On the Average Performance of Fixed Partial
Match Queries in Random Relaxed K-d Trees

Conrado Martinez
Univ. Politecnica Catalunya, Barcelona
AofA 2014, Paris, France

e F

—Dedicated to Ph. Flajolet ~

O M

Amalia Duch Gustavo Lau

Joint work with:

The problem

@ Input:

The problem

@ Input:

@ a collection of n multidimensional records, each with a
K-dimensional key

XZ(X(),...,XK,1)ED()X---XDK,1

stored in a suitable multidimensional data structure, e.g., a
K-d tree, a K-dimensional quadtree, a K-d trie, ...

The problem

@ Input:

@ a collection of n multidimensional records, each with a
K-dimensional key

----- Xk—1) € Do x -+ x Dk_1

stored in a suitable multidimensional data structure, e.g., a
K-d tree, a K-dimensional quadtree, a K-d trie, ...
@ aquery

q9=I(q. -, k1), Qi € DjU{x}
with s specified coordinates (g; # %), 0 < s < K, for
example

q=(0.1,%%0.3,0.07), §s=3K=5

The problem

@ Input:

@ a collection of n multidimensional records, each with a
K-dimensional key

XZ(XO XK,1)€D()><---><DK,1

stored in a suitable multidimensional data structure, e.g., a
K-d tree, a K-dimensional quadtree, a K-d trie, ...
@ aquery

q9=I(q. -, k1), Qi € DjU{x}
with s specified coordinates (g; # %), 0 < s < K, for
example

q=(0.1,%%0.3,0.07), §s=3K=5

@ Output: the set of records such that x satisfies the query q
(i.e., x; = g whenever q; # *)

R\
J.L. Bentley

Definition
A K-d tree for a set X is either the empty tree if X =) or a
binary tree where:

@ the root contains y € X and some value i (the
discriminant), 0 < i< K

@ the left subtree is a K-d tree for X™ ={x € X|x; < y;}
@ the right subtree is a K-d tree for X* ={x € X|y; < x;}

» A

K-d trees

U'

» A

K-d trees

U'

» A

K-d trees

U'

» A

K-d trees

» A

» C

K-d trees

K-d trees

@ All discriminants at level { equal to { mod K = standard
K-d trees

@ Discriminants independent and uniformly drawn from
{0,..., K — 1} = relaxed K-d trees

@ Discriminants chosen to cut along the longest side of the
region where a new key is inserted = squarish K-d trees

The algorithm

procedure PARTIAL_MATCH(T,q)
if T = then return
i < T.discr;x < T.key
if x satisfies g then
Add x to the output
if g; = * then
PARTIAL_MATCH(T left, q)
PARTIAL_MATCH(T .right, q)
else
if g; < x; then
PARTIAL_MATCH(T left, q)
else
PARTIAL_MATCH(T .right, q)

The probability model

@ Without loss of generality: we assume D; = [0, 1]

The probability model

@ Without loss of generality: we assume D; = [0, 1]

@ The standard probability model in this area: the n keys are
drawn i.i.d from some continuous distribution in [0, 1]X and
inserted into an initially empty K-d tree = random
(standard/relaxed/...) K-d tree T,

The probability model

@ Without loss of generality: we assume D; = [0, 1]

@ The standard probability model in this area: the n keys are
drawn i.i.d from some continuous distribution in [0, 1]X and
inserted into an initially empty K-d tree = random
(standard/relaxed/...) K-d tree T,

@ Equivalently: forany i, 0 < i < K, and any y in the random
K-d tree T,,y is the rth smallest along the jth coordinate
with 1

P{#xe Thlxi<yl=rt= =

forr=1,2,..., n = shapes of K-d trees behave as binary
search trees

Previous work: Random queries

[

Ph. Flajolet C. Puech

@ For a query q its pattern u(q) = (wo, - . -, Uk_q)is a
bitvector with u; = S'if g; # * and u; = if g; = . For
example, q = (0.1, *,%,0.3,0.07) = u = S* xSS

Previous work: Random queries

" »

