i}$ is the rank of the ith candidate relative to the candidates seen so far (i included)
- Our model is equivalent after "normalization", but is amenable to techniques from analytic combinatorics
- $\mathcal{H}(\sigma)=$ the set of candidates hired in permutation σ
- $h(\sigma)=\# \mathcal{H}(\sigma)$

The hiring problem

- Here: a permutation σ of length n, candidate i has score $\sigma(i)$; the permutation is actually presented as a sequence of unknown length $S=s_{1}, s_{2}, s_{3}, \ldots$ with $1 \leq s_{i} \leq i+1, s_{i}$ is the rank of the ith candidate relative to the candidates seen so far (i included)
- Our model is equivalent after "normalization", but is amenable to techniques from analytic combinatorics
- $\mathcal{H}(\sigma)=$ the set of candidates hired in permutation σ
- $h(\sigma)=\# \mathcal{H}(\sigma)$

The hiring problem

- Here: a permutation σ of length n, candidate i has score $\sigma(i)$; the permutation is actually presented as a sequence of unknown length $S=s_{1}, s_{2}, s_{3}, \ldots$ with $1 \leq s_{i} \leq i+1, s_{i}$ is the rank of the ith candidate relative to the candidates seen so far (i included)
- Our model is equivalent after "normalization", but is amenable to techniques from analytic combinatorics
- $\mathcal{H}(\sigma)=$ the set of candidates hired in permutation σ
- $h(\sigma)=\# \mathcal{H}(\sigma)$

Rank-based hiring

A hiring strategy is rank-based if and only if it only depends on the relative rank of the current candidate compared to the candidates seen so far.

Rank-based hiring

- Rank-based strategies modelize actual restrictions to measure qualities
- Many natural strategies are rank-based, e.g.,

Rank-based hiring

- Rank-based strategies modelize actual restrictions to measure qualities
- Many natural strategies are rank-based, e.g.,
- above the best
- above the mth best

Rank-based hiring

- Rank-based strategies modelize actual restrictions to measure qualities
- Many natural strategies are rank-based, e.g.,
- above the best
- above the mth best
- above the median

Rank-based hiring

- Rank-based strategies modelize actual restrictions to measure qualities
- Many natural strategies are rank-based, e.g.,
- above the best
- above the m th best
- above the median
- above the $P \%$ best

Rank-based hiring

- Rank-based strategies modelize actual restrictions to measure qualities
- Many natural strategies are rank-based, e.g.,
- above the best
- above the m th best
- above the median
- above the P\% best
- Other interesting strategies are not, e.g., above the average, above a threshold.

Rank-based hiring

- Rank-based strategies modelize actual restrictions to measure qualities
- Many natural strategies are rank-based, e.g.,
- above the best
- above the m th best
- above the median
- above the $P \%$ best
- Other interesting strategies are not, e.g., above the average, above a threshold.

Rank-based hiring

- Rank-based strategies modelize actual restrictions to measure qualities
- Many natural strategies are rank-based, e.g.,
- above the best
- above the m th best
- above the median
- above the $P \%$ best
- Other interesting strategies are not, e.g., above the average, above a threshold.

Rank-based hiring

The recursive decomposition of permutations

$$
\mathcal{P}=\epsilon+\mathcal{P} \star Z
$$

is the natural choice for the analysis of rank-based strategies.

Rank-based hiring

- Let $\sigma \star j$ denote the permutation one gets after relabelling j, $j+1, \ldots, n=|\sigma|$ to $j+1, j+2, \ldots, n+1$ and appending j at the end.
- Ex: 32451 * $3=425613,32451$ * $2=435612$
- Let $X_{j}(\sigma)=1$ if candidate with score j is hired after σ and $X_{j}(\sigma)=0$ otherwise.

Rank-based hiring

- Let $\sigma \star j$ denote the permutation one gets after relabelling j, $j+1, \ldots, n=|\sigma|$ to $j+1, j+2, \ldots, n+1$ and appending j at the end.
- Ex: $32451 \star 3=425613,32451 \star 2=435612$
- Let $X_{j}(\sigma)=1$ if candidate with score j is hired after σ and $X_{j}(\sigma)=0$ otherwise.

Rank-based hiring

- Let $\sigma \star j$ denote the permutation one gets after relabelling j, $j+1, \ldots, n=|\sigma|$ to $j+1, j+2, \ldots, n+1$ and appending j at the end.
- Ex: $32451 \star 3=425613,32451 \star 2=435612$
- Let $X_{j}(\sigma)=1$ if candidate with score j is hired after σ and $X_{j}(\sigma)=0$ otherwise.

