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The problem

@ Input:

@ a collection of n multidimensional records, each with a
K-dimensional key

XZ(XO ..... XK,1)€D()><---><DK,1

stored in a suitable multidimensional data structure, e.g., a
K-d tree, a K-dimensional quadtree, a K-d trie, ...
@ aquery

q9=I(q. -, k1), Qi € DjU{x}
with s specified coordinates (g; # %), 0 < s < K, for
example

q=(0.1,%%0.3,0.07), §s=3K=5

@ Output: the set of records such that x satisfies the query q
(i.e., x; = g whenever q; # *)
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Definition
A K-d tree for a set X is either the empty tree if X =) or a
binary tree where:

@ the root contains y € X and some value i (the
discriminant), 0 < i< K

@ the left subtree is a K-d tree for X™ ={x € X|x; < y;}
@ the right subtree is a K-d tree for X* ={x € X|y; < x;}
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K-d trees

@ All discriminants at level { equal to { mod K = standard
K-d trees

@ Discriminants independent and uniformly drawn from
{0,..., K — 1} = relaxed K-d trees

@ Discriminants chosen to cut along the longest side of the
region where a new key is inserted = squarish K-d trees



The algorithm

procedure PARTIAL_MATCH(T,q)
if T = then return
i < T.discr;x < T.key
if x satisfies g then
Add x to the output
if g; = * then
PARTIAL_MATCH( T left, q)
PARTIAL_MATCH( T .right, q)
else
if g; < x; then
PARTIAL_MATCH( T left, q)
else
PARTIAL_MATCH( T .right, q)
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@ Without loss of generality: we assume D; = [0, 1]

@ The standard probability model in this area: the n keys are
drawn i.i.d from some continuous distribution in [0, 1]X and
inserted into an initially empty K-d tree = random
(standard/relaxed/...) K-d tree T,

@ Equivalently: forany i, 0 < i < K, and any y in the random
K-d tree T,,y is the rth smallest along the jth coordinate
with 1

P{#xe Thlxi<yl=rt= =

forr=1,2,..., n = shapes of K-d trees behave as binary
search trees



Previous work: Random queries

[

Ph. Flajolet C. Puech

@ For a query q its pattern u(q) = (wo, - . -, Uk_q)is a
bitvector with u; = S'if g; # * and u; =  if g; = . For
example, q = (0.1, *,%,0.3,0.07) = u = S* xSS



Previous work: Random queries

" »

Ph. Flajolet C. Puech

@ For a query q its pattern u(q) = (wo, - . -, Uk_q)is a
bitvector with u; = S'if g; # *x and u; = x if g; = *. For
example, q = (0.1, %,%,0.3,0.07) = u= S« xSS

@ Let P, denote the cost (humber of visited nodes) of a
random partial match query with pattern u, and let
p=35/K. Then

Pn,u =L (?n,u) = Bun(x + O(n“)

where « = (p)is0 < ax < 1forany p e (0,1) and By is a
constant depending on the query pattern
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Previous work: Random queries

@ Different data structures have different “characteristic”
exponents «
Example (s=1,K =2)
e Standard K-d trees: « =0.56. ..
o Relaxed K-dtrees: « =0.61...
@ Squarish K-d trees: « = 0.5
o K-dtries: x =05

@ Ingeneral, a(p) =1 —p + 3(p), with 3(p) > 0 “small” in
(0, 1)

@ Obs: the constant 3 for relaxed K-d trees only depends on
s and K, not on the pattern, because of the randomly
chosen discriminants



Previous work: Random queries

@ Lots of results for random partial match queries in the
literature:
Flajolet & Puech (1986), Cunto, Lau & Flajolet (1989),
Flajolet, Gonnet, Puech & Robson (1993), Kirschenhofer,
Prodinger & Szpankowski (1993), Kirschenhofer &
Prodinger (1994), Schachinger (1995, 2004), Duch,
Estivill-Castro & Martinez (1998), Devroye, Jabbour &
Zamora-Cura (2000), Neininger (2000), Martinez,
Panholzer & Prodinger (2001), Chanzy, Devroye &
Zamora-Cura (2001), Chern & Hwang (2006), ...
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Fixed queries

@ Our goal: get answers for the following question

What is the (expected) cost P, q of a partial match query with a
given fixed query q7?

