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Generalized partial sorting

The prorlem:

o The input: An array A of n elements and p intervals
.[1 = [fl,’ull], .[2 = [Zz,’u,g], ceey Ip = [Zp,'u,p]
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Generalized partial sorting

The proglem:
e The input: An array A of n elements and p intervals
.[1 = [Zl,'u,l], .[2 = [Zz,’ltg], ceey Ip = [Zp,'u,p]

e The task: To rearranae A in such a way that the
Blocks defined By the intervals and the &aps are in
increasing order with respect to each other, and
additionally, each Block is also sorted.
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Generalized partial sorting

The proelem:

e The input: An array A of n elements and p intervals
Iy = [l wa], I = [, u2], ..., Ip = [£p, up]

o The task: To rearranae A in such a3 way that the
Blocks defined By the intervals and the &aps are in
inereasing order with respect to each other, and
additionally, each Block is alsO sorted.

Example
p=21 =[58], I, = [12,12]
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o The task: To rearranae A in such a3 way that the
Blocks defined By the intervals and the &aps are in
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Generalized partial sorting

e Sorting the array solves the proglem, But it might
do much more work than actually needed, in
particular, if m = |I1| + [I2| + ... + |Ip| = o(n)
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e This proelem generalizes several well-known
Pro’lems:
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do much more work than actually needed, in
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Generalized partial sorting

e Sorting the array solves the proglem, But it might
do much more work than actually needed, in
particular, if m = |I1| + [I2| + ... + |Ip| = o(n)

e This proelem generalizes several well-known
Pro’lems:

o Sortina: Teke p=1,I; =[1,n]
o Selection: Take p=1,I; = [7,7]
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e Sorting the array solves the proglem, But it might
do much more work than actually needed, in
particular, if m = |I1| + [I2| + ... + |Ip| = o(n)

e This proelem generalizes several well-known
Proglems:
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Generalized partial sorting

e Sorting the array solves the proglem, But it might
do much more work than actually needed, in
particular, if m = |I1| + [I2| + ... + |Ip| = o(n)

e This proelem generalizes several well-known
Proglems:

o Sortina: Teke p=1,I; =[1,n]

o Selection: Take p=1,I; = [7,7]

o Multiple selection: Iy = [j1,71], .-+, Ip = [Jp: Ip)
e Partial sortina: p=1, I; = [1,m]
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QUicksort and relatives

o QuUicksort and auickselect were invented in the
early sixties ry CAR. Hoare (Hoare, 196, Hoare,
962
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962

o They are simvple, elecant, reatiful and practical
divide-and-conquer solutions to sortinag and
selection

Chunksort: A Generalized Partial Sort Alaorithm



Introduction The alaorithm The analysis Conclusions

QUicksort and relatives

o QuUicksort and auickselect were invented in the
early sixties ry CAR. Hoare (Hoare, 196, Hoare,
1962

o They are simvple, elecant, reatiful and practical
divide-and-conquer solutions to sortinag and
selection

o Mulktiple Quickselect uses the divide-an-conquer
principle twice to solve the multiple selection
proelem (Prodinaer, 1995)
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QUicksort and relatives

o QuUicksort and auickselect were invented in the
early sixties ry CAR. Hoare (Hoare, 196, Hoare,
1962

o They are simvple, elecant, reatiful and practical
divide-and-con@uer solutions to sorting and
selection

o Multiple quickselect uses the divide-an—conquer
principle twice to solve the multiple selection
proelem (Prodinaer, 1995)

e Partial auicksort is a slight variation of Quicksort

that efficiently solves the partial sorting proelem
(Martinez, 200+)
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QQuicksort

void quicksort(vector<Elem>& A, int i, int j) {
if (1< 3 {
int p = select_pivot(A, i, j);
swap(A[p], A[11);
int k;
partition(A, i, j, k);
// Ali.k—1] < Alk] < Alk+1..j]
quicksort(A, i, k - 1);
quicksort(A, k + 1, j);
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Quickselect

Elem quickselect(vector<Elem>& A,
int i, int j, int m) {
if (4 >= j) return A[il;
int p = select_pivot(4A, i, j, m);
swap(A[p]l, A[1]);

int k;

partition(A, i, j, k);

if (m < k) quickselect(A, i, k¥ - 1, m);
else if (m > k) quickselect(A, k + 1, j, m);
else return A[k];

Conclusions
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QuiIcksort: The recurrence £or averaae cost

e Proraeility that the selected pivot is the k—th of n
elements: m,

o Averaae numeer Of comparisons @, to sort n
elements:

Qn =n-—-1+ Z Tn,k (Qkfl + ank)
k=1
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QuUicksort: The averace cost

e For the standard variant, the splitting proeagilities
are mnk = 1 / n
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QuUicksort: The averaae cost

e For the standard variant, the splitting proeagilities
are mp =1/n

e Averaae numeer Of comparisons @, to sort n
elemvents (Hoare, 962):

Qn=2(n+1)H, —4n
=2nlnn+ (2y —4)n+2lnn + O(1)

where Hn, = 31<p<n 1/k =1nn+ O(1) is the n—th
harmonic Numger.
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Quickselect: The recurrence £or averace cost

o Averaae numger Of comparisons Cp ; tO select the
j—th out of n:

n
Cn,j =n—-1+ Z Tnk * C’k—l,m
k=741
7—1
+ Z Tn,k Cn—k,m—k
k=1
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QuUickselect: The averaae cost

o Averaae numger of comparisons Cp ; tO select the
j—th out of n elements (Knuth, I97):

Cnj=2(n+3+(n+1)H,
—(n+3—3)Hny1—; — (j +2)H;).
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QuUickselect: The averaae cost

o Averaae numger of comparisons Cp ; tO select the
j—th out of n elements (Knuth, I97):

Cnj=2(n+3+(n+1)H,
—(n+3—j)Hni1-5 — (j + 2)Hj).

e Thisis ©(n) forany 57,1 <j<n
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Partial Quicksort

void partial_quicksort(vector<Elem>& A,
int i, int j, int m) {
if (i < j) {

int p = get_pivot(4, i, j);
swap(A[p]l, A[1]);
int k;
partition(A, i, j, k);
partial_quicksort(A, i, k - 1, m);
if (k <m- 1)

partial_quicksort(A, k + 1, j, m);
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Partial Quicksort: The average cost
e Average numger Of comparisons P, ,, 10 sort the
m stmallest elements out of n:
n
Pn,m:n_1+ Z Wn,k'Pk—l,m

k=m+1

m
+ > g (Pe-1h-1+ Prtym—k)
k=1
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Partial Quicksort: The averaae cost

e Average numger Of comparisons P, ,, 10 sort the
m stmallest elements out of n:

n
Pn,m:n_1+ Z Wn,k'Pk—l,m
k=m+1

m
+ > g (Pe-1h-1+ Prtym—k)
k=1

e The solution is (Martinez, 2004):

Pom=2n+2(n+1)H, —2(n+3—m)Hp11-m
—6m+6
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Chunksort: An example
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The analysis

A <p P >p
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Chunksort

void chunksort(vector<T>& A, vector<int>& I,
int i, int j, int 1, int u) {
if (i >= j) return;
if (1 <= 1) {
int k; partition(A, i, j, k);
int r = locate(I, 1, u, k);
// locate the value r such that I[r] < k < I[r+1]
if (x % 2 ==0) {

// r = 2t = I[I‘] = Ut S k < et+1
chunksort(A, I, i, k - 1, 1, 1);
chunksort(A, I, k + 1, j, r + 1, u);

} else {

V) 7 e D=1 = I[r]=£t§ k < ug
chunksort(A, I, i, k - 1, 1, r + 1);
chunksort(A, I, k + 1, j, r, u);

13}
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Chunksort

Example (Using chunksort £or partial sorting)

If p=1, I = [1,m] then r = 1 whenever k < m; hence we make
the calls

chunksort(A, I, i, k - 1, 1, 2);
chunksort(A, I, k + 1, j, 1, 2);

If K > m then » = 2 and then we make the calls

chunksort(A, I, i, k - 1, 1, 2);
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Chunksort

Example (Using chunksort for selection)

If p=1, I; = [4,7] then we will have r = 0 whenever k < j so we
call

chunksort(A, I, k + 1, j, 1, 2);
If K > j then r = 2 and then we make the calls

chunksort(A, I, i, k - 1, 1, 2);
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© The snalysis
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The recurrence

e We only count element comparisons
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The recurrence
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o Each partitioning stace needs n — 1 comparisons
of the pivot with all the other elements
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The recurrence

e We only count element comparisons

o Each partitioning stace needs n — 1 comparisons
of the pivot with all the other elements

o We assume that pivots are chosen at random
(7rn,k =1/ n)
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The recurrence

e We only count element comparisons

e Each partitioning stage needs n — 1 comparisons
of the pivot with all the other elements

e We assume that pivots are chosen at random
(’"n,k =1/ n)

o C;;({lr,...,Is}) = the averace numper of
comparisons needed to process the sugarray Ali..j]
for the aciven set of intervals {I,,..., I}, with
1<, and us <j
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The recurrence

