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Goal

Given some algorithm A taking inputs from some
set I , we would like to analyze the performance of
the algorithm as a function of the input size (and
possibly other parameters).

Applications of Discrete Mathematics to the Analysis of Algorithms CanaDAM 2007



Why?

To predict the resources (time, space. . . . ) that the
algorithm will consume

To compare algorithm A with competing
alternatives

To improve the algorithm, by spotting the
performance bottlenecks

To explain observed behavior

Applications of Discrete Mathematics to the Analysis of Algorithms CanaDAM 2007



Why?

To predict the resources (time, space. . . . ) that the
algorithm will consume

To compare algorithm A with competing
alternatives

To improve the algorithm, by spotting the
performance bottlenecks

To explain observed behavior

Applications of Discrete Mathematics to the Analysis of Algorithms CanaDAM 2007



Why?

To predict the resources (time, space. . . . ) that the
algorithm will consume

To compare algorithm A with competing
alternatives

To improve the algorithm, by spotting the
performance bottlenecks

To explain observed behavior

Applications of Discrete Mathematics to the Analysis of Algorithms CanaDAM 2007



Why?

To predict the resources (time, space. . . . ) that the
algorithm will consume

To compare algorithm A with competing
alternatives

To improve the algorithm, by spotting the
performance bottlenecks

To explain observed behavior

Applications of Discrete Mathematics to the Analysis of Algorithms CanaDAM 2007



The performance � : I ! N depends on each
particular instance of the input

We have to introduce some notion of size:j � j : I ! N ; we may safely assume that eachIn = fx 2 I j jxj = ng is finite

Worstcase:�[worst](n) = maxf�(x) jx 2 Ing
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To analyze “typical behavior” or the performance of
randomized algorithms, we have to assume some
probabilistic distribution on the input and/or the
algorithm’s choices; hence, we consider the
performance as a family of random variablesf�ngn�0; �n : In ! N
Averagecase:�[avg](n) = E [�n℄ = Xk�0 k P[�n = k℄

Applications of Discrete Mathematics to the Analysis of Algorithms CanaDAM 2007



When we assume uniformly distributed inputsP[x℄ = 1#In ; for all x 2 In
our problem is one of counting, e.g.,E [�n℄ = Px2In �(x)#In
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One of the most important tools in the analysis of
algorithms are generating functions:A(z; u) = Xn�0Xk�0P[�n = k℄ znuk
For the uniform distributionA(z; u) = Pn�0Pk�0 an;kznukPn�0 anzn = B(z; u)B(z; 1)
with an;k = #fx 2 I j jxj = n ^ �(x) = kg and an = #In
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The equations before can be expressed symbolicallyB(z; u) = Xx2I zjxju�(x)
The ratio of the nth coefficients of B(z; u) andB(z; 1) is the probability generating function of �npn(u) = Xk�0P[�n = k℄uk = [zn℄B(z; u)[zn℄B(z; 1)
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Taking derivatives w.r.t. u and setting u = 1 we get
the expected value, second factorial moment, . . .A(r)(z) = �rA(z; u)�ur ����u=1= Xn�0 E [�nr℄ zn
For example,V[�n℄ = E h�n2i� E [�n℄2 = [zn℄A(2)(z) � ([zn℄A(z))2
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The symbolic method translates combinatorial
constructions to functional equations over
generating functions.

Example: Consider the counting generating function
of a combinatorial class A:A(z) = Xn�0 anzn = X�2A zj�j
If A = B � C thenA(z) = X�2A zj�j = X(�;)2B�C zj�j+jj = 0�X�2B zj�j1A0�X2C zjj1A= B(z) � C(z)

Applications of Discrete Mathematics to the Analysis of Algorithms CanaDAM 2007



A dictionary of (labelled) combinatorial constructions
and G.F.’s f�g 1fZg zA+ B A+BA� B A �BSeq(A) 11�ASet(A) exp(A)Cyle(A) log 11�A

Applications of Discrete Mathematics to the Analysis of Algorithms CanaDAM 2007



A trivial example: since a binary tree is either an empty
tree (leaf) or a root together with two binary
(sub)trees, we haveB = f�g+ fZg � B � B
Hence the counting GF of binary trees isB(z) = 1 + zB2(z)
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Solving the equation before for B(z) and sinceB(0) = b0 = 1, B(z) = (1�p1�4z2z z 6= 0;1 z = 0:
Extracting the nth coefficient of B(z) we find[zn℄B(z) = �2nn �n+ 1
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A more sophisticated example arises in the analysis of
the number of branch mispredictions made by
quicksort (Kaligosi, Martínez, Sanders, 2006).

Applications of Discrete Mathematics to the Analysis of Algorithms CanaDAM 2007



We have a random permutation � of [1::n℄ and we scan
it from left to right. Assume �1 = k.