@ Remarks (valid for relaxed K-d trees!):
e We can assume that the specified coordinates are the first
s coordinates: g = (qo, .. ., Qs_1,%,%,...)
e A query q’ which contains a permutation of the specified
coordinates of g will have the same cost as P q
o Ifq'=(qo,..., 1—q,..., gs—1,%,%,...) then P,q = Pngq/
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Ranks

@ Given a collection X and a query q, the rank vector is
rq)=(ro,...,rk_1), with r; = % if g; = x and

ri = the number of x € X with x; < g;

@ We will only write the ranks of specified coordinates
r=I(ry ..., rs—1)

@ We wil concentrate in the analysis of the cost
Pn,r =L (?n,r)



Ranks

Relating Ppq and Py ¢

Pn,q = Z Pn,r : ”D{r(Q) = I‘}

= Fnr + l.o.t.

with 7; = q; - n (the expected value of the rank of g;)



Previous work: Fixed queries
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Previous work: Fixed queries

Theorem (Curien & Joseph, 2011)

The cost of a partial match with q = (t, ) (equiv. g = (, t)) and
t # 0,1 in a random 2-dimensional quadtree satisfies

im Pnq _5 Mo+ 2)

. . . /2
Jm e =B g gy 10— 1)

with « = (V17 —3)/2 ~ 0.561 ... and
B = constant factor for random partial match queries

Broutin, Neininger, Sulzbach (2012, 2013): Distributional
results (convergence in law to a random continuous function
P(1)), variance; also for standard 2-d trees




Previous work: Fixed queries

Theorem (Duch, Jiménez & Martinez, 2012)

The cost of a partial match with rank vectorr = (r,x,x,...) ina
random relaxed K-d tree
MNMa+2
Prr = B2 (1= 1)) %/2 4 o)

r2($+1)

with x = «(1/K), «(p) = (v9—8p—3)/2and p = p(1/K),
provided that

.r
0< lim — <1
n—oo N




Previous work: Fixed queries

Theorem (Duch, Jiménez & Martinez, 2012)

The cost of a partial match with rank vectorr = (r,x,%,...) ina
random relaxed K -d tree
F(oc + 2) /2
Pn,r = 6“2(%7“) -(r(n—r))** +o(n%)

with « = «(1/K), «(p) = (vV9—8p —3)/2 and = B(1/K),
provided that

LT
0< lim — <1
n—oo N

A similar result holds for standard K-d trees



Results

Theorem (AofA 2014)

The expected cost of a partial match with rank vector
r=(rg.fy,..., rs_1,%,%,...) In arandom relaxed K-d tree is

P Brzs((a ++21)) ﬁ (F(=2)"" -+ ol

with « = «(s/K), a(p) = (vV9—8p—3)/2 and = B(s/K),
provided that

o )
0< lim < <1, 0<i<s
n—oo N




Results

Theorem (AofA 2014)

The expected cost of a partial match with rank vector
r=(x..., o, *, ..., n,..., rs—1,*,...) in @ random standard
K-d treeis

s—1 ) .
Sy oy LG (- vt

with « = «(s/K), «(p) the unique solution in [0, 1] of
(x+2)P(a+1)"P=2

and provided that 0 < limp_., % <1,0<i< s
n




Results

Corollary

The expected cost of a partial match with query
q=1(90.91,--., Qs—1., %, %, ...) in a random relaxed K-d tree is

s s—1
r (cx+2)) Tt —an™2-n*+o(n%)

Fra=Pras (551

with « = «(s/K), a(p) = (vV9—8p—3)/2 and = B(s/K),
provided that q; # 0, 1
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Overview of the proof