Ph. Flajolet C. Puech

@ For a query q its pattern u(q) = (wo, - . -, Uk_q)is a
bitvector with u; = S'if g; # *x and u; = x if g; = *. For
example, q = (0.1, %,%,0.3,0.07) = u= S« xSS

@ Let P, denote the cost (humber of visited nodes) of a
random partial match query with pattern u, and let
p=35/K. Then

Pn,u =L (?n,u) = Bun(x + O(n“)

where « = (p)is0 < ax < 1forany p e (0,1) and By is a
constant depending on the query pattern

Previous work: Random queries

@ Different data structures have different “characteristic”
exponents «

Previous work: Random queries

@ Different data structures have different “characteristic”
exponents «

Example (s=1,K =2)

Previous work: Random queries
@ Different data structures have different “characteristic”
exponents «
Example (s=1,K =2)
e Standard K-d trees: « = 0.56. ..

Previous work: Random queries

@ Different data structures have different “characteristic”
exponents «

Example (s=1,K =2)
e Standard K-d trees: « =0.56. ..
o Relaxed K-d trees: « = 0.61 ...

Previous work: Random queries

@ Different data structures have different “characteristic”
exponents «

Example (s=1,K =2)
e Standard K-d trees: « =0.56. ..

o Relaxed K-d trees: « =0.61 ...
@ Squarish K-d trees: « = 0.5

Previous work: Random queries

@ Different data structures have different “characteristic”
exponents «

Example (s=1,K =2)
e Standard K-d trees: « =0.56. ..
o Relaxed K-d trees: « = 0.61 ...

@ Squarish K-d trees: « = 0.5
o K-dtries: x =05

Previous work: Random queries

@ Different data structures have different “characteristic”
exponents «

Example (s=1,K =2)
e Standard K-d trees: « =0.56. ..
o Relaxed K-d trees: « = 0.61 ...

@ Squarish K-d trees: « = 0.5
o K-dtries: x =05

@ Ingeneral, a(p) =1 —p + 3(p), with 3(p) > 0 “small” in
(0,1)

Previous work: Random queries

@ Different data structures have different “characteristic”
exponents «
Example (s=1,K =2)
e Standard K-d trees: « =0.56. ..
o Relaxed K-dtrees: « =0.61...
@ Squarish K-d trees: « = 0.5
o K-dtries: x =05

@ Ingeneral, a(p) =1 —p + 3(p), with 3(p) > 0 “small” in
(0, 1)

@ Obs: the constant 3 for relaxed K-d trees only depends on
s and K, not on the pattern, because of the randomly
chosen discriminants

Previous work: Random queries

@ Lots of results for random partial match queries in the
literature:
Flajolet & Puech (1986), Cunto, Lau & Flajolet (1989),
Flajolet, Gonnet, Puech & Robson (1993), Kirschenhofer,
Prodinger & Szpankowski (1993), Kirschenhofer &
Prodinger (1994), Schachinger (1995, 2004), Duch,
Estivill-Castro & Martinez (1998), Devroye, Jabbour &
Zamora-Cura (2000), Neininger (2000), Martinez,
Panholzer & Prodinger (2001), Chanzy, Devroye &
Zamora-Cura (2001), Chern & Hwang (2006), ...

Fixed queries

@ Our goal: get answers for the following question

Fixed queries

@ Our goal: get answers for the following question

What is the (expected) cost P, q of a partial match query with a
given fixed query q7? J

Fixed queries

@ Our goal: get answers for the following question

What is the (expected) cost P, q of a partial match query with a
given fixed query q7? J

@ Remarks (valid for relaxed K-d trees!):

Fixed queries

@ Our goal: get answers for the following question

What is the (expected) cost P, q of a partial match query with a
given fixed query q7? J

@ Remarks (valid for relaxed K-d trees!):

e We can assume that the specified coordinates are the first
s coordinates: g = (qo, .. ., Qs_1,%,%,...)

Fixed queries

@ Our goal: get answers for the following question

What is the (expected) cost P, q of a partial match query with a
given fixed query q7?

@ Remarks (valid for relaxed K-d trees!):

e We can assume that the specified coordinates are the first
s coordinates: g = (qo, .. ., Qs_1,%,%,...)

e A query q’ which contains a permutation of the specified
coordinates of g will have the same cost as P q

Fixed queries

@ Our goal: get answers for the following question

What is the (expected) cost P, q of a partial match query with a
given fixed query q7?