For 2 < i � k, we say there is a left brach
misprediction whenever �i�1 < k and �i > k, or�i�1 > k and �i < k.
For k � j < n, there is a right BM if �j+1 < k and�j > k, or �j+1 > k and �j < k.
Additionally, there is a left BM if �2 > k and a right
BM if �n < k.
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We want to know the expected number of branch
mispredictions when the choosen pivot is the kth
element of the array.

We transform the original problem to counting
bitstrings. Given a bistring x of length k starting
with a 0 and containing t+ 1 0’s, the number of
left BMs is the number of times we find a 0
followed by a 1, or a 1 followed by a 0 in x.
We go from a permutation � to a bitstring x by
setting xi = 0 if �i � �1 = k, and xi = 1 otherwise.
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0

A B

an;t;r = number of strings of length n with t 0’s

ending at state A and incurring r BMsbn;t;r = number of strings of length n with t 0’s

ending at state B and incurring r BMs
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A B

A(x; u; z) = Xn;r;tan;t;rxturzn;B(x; u; z) = Xn;r;t bn;t;rxturzn;
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A B

A = 1 + xzA+ xuzB;B = zB + zuA:
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A B

C = A+B = 1� z + uz(1� z) �1� uy � xu2z21�z �
Take derivatives with respect to u, set u = 1, and
extract the coefficient Rk;t of zk�1yt in C ; then
multiply by the number of random permutations
producing a bitstring with t+ 1 0’s among the first k
bits and sum for all t.

Applications of Discrete Mathematics to the Analysis of Algorithms CanaDAM 2007



Another important set of techniques comes from
complex variable analysis.
Under suitable technical conditions, if F (z) is analytic in
a disk D = fz 2 C j jzj < 1g and has a single dominant
singularity at z = 1 thenF (z) � G(z) =) [zn℄F (z) � [zn℄G(z)
This is one of the useful transfer lemmas of Flajolet
and Odlyzko (1990). Many other similar results are
extremely useful when computing asymptotic estimates
for the nth coefficient of a generating function.
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In recent years, complex analysis techniques and
perturbation theory have been used to prove powerful
results such as Hwang’s quasipower theorem, which
allows one to prove the convergence in law to a
Gaussian distribution of many combinatorial
parameters in strings, permutations, trees, etc., as well
as local limits and the speed of convergence.
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Another example is motivated by the analysis of a
combinatorial algorithm that shuffles two trees.

Given two binary trees T1 and T2 their shuffle or
intersection is defined as followsT1 \ T2 = (� if T1 = � or T2 = �,Æ(L1 \ L2; R1 \R2) if Ti = Æ(Li; Ri)
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Let S(x; y) = X(T1;T2)2B�BPr(T1; T2) jT1 \ T2jxjT1jyjT2j
The coefficient of xmyn in S(x; y) is the average size
of the intersection of a pair of trees with sizes m
and n, resp.
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If we assume independently drawn trees thenPr(T1; T2) = Pr(T1) � Pr(T2)
If we assume that the total size of (T1; T2) is n and all
possible partitions are equally likely (binary search tree
probability model)Pr(T1; T2) = Pr(T1) Pr(T2)jT1j+ jT2j+ 1
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Furthermore,

In the uniform probability model Pr(T ) = 1=bn, withn = jT j.
In the binary search tree modelPr(T ) = 8<:1 if T = �,Pr(L) Pr(R)jT j if T = Æ(L;R).
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In the binary search tree probability model, the symbolic
method yields the hyperbolic PDE that S(x; y) satisfies�2S(x; y)�x�y = 1(1� x)2(1� y)2 + 2 S(x; y)(1� x)(1 � y) ;
and S(x; 0) = S(0; y) = 0.
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If we consider  (z) = 1z Z z0 S(t; t) dt
then [zn℄ (z) is the average size of the intersection
of a pair of trees of total size n drawn according to
the binary search tree probability model.
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A delicate analysis of the solution of the PDE forS(x; y) shows that (z) � (3 + 2p2) � J0 �2p2i ln� 11� z�� ;
with J0(x) the Bessel function of first kind of order
0.
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The function  (z) has a unique dominant singulary atz = 1; as z ! 1, we haveJ0 �2p2i ln� 11� z��� 1p�25=4 � 1rln � 11�z� � 1(1� z)2p2 � �1 +O� 1ln(1 � z)��
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Applying transfer lemmassn = [zn℄ (z) �  � n2p2�1plnn �1 +O� 1log n��
and  = 3 + 2p225=4p��(2p2) = 0:8050738 : : :
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Conclusion

We’ve just scratched the surface of the rich number
of applications of discrete mathematics for the analysis
of algorithms.

I hope I have convinced you that Analysis of Algorithms
is deeply rooted in mathematics, most notably discrete
mathematics.
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Several of the talks in the minisymposium show nice
applications of the techniques briefly described here,
arising in the analysis of sorting and selection
algorithms, automata theory, multidimensional data
structures, polynomial factorization, decomposable
combinatorial structures, unionfind data structures,
etc.

Other talks will present other elegant and powerful
techniques that we haven’t presented now.
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