Let the rank vectorbe r = (r, ..., rs—1). Forn>0

1

Pn,r:R(AO+"'+As—1 +By+ -+ Bk—s1)

with

A; = E(Ppy|root discr=i)
B; = E (Ppr | root discr=i + s)



Overview of the proof

n—1

1 . . o
A= > E(Pnr|root x discr = i A left subtree of size j)
j=0
1 n—1
= D E(Pnr|root x discr = i A left subtree of size j)
J=r
1 f,'f'l
+ - Z E (Pnr|root x discr = i /\ left subtree of size j)
j=0
1 n—1 1 ri—1
=1+ E Z Z Ty v/ Pj’r/E Z Z 7Tr/,r“Pnf1fj,r”
j=r r Jj=0 r”
with r’ = (ro’,...,r,-’_1,r,.-,r,-;1,...,rs/_1),
r=(ry,.... == rs’ 1) and 7 (resp. my )

the probability that the rank vector in the left (resp. right)
subtree is r’ (resp. ')
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What’s the prob. there are exactly r’_k elements here? (*)
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k What’s the prob. there are exactly r’_k elements here? (*)



Overview of the proof
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Overview of the proof

w
A~ 14— 'Djf(1)+EZPn—1—j,f(2)
J=ri j=0
with
- —(1 —(1 1 —(1
r“):(ré] ..... r,( )1,r,-,rf+)1 ..... ré )1),
_(2 (2 (2 _(2
r(2):(r(())v 1r,(_)1|rlijrr,(+)1y rré_)'])
and for k # i
—_(1 _(2 n—1-—
,I(():er' rl((): n Jk

Terms B; are similarly handled



Overview of the proof

Dividing by n* (x := «x(s/K)), and collecting all terms
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Overview of the proof




Overview of the proof

Passing to the limit and substituting sums by integrals




Overview of the proof

After some “massaging”




Overview of the proof

@ In order to solve the integral equation, we assume
flzo,...,2s1) =Vo(20) - - Vs1(Z51)

@ Because of the symmetry the problem we can safely
assume ¥ =9y =9y =--- =91 and ¥(z) =9(1 — 2)

@ Furthermore, the analysis of extremal queries (when for
some i, rj = o(n) or r; = n— o(n)), shows that P, = o(n%)
in those cases and thus

lim 9(z) = 0

z—0



Overview of the proof

@ The integral equation can be transformed into a
second-order linear differential equation for 9, which can
be easily solved

3(2) =k (2(1—2))%/?

for some constant «.

@ Last but not least, the constant factor of f can be
determined using

1 r1 1
rs—J j j f(zZo,... 25 1) 020 2y - - - 0Zs 1
0Jo 0



Concluding remarks

@ We conjecture that the expected cost of partial matches
follows the same pattern in many multidimensional data
structures
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Concluding remarks

@ We conjecture that the expected cost of partial matches
follows the same pattern in many multidimensional data
structures

s—1
Pn,qzﬁr';s((”z Tttt —an ool

j=
with 3 and « derived from the analysis of random queries

@ Moreover we conjecture the convergence (at least in
distribution), for the sequence of r.v's {n~*Pp qln>0

Pnq E)_)

29 1%, p(q)

for a continuous random function P(q) (in s variables)



Concluding remarks

@ Our on-going work is now focused in extending our
analysis to other data structures and in finding a general
argument which proves the “universality” of the factor
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Concluding remarks

@ Our on-going work is now focused in extending our
analysis to other data structures and in finding a general
argument which proves the “universality” of the factor

s—1

. rs(0(+2) ) . . /2
Bu s (5 1 1) ’_l_g(cm )

@ Partial match can be regarded as a generalization to higher
dimensions of the selection of order statistics; we have
heavily relied on techniques which have proven extremely
useful in the analysis of classical quickselect and variants



Thanks for your attention!

See you in Strobl (Austria) next June 2015



