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Generalized partial sorting

The problem:

The input: An array A of n elements and p intervalsI1 = [`1; u1], I2 = [`2; u2], . . . , Ip = [`p; up]

The task: To rearrange A in such a way that the

blocks defined by the intervals and the gaps are in

increasing order with respect to each other, and

additionally, each block is also sorted.

Examplep = 2, I1 = [5; 8], I2 = [12; 12]
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The problem:

The input: An array A of n elements and p intervalsI1 = [`1; u1], I2 = [`2; u2], . . . , Ip = [`p; up]
The task: To rearrange A in such a way that the

blocks defined by the intervals and the gaps are in

increasing order with respect to each other, and

additionally, each block is also sorted.

Examplep = 2, I1 = [5; 8], I2 = [12; 12]
3 1 4 2 5 6 7 8 9 11 10 12 15 13 14 � gap �!  � block �!  � gap �! . . .
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Generalized partial sorting

Sorting the array solves the problem, but it might

do much more work than actually needed, in

particular, if m = jI1j+ jI2j+ : : :+ jIpj = o(n)

This problem generalizes several well-known
problems:

Sorting: Take p = 1, I1 = [1; n]
Selection: Take p = 1, I1 = [j; j]
Multiple selection: I1 = [j1; j1], . . . , Ip = [jp; jp]
Partial sorting: p = 1, I1 = [1;m]
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Quicksort and relatives

Quicksort and quickselect were invented in the

early sixties by C.A.R. Hoare (Hoare, 1961; Hoare,

1962)

They are simple, elegant, beatiful and practical

divide-and-conquer solutions to sorting and

selection

Multiple quickselect uses the divide-an-conquer

principle twice to solve the multiple selection

problem (Prodinger, 1995)

Partial quicksort is a slight variation of quicksort

that efficiently solves the partial sorting problem

(Martínez, 2004)
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Quicksort

void quicksort(vector<Elem>& A, int i, int j) {if (i < j) {int p = select_pivot(A, i, j);swap(A[p], A[l]);int k;partition(A, i, j, k);// A[i::k � 1] � A[k] � A[k + 1::j]quicksort(A, i, k - 1);quicksort(A, k + 1, j);} }

Chunksort: A Generalized Partial Sort Algorithm
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Quickselect

Elem quickselect(vector<Elem>& A,int i, int j, int m) {if (i >= j) return A[i];int p = select_pivot(A, i, j, m);swap(A[p], A[l]);int k;partition(A, i, j, k);if (m < k) quickselect(A, i, k - 1, m);else if (m > k) quickselect(A, k + 1, j, m);else return A[k];}

Chunksort: A Generalized Partial Sort Algorithm
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Quicksort: The recurrence for average cost

Probability that the selected pivot is the k-th of n
elements: �n;k
Average number of comparisons Qn to sort n
elements:

Qn = n� 1 + nX
k=1�n;k � (Qk�1 +Qn�k)

Chunksort: A Generalized Partial Sort Algorithm



Introduction The algorithm The analysis Conclusions

Quicksort: The average cost

For the standard variant, the splitting probabilities

are �n;k = 1=n

Average number of comparisons Qn to sort n
elements (Hoare, 1962):

Qn = 2(n+ 1)Hn � 4n= 2n lnn+ (2 � 4)n+ 2 lnn+O(1)
where Hn =P1�k�n 1=k = lnn+O(1) is the n-th

harmonic number.
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Quickselect: The recurrence for average cost

Average number of comparisons Cn;j to select thej-th out of n:

Cn;j = n� 1 + nX
k=j+1�n;k � Ck�1;m

+ j�1X
k=1�n;k � Cn�k;m�k
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Quickselect: The average cost

Average number of comparisons Cn;j to select thej-th out of n elements (Knuth, 1971):

Cn;j = 2�n+ 3 + (n+ 1)Hn� (n+ 3� j)Hn+1�j � (j + 2)Hj�:

This is �(n) for any j, 1 � j � n.
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Partial quicksort

void partial_quicksort(vector<Elem>& A,
int i, int j, int m) {

if (i < j) {
int p = get_pivot(A, i, j);
swap(A[p], A[l]);
int k;
partition(A, i, j, k);
partial_quicksort(A, i, k - 1, m);
if (k < m - 1)

partial_quicksort(A, k + 1, j, m);
} }

Chunksort: A Generalized Partial Sort Algorithm
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Partial quicksort: The average cost

Average number of comparisons Pn;m to sort them smallest elements out of n:

Pn;m = n� 1 + nX
k=m+1�n;k � Pk�1;m

+ mX
k=1�n;k � (Pk�1;k�1 + Pn�k;m�k)

The solution is (Martínez, 2004):

Pn;m = 2n+ 2(n+ 1)Hn � 2(n+ 3�m)Hn+1�m� 6m+ 6

Chunksort: A Generalized Partial Sort Algorithm
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Chunksort: An example

p< p > pA

k

 I
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Chunksort

void chunksort(vector<T>& A, vector<int>& I,

int i, int j, int l, int u) {

if (i >= j) return;

if (l <= u) {

int k; partition(A, i, j, k);

int r = locate(I, l, u, k);

// locate the value r such that I[r] � k < I[r+1]

if (r % 2 == 0) {

// r = 2t =) I[r] = ut � k < `t+1
chunksort(A, I, i, k - 1, l, r);

chunksort(A, I, k + 1, j, r + 1, u);

} else {

// r = 2t-1 =) I[r] = `t � k < ut
chunksort(A, I, i, k - 1, l, r + 1);

chunksort(A, I, k + 1, j, r, u);