@ Remarks (valid for relaxed K-d trees!):
e We can assume that the specified coordinates are the first
s coordinates: g = (qo, .. ., Qs_1,%,%,...)
e A query q’ which contains a permutation of the specified
coordinates of g will have the same cost as P q
o Ifq'=(qo,..., 1—q,..., gs—1,%,%,...) then P,q = Pngq/

Ranks

@ Given a collection X and a query q, the rank vector is
rq)=(ro,...,rk_1), with r; = % if g; = x and

ri = the number of x € X with x; < g;

Ranks

@ Given a collection X and a query q, the rank vector is
rq)=(ro,...,rk_1), with r; = % if g; = x and

ri = the number of x € X with x; < g;

@ We will only write the ranks of specified coordinates
r=(rn,..., rs—1)

Ranks

@ Given a collection X and a query q, the rank vector is
rq)=(ro,...,rk_1), with r; = % if g; = x and

ri = the number of x € X with x; < g;

@ We will only write the ranks of specified coordinates
r=I(ry ..., rs—1)

@ We wil concentrate in the analysis of the cost
Pn,r =L (?n,r)

Ranks

Relating Ppq and Py ¢

Pn,q = Z Pn,r : ”D{r(Q) = I‘}

= Fnr + l.o.t.

with 7; = q; - n (the expected value of the rank of g;)

Previous work: Fixed queries

Theorem (Curien & Joseph, 2011)

The cost of a partial match with q = (t,) (equiv. g = (x, t)) and
t #£ 0,1 in a random 2-dimensional quadtree satisfies

, Pn,q . Mo+ 2) /2
AN e — P2 (5 +1) (1 =1)
with « = (V17 —3)/2 ~ 0.561 ... and
B = constant factor for random partial match queries

Previous work: Fixed queries

Theorem (Curien & Joseph, 2011)

The cost of a partial match with q = (t,) (equiv. g = (, t)) and
t # 0,1 in a random 2-dimensional quadtree satisfies

im Pnq _5 Mo+ 2)

. . . /2
Jm e =B g gy 10— 1)

with « = (V17 —3)/2 ~ 0.561 ... and
B = constant factor for random partial match queries

Broutin, Neininger, Sulzbach (2012, 2013): Distributional
results (convergence in law to a random continuous function
P(1)), variance; also for standard 2-d trees

Previous work: Fixed queries

Theorem (Duch, Jiménez & Martinez, 2012)

The cost of a partial match with rank vectorr = (r,x,x,...) ina
random relaxed K-d tree
MNMa+2
Prr = B2 (1= 1)) %/2 4 o)

r2($+1)

with x = «(1/K), «(p) = (v9—8p—3)/2and p = p(1/K),
provided that

.r
0< lim — <1
n—oo N

Previous work: Fixed queries

Theorem (Duch, Jiménez & Martinez, 2012)

The cost of a partial match with rank vectorr = (r,x,%,...) ina
random relaxed K -d tree
F(oc + 2) /2
Pn,r = 6“2(%7“) -(r(n—r))** +o(n%)

with « = «(1/K), «(p) = (vV9—8p —3)/2 and = B(1/K),
provided that

LT
0< lim — <1
n—oo N

A similar result holds for standard K-d trees

Results

Theorem (AofA 2014)

The expected cost of a partial match with rank vector
r=(rg.fy,..., rs_1,%,%,...) In arandom relaxed K-d tree is

P Brzs((a ++21)) ﬁ (F(=2)"" -+ ol

with « = «(s/K), a(p) = (vV9—8p—3)/2 and = B(s/K),
provided that

o)
0< lim < <1, 0<i<s
n—oo N

Results

Theorem (AofA 2014)

The expected cost of a partial match with rank vector
r=(x..., o, *, ..., n,..., rs—1,*,...) in @ random standard
K-d treeis

s—1) .
Sy oy LG (- vt

with « = «(s/K), «(p) the unique solution in [0, 1] of
(x+2)P(a+1)"P=2

and provided that 0 < limp_., % <1,0<i< s
n

Results

Corollary

The expected cost of a partial match with query
q=1(90.91,--., Qs—1., %, %, ...) in a random relaxed K-d tree is

s s—1
r (cx+2)) Tt —an™2-n*+o(n%)

Fra=Pras (551

with « = «(s/K), a(p) = (vV9—8p—3)/2 and = B(s/K),
provided that q; # 0, 1

500
450
400
350
300
250
200
150
100

50

Results

K=3, S=2, n=25000

600

500

400

300 [/

200

100

Overview of the proof

Let the rank vectorbe r = (r, ..., rs—1). Forn>0

1

Pn,r:R(AO+"'+As—1 +By+ -+ Bk—s1)

with

A; = E(Ppy|root discr=i)
B; = E (Ppr | root discr=i + s)

Overview of the proof

n—1

1 . . o
A= > E(Pnr|root x discr = i A left subtree of size j)
j=0
1 n—1
= D E(Pnr|root x discr = i A left subtree of size j)
J=r
1 f,'f'l
+ - Z E (Pnr|root x discr = i /\ left subtree of size j)
j=0
1 n—1 1 ri—1
=1+ E Z Z Ty v/ Pj’r/E Z Z 7Tr/,r“Pnf1fj,r”
j=r r Jj=0 r”
with r’ = (ro’,...,r,-’_1,r,.-,r,-;1,...,rs/_1),
r=(ry,.... == rs’ 1) and 7 (resp. my)

the probability that the rank vector in the left (resp. right)
subtree is r’ (resp. ')

Overview of the proof

n-1-j

Overview of the proof

What’s the prob. there are exactly r’_k elements here? (*)

Overview of the proof

() (7))
)

Overview of the proof

Overview of the proof

n-1-j

k What’s the prob. there are exactly r’_k elements here? (*)

Overview of the proof

() G
(")

Overview of the proof

w
A~ 14— 'Djf(1)+EZPn—1—j,f(2)
J=ri j=0
with
- —(1 —(1 1 —(1
r“):(ré] r,()1,r,-,rf+)1 ré)1),
_(2 (2 (2 _(2
r(2):(r(())v 1r,(_)1|rlijrr,(+)1y rré_)'])
and for k # i
—_(1 _(2 n—1-—
,I(():er' rl((): n Jk

Terms B; are similarly handled

Overview of the proof

Dividing by n* (x := «x(s/K)), and collecting all terms

asn— oo

Overview of the proof

Overview of the proof

Passing to the limit and substituting sums by integrals

Overview of the proof

After some “massaging”

Overview of the proof

@ In order to solve the integral equation, we assume
flzo,...,2s1) =Vo(20) - - Vs1(Z51)

@ Because of the symmetry the problem we can safely
assume ¥ =9y =9y =--- =91 and ¥(z) =9(1 — 2)

@ Furthermore, the analysis of extremal queries (when for
some i, rj = o(n) or r; = n— o(n)), shows that P, = o(n%)
in those cases and thus

lim 9(z) = 0

z—0

Overview of the proof

@ The integral equation can be transformed into a
second-order linear differential equation for 9, which can
be easily solved

3(2) =k (2(1—2))%/?

for some constant «.

@ Last but not least, the constant factor of f can be
determined using

1 r1 1
rs—J j j f(zZo,... 25 1) 020 2y - - - 0Zs 1
0Jo 0

Concluding remarks

@ We conjecture that the expected cost of partial matches
follows the same pattern in many multidimensional data
structures

s—1
Pn,qzﬁr';s((”z Tttt —an ool

i=

with 3 and « derived from the analysis of random queries

Concluding remarks

@ We conjecture that the expected cost of partial matches
follows the same pattern in many multidimensional data
structures

s—1
Pn,qzﬁr';s((”z Tttt —an ool

j=
with 3 and « derived from the analysis of random queries

@ Moreover we conjecture the convergence (at least in
distribution), for the sequence of r.v's {n~*Pp qln>0

Pnq E)_)

29 1%, p(q)

for a continuous random function P(q) (in s variables)

Concluding remarks

@ Our on-going work is now focused in extending our
analysis