',j({If,‘,...,Is}) =n-1

+ZL Z 7l'nk Ci,k,]_({fr,...,ft/})+Ck+1,j({fél,...,fs})

t<k<ut

+ Z Tnk(Cie—1({Ir,. ., It}) + Crp1;({Ie41, - - -1 Is}))

ut<k<lti1
+ Z 7'r'n,,kc"k#»l,j({IT‘) s 1Is})
i<k<lr
+ > TpCip—1({Ir, ..., Is}),
4s<k<j

with I} = [l k — 1] and I = [k + 1, uy]-
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How to solve the recurrence ...

e We can solve this proelem “iteratively’, using
generating functions
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How to solve the recurrence ...

e We can solve this proelem “iteratively’, using
generating functions

e First we have p=1and I; = [a,b] and we translate
the recurrence for C; ;({[a,b]}) into a functional
equation for

Clag/(w,v) = Y Cij({{a,8]})u’ o7,

1<i<;

which is actually a first-order linear differential
equation
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How to solve the recurrence ...

e Then you can do a similar thina for p = 2, By
introducing

Clapliea(w,v) = Y Ci;({[a,b],[c,d]})u’ o7,
1<i<;

which satisties a similar ODE rut the independent
term now involves Ci, p)(u,v) and Cr q(u, v)
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How to solve the recurrence ...

e Then you can do a similar thina for p = 2, By
introducing

Clapliea(w,v) = Y Ci;({[a,b],[c,d]})u’ o7,
1<i<;

which satisfies a similar ODE But the independent
term now involves Ci, p)(u,v) and Cr q(u, v)

o A pattern emeraes here, so that one can ogtain a
aeneral form for the functional equation
satisfied ry C’{Il,“”[p}(u,v)
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How to solve the recurrence ...

e Then you can do a similar thina for p = 2, By
introducing

Clapliea(w,v) = Y Ci;({[a,b],[c,d]})u’ o7,
1<i<;

which satisfies a similar ODE But the independent
term now involves Ci, p)(u,v) and Cr q(u, v)

o A pattern emeraes here, so that one can ogtain a
aeneral form for the functional equation
satisfied ry C’{Il,“”[p}(u,v)

o Solve and extract [u‘v/]C. (u,v)
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...BUut how | actually did solve it

| quessed the solution from the known solutions to
the alaorithms which chunksort aeneralizes and |
proved it By induction. ..
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Theorem

The average Nnumper Of element comparisons
Crn{l1,...,}) = Cin({11,...,I}) needed By chunksort
aiven the intervals {I1,..., I} is

Cn=2n+up— {1 +2(n+1)H, —Tm — 2+ 15p
— 2ty +2)Hy, —2(n+ 8 — up) s,
p—1
— 2 (M + 5)Hmyq2,
k=1
where
o Ty = |Ip| = lpy1 —up — 1
@ My — |Ik| :uk—Ek-i-].

om=mi+me+- -+ My
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Chunksort vs. Quicksort+aquickselect

o For small p (p =1,2) it is perfectly reasonarle to
solve the proerlem usina Quickselect to find the
BeainNninG and end of each BlOCk, and then sort
each BlOck usinGg QUIcksort

o The order of maanitude of the average cost of
chunksort and this aHternative is similar; put there
are significative diferences for the second order
terms

o Forexample,if p=1and Iy =[a-n— f(n),a-n+ f(n)]
for some a < 1/2 and f(n) = o(n) then chunksort
wakes 2(1 — a)n comparisons less
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Conclusions

o The formula for the averace cost of chunksort
aeneralizes the corresponding formulas £or special
cases: QUIcksort, Quickselect, partial Quicksort,
muktiple Quickselect, ...
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Conclusions

o The formula for the averace cost of chunksort
aeneralizes the corresponding formulas £or special
cases: QUIcksort, Quickselect, partial Quicksort,
muktiple Quickselect, ...

o Despite Being simple and "efficient”, chunksort
should NOt Be used as a sustitute for the
specialized algorithms (mayge it could Be used for
the less frequent tasks Of multiple selection or
partial sorting)
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Conclusions

e [t is interesting to analyze the cost of the
algorithm when taking into account the cost
©(logp) of locating the pivot’s position in the array
of intervals
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Conclusions

o H is interesting to analyze the cost of the
algorithm when taking into account the cost
©(logp) of locating the pivot’s position in the array
of intervals

o | would like to know arout possigle applications for
chunksort; e, partial Quicksort has reen used to
improve significanttly the practical performance of
Kruskal's algorithm £or minimum spanning trees
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ytTro hal nek taoy rnunotouf
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Thank you for your attention
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