}}}

Chunksort: A Generalized Partial Sort Algorithm



Introduction The algorithm The analysis Conclusions

Chunksort

Example (Using chunksort for partial sorting)If p = 1, I1 = [1;m] then r = 1 whenever k < m; hence we makethe calls
chunksort(A, I, i, k - 1, 1, 2);chunksort(A, I, k + 1, j, 1, 2);

If k � m then r = 2 and then we make the calls
chunksort(A, I, i, k - 1, 1, 2);chunksort(A, I, k+1, j, 3, 2);

Chunksort: A Generalized Partial Sort Algorithm
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Chunksort

Example (Using chunksort for selection)If p = 1, I1 = [j; j] then we will have r = 0 whenever k < j so wecall
chunksort(A, I, i, k - 1, 1, 0);chunksort(A, I, k + 1, j, 1, 2);

If k � j then r = 2 and then we make the calls
chunksort(A, I, i, k - 1, 1, 2);chunksort(A, I, k + 1, j, 3, 2);

Chunksort: A Generalized Partial Sort Algorithm
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The recurrence

We only count element comparisons

Each partitioning stage needs n� 1 comparisons

of the pivot with all the other elements

We assume that pivots are chosen at random

(�n;k = 1=n)Ci;j(fIr; : : : ; Isg) = the average number of

comparisons needed to process the subarray A[i::j]
for the given set of intervals fIr; : : : ; Isg, withi � `r and us � j

Chunksort: A Generalized Partial Sort Algorithm
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The recurrence

Ci;j(fIr; : : : ; Isg) = n� 1
+ s�1X

t=r
" X
`t�k<ut �n;k(Ci;k�1(fIr; : : : ; I 0tg) + Ck+1;j(fI 00t ; : : : ; Isg)

+ X
ut�k<`t+1 �n;k(Ci;k�1(fIr; : : : ; Itg) + Ck+1;j(fIt+1; : : : ; Isg))

#

+ X
i�k<`r �n;kCk+1;j(fIr; : : : ; Isg)

+ X
`s�k�j �n;kCi;k�1(fIr; : : : ; Isg);

with I 0t = [`t; k � 1] and I 00t = [k + 1; ut].
Chunksort: A Generalized Partial Sort Algorithm
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How to solve the recurrence . . .

We can solve this problem “iteratively”, using

generating functions

First we have p = 1 and I1 = [a; b] and we translate

the recurrence for Ci;j(f[a; b]g) into a functional

equation for

C[a;b](u; v) = X
1�i�jCi;j(f[a; b]g)ui vj ;

which is actually a first-order linear differential

equation

Chunksort: A Generalized Partial Sort Algorithm
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How to solve the recurrence . . .

Then you can do a similar thing for p = 2, by

introducing

C[a;b];[c;d](u; v) = X
1�i�jCi;j(f[a; b]; [c; d]g)ui vj ;

which satisfies a similar ODE but the independent

term now involves C[a;b](u; v) and C[c;d](u; v)

A pattern emerges here, so that one can obtain a

general form for the functional equation

satisfied by CfI1;:::;Ipg(u; v)
Solve and extract [uivj ]C:::(u; v)

Chunksort: A Generalized Partial Sort Algorithm
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. . . but how I actually did solve it

I guessed the solution from the known solutions to

the algorithms which chunksort generalizes and I

proved it by induction. . .

Chunksort: A Generalized Partial Sort Algorithm
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Theorem

The average number of element comparisonsCn(fI1; : : : ; Ipg) � C1;n(fI1; : : : ; Ipg) needed by chunksort

given the intervals fI1; : : : ; Ipg is

Cn = 2n+ up � `1 + 2(n+ 1)Hn � 7m� 2 + 15p� 2(`1 + 2)H`1 � 2(n+ 3� up)Hn+1�up
� 2 p�1X

k=1(mk + 5)Hmk+2;
wheremk = jIkj = `k+1 � uk � 1mk = jIkj = uk � `k + 1m = m1 +m2 + � � �+mp

Chunksort: A Generalized Partial Sort Algorithm
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Chunksort vs. quicksort+quickselect

For small p (p = 1; 2) it is perfectly reasonable to

solve the problem using quickselect to find the

beginning and end of each block, and then sort

each block using quicksort

The order of magnitude of the average cost of

chunksort and this alternative is similar; but there

are significative diferences for the second order

terms

For example, if p = 1 and I1 = [� � n� f(n); � � n+ f(n)]
for some � < 1=2 and f(n) = o(n) then chunksort

makes 2(1� �)n comparisons less

Chunksort: A Generalized Partial Sort Algorithm
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Conclusions

The formula for the average cost of chunksort

generalizes the corresponding formulas for special

cases: quicksort, quickselect, partial quicksort,

multiple quickselect, . . .

Despite being simple and “efficient”, chunksort

should not be used as a substitute for the

specialized algorithms (maybe it could be used for

the less frequent tasks of multiple selection or

partial sorting)
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Conclusions

It is interesting to analyze the cost of the

algorithm when taking into account the cost�(log p) of locating the pivot’s position in the array

of intervals

I would like to know about possible applications for

chunksort; e.g., partial quicksort has been used to

improve significantly the practical performance of

Kruskal’s algorithm for minimum spanning trees

Chunksort: A Generalized Partial Sort Algorithm



Introduction The algorithm The analysis Conclusions

Conclusions

It is interesting to analyze the cost of the

algorithm when taking into account the cost�(log p) of locating the pivot’s position in the array

of intervals

I would like to know about possible applications for

chunksort; e.g., partial quicksort has been used to

improve significantly the practical performance of

Kruskal’s algorithm for minimum spanning trees

Chunksort: A Generalized Partial Sort Algorithm



Introduction The algorithm The analysis Conclusions

ytTro hai nek taoy rnunotouf
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Thank you for your attention
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