Rank-based hiring

- Let $\sigma \star j$ denote the permutation one gets after relabelling j, $j+1, \ldots, n=|\sigma|$ to $j+1, j+2, \ldots, n+1$ and appending j at the end.
- Ex: $32451 \star 3=425613,32451 \star 2=435612$
- Let $X_{j}(\sigma)=1$ if candidate with score j is hired after σ and $X_{j}(\sigma)=0$ otherwise.
- $h(\sigma \star j)=h(\sigma)+X_{j}(\sigma)$

Rank-based hiring

Theorem
Let $H(z, u)=\sum_{\sigma \in \mathcal{P}} \frac{z^{|\sigma|} \mid \sigma!}{} u^{h(\sigma)}$.
Then

$$
(1-z) \frac{\partial}{\partial z} H(z, u)-H(z, u)=(u-1) \sum_{\sigma \in \mathcal{P}} X(\sigma) \frac{z^{|\sigma|}}{|\sigma|!} u^{h(\sigma)},
$$

where $X(\sigma)$ the number of j such that $X_{j}(\sigma)=1$.

Rank-based hiring

We can write $h(\sigma)=0$ if σ is the empty permutation and $h(\sigma \star j)=h(\sigma)+X_{j}(\sigma)$.

$$
\begin{aligned}
H(z, u) & =\sum_{\sigma \in \mathcal{P}} \frac{z^{|\sigma|}}{|\sigma|!} u^{h(\sigma)}=1+\sum_{n>0} \sum_{\sigma \in \mathcal{P}_{n}} \frac{z^{|\sigma|}}{|\sigma|!} u^{h(\sigma)} \\
& =1+\sum_{n>0} \sum_{1 \leq j \leq n} \sum_{\sigma \in \mathcal{P}_{n-1}} \frac{z^{|\sigma \star j|}}{|\sigma \star j|!} u^{h(\sigma \star j)} \\
& =1+\sum_{n>0} \sum_{1 \leq j \leq n} \sum_{\sigma \in \mathcal{P}_{n-1}} \frac{z^{|\sigma|+1}}{(|\sigma|+1)!} u^{h(\sigma)+x_{j}(\sigma)} \\
& =1+\sum_{n>0} \sum_{\sigma \in \mathcal{P}_{n-1}} \frac{z^{|\sigma|+1}}{(|\sigma|+1)!} u^{h(\sigma)} \sum_{1 \leq j \leq n} u^{x_{j}(\sigma)} .
\end{aligned}
$$

Rank-based hiring

Since $X_{j}(\sigma)$ is either 0 or 1 for all j and all σ, we have

$$
\sum_{1 \leq j \leq n} u^{X_{j}(\sigma)}=(|\sigma|+1-X(\sigma))+u X(\sigma)
$$

where $X(\sigma)=\sum_{1 \leq j \leq|\sigma|+1} X_{j}(\sigma)$.
$H(z, u)=1+\sum_{n>0} \sum_{\sigma \in \mathcal{P}_{n-1}} \frac{z^{|\sigma|+1}}{(|\sigma|+1)!} u^{h(\sigma)}((|\sigma|+1-X(\sigma))+u X(\sigma))$.
The theorem follows after differentiation and a few additional algebraic manipulations.

Pragmatic strategies

A hiring strategy is pragmatic if and only if

- Whenever it would hire a candidate with score j, it would hire a candidate with a larger score

$$
X_{j}(\sigma)=1 \Longrightarrow X_{j^{\prime}}(\sigma)=1 \quad \text { for all } j^{\prime} \geq j
$$

- The number of scores it would potentially hire increases at most by one if and only if the candidate in the previous step was hired

$$
X(\sigma \star j) \leq X(\sigma)+X_{j}(\sigma)
$$

Pragmatic strategies

A hiring strategy is pragmatic if and only if

- Whenever it would hire a candidate with score j, it would hire a candidate with a larger score

$$
X_{j}(\sigma)=1 \Longrightarrow X_{j^{\prime}}(\sigma)=1 \quad \text { for all } j^{\prime} \geq j
$$

- The number of scores it would potentially hire increases at most by one if and only if the candidate in the previous step was hired

$$
X(\sigma \star j) \leq X(\sigma)+X_{j}(\sigma)
$$

Pragmatic strategies

- The first condition is very natural and reasonable; the second one is technically necessary for several results we discuss later
- Above the best, above the mth best, above the P\% best, are all pragmatic

Pragmatic strategies

- The first condition is very natural and reasonable; the second one is technically necessary for several results we discuss later
- Above the best, above the m th best, above the $P \%$ best, ... are all pragmatic

Pragmatic strategies

Theorem
For any pragmatic hiring strategy and any permutation σ, the $X(\sigma)$ best candidates of σ have been hired (and possibly others).

Pragmatic strategies

Pragmatic strategies

Let r_{n} denote the rank of the last hired candidate in a random permutation, and

$$
g_{n}=1-\frac{r_{n}}{n}
$$

is called the gap.
Theorem
For any pragmatic hiring strategy,

$$
\mathbb{E}\left[g_{n}\right]=\frac{1}{2 n}\left(\mathbb{E}\left[X_{n}\right]-1\right)
$$

where $\mathbb{E}\left[X_{n}\right]=\left[z^{n}\right] \sum_{\sigma \in \mathcal{P}} X(\sigma) z^{|\sigma|} /|\sigma|!$.

Hiring above the maximum

Candidate i is hired if and only if her score is above the score of the best currently hired candidate.

- $X(\sigma)=1$
- $\mathcal{H}(\sigma)=\{i: i$ is a left-to-right maximum $\}$

Hiring above the maximum

Candidate i is hired if and only if her score is above the score of the best currently hired candidate.

- $X(\sigma)=1$
- $\mathcal{H}(\sigma)=\{i: i$ is a left-to-right maximum $\}$
- $\mathbb{E}\left[h_{n}\right]=\left.\left[z^{n}\right] \frac{\partial H}{\partial u}\right|_{u=1}=\ln n+O(1)$
- Variance of h_{n} is also $\ln n+O(1)$ and after proper
normalization h_{n}^{*} converges to $\mathcal{N}(0,1)$

Hiring above the maximum

Candidate i is hired if and only if her score is above the score of the best currently hired candidate.

- $X(\sigma)=1$
- $\mathcal{H}(\sigma)=\{i: i$ is a left-to-right maximum $\}$
- $\mathbb{E}\left[h_{n}\right]=\left.\left[z^{n}\right] \frac{\partial H}{\partial u}\right|_{u=1}=\ln n+O(1)$
- Variance of h_{n} is also $\ln n+O(1)$ and after proper normalization h_{n}^{*} converges to $\mathcal{N}(0,1)$

Hiring above the maximum

Candidate i is hired if and only if her score is above the score of the best currently hired candidate.

- $X(\sigma)=1$
- $\mathcal{H}(\sigma)=\{i: i$ is a left-to-right maximum $\}$
- $\mathbb{E}\left[h_{n}\right]=\left.\left[z^{n}\right] \frac{\partial H}{\partial u}\right|_{u=1}=\ln n+O(1)$
- Variance of h_{n} is also $\ln n+O(1)$ and after proper normalization h_{n}^{*} converges to $\mathcal{N}(0,1)$

Hiring above the m th best

Candidate i is hired if and only if her score is above the score of the m th best currently hired candidate.

- $X(\sigma)=|\sigma|+1$ if $|\sigma|<m ; X(\sigma)=m$ if $|\sigma| \geq m$

Hiring above the m th best

Candidate i is hired if and only if her score is above the score of the m th best currently hired candidate.

- $X(\sigma)=|\sigma|+1$ if $|\sigma|<m ; X(\sigma)=m$ if $|\sigma| \geq m$
- $\mathbb{E}\left[h_{n}\right]=\left.\left[z^{n}\right] \frac{\partial H}{\partial u}\right|_{u=1}=m \ln n+O(1)$ for fixed m
- Variance of h_{n} is also $m \ln n+O(1)$ and after proper normalization h_{n}^{*} converges to $\mathcal{N}(0,1)$

Hiring above the m th best

Candidate i is hired if and only if her score is above the score of the m th best currently hired candidate.

- $X(\sigma)=|\sigma|+1$ if $|\sigma|<m ; X(\sigma)=m$ if $|\sigma| \geq m$
- $\mathbb{E}\left[h_{n}\right]=\left.\left[z^{n}\right] \frac{\partial H}{\partial u}\right|_{u=1}=m \ln n+O(1)$ for fixed m
- Variance of h_{n} is also $m \ln n+O(1)$ and after proper normalization h_{n}^{*} converges to $\mathcal{N}(0,1)$
- The case of arbitrary m can be studied by introducing $H(z, u, v)=\sum_{m \geq 1} v^{m} H^{(m)}(z, u)$, where $H^{(m)}(z, u)$ is the GF that corresponds to a given particular m.

Hiring above the m th best

Candidate i is hired if and only if her score is above the score of the m th best currently hired candidate.

- $X(\sigma)=|\sigma|+1$ if $|\sigma|<m ; X(\sigma)=m$ if $|\sigma| \geq m$
- $\mathbb{E}\left[h_{n}\right]=\left.\left[z^{n}\right] \frac{\partial H}{\partial u}\right|_{u=1}=m \ln n+O(1)$ for fixed m
- Variance of h_{n} is also $m \ln n+O(1)$ and after proper normalization h_{n}^{*} converges to $\mathcal{N}(0,1)$
- The case of arbitrary m can be studied by introducing $\mathrm{H}(z, u, v)=\sum_{m \geq 1} v^{m} H^{(m)}(z, u)$, where $H^{(m)}(z, u)$ is the GF that corresponds to a given particular m.

the nth harmonic number

Hiring above the m th best

Candidate i is hired if and only if her score is above the score of the m th best currently hired candidate.

- $X(\sigma)=|\sigma|+1$ if $|\sigma|<m ; X(\sigma)=m$ if $|\sigma| \geq m$
- $\mathbb{E}\left[h_{n}\right]=\left.\left[z^{n}\right] \frac{\partial H}{\partial u}\right|_{u=1}=m \ln n+O(1)$ for fixed m
- Variance of h_{n} is also $m \ln n+O(1)$ and after proper normalization h_{n}^{*} converges to $\mathcal{N}(0,1)$
- The case of arbitrary m can be studied by introducing $\mathrm{H}(z, u, v)=\sum_{m \geq 1} v^{m} H^{(m)}(z, u)$, where $H^{(m)}(z, u)$ is the GF that corresponds to a given particular m.
- We can show that
$\mathbb{E}\left[h_{n}\right]=m\left(H_{n}-H_{m}+1\right) \sim m \ln (n / m)+m+O(1)$, with H_{n} the nth harmonic number

Hiring above the median

Candidate i is hired if and only if her score is above the score of the median of the scores of currently hired candidates.

- $X(\sigma)=\lceil(h(\sigma)+1) / 2\rceil$

- This result follows easily by using previous theorem with and upper bound

Hiring above the median

Candidate i is hired if and only if her score is above the score of the median of the scores of currently hired candidates.

- $X(\sigma)=\lceil(h(\sigma)+1) / 2\rceil$
- $\sqrt{\frac{n}{\pi}}\left(1+O\left(n^{-1}\right)\right) \leq \mathbb{E}\left[h_{n}\right] \leq 3 \sqrt{\frac{n}{\pi}}\left(1+O\left(n^{-1}\right)\right)$
- This result follows easily by using previous theorem with
$X_{L}(\sigma)=(h(\sigma)+1) / 2$ and $X_{U}(\sigma)=(h(\sigma)+3) / 2$ to lower
and upper bound

Hiring above the median

Candidate i is hired if and only if her score is above the score of the median of the scores of currently hired candidates.

- $X(\sigma)=\lceil(h(\sigma)+1) / 2\rceil$
- $\sqrt{\frac{n}{\pi}}\left(1+O\left(n^{-1}\right)\right) \leq \mathbb{E}\left[h_{n}\right] \leq 3 \sqrt{\frac{n}{\pi}}\left(1+O\left(n^{-1}\right)\right)$
- This result follows easily by using previous theorem with $X_{L}(\sigma)=(h(\sigma)+1) / 2$ and $X_{U}(\sigma)=(h(\sigma)+3) / 2$ to lower and upper bound

Hiring above the median

$n \in\{1000, \ldots, 10000\}, M=100$ random permutations for each n

In red: $\mathbb{E}\left[h_{n}\right]$ with X_{L}; in green: $\mathbb{E}\left[h_{n}\right]$ with X_{U}; in yellow: simulation

Final remarks

- Other quantities, e.g. time of the last hiring, etc. can also be analyzed using techniques from analytic combinatorics
- We have also analyzed hiring above the P\% best candidate with the same machinery, actually we have explicit solutions for $H(z, u)$
- We have extensions of these results to cope with randomized hiring strategies

Final remarks

- Other quantities, e.g. time of the last hiring, etc. can also be analyzed using techniques from analytic combinatorics
- We have also analyzed hiring above the $P \%$ best candidate with the same machinery, actually we have explicit solutions for $H(z, u)$
- We have extensions of these results to cope with randomized hiring strategies
- Many variants of the problem are interesting and natural; for instance, include firing policies

Final remarks

- Other quantities, e.g. time of the last hiring, etc. can also be analyzed using techniques from analytic combinatorics
- We have also analyzed hiring above the $P \%$ best candidate with the same machinery, actually we have explicit solutions for $H(z, u)$
- We have extensions of these results to cope with randomized hiring strategies
- Many variants of the problem are interesting and natural; for instance, include firing policies

Final remarks

- Other quantities, e.g. time of the last hiring, etc. can also be analyzed using techniques from analytic combinatorics
- We have also analyzed hiring above the $P \%$ best candidate with the same machinery, actually we have explicit solutions for $H(z, u)$
- We have extensions of these results to cope with randomized hiring strategies
- Many variants of the problem are interesting and natural; for instance, include firing policies

Thanks for your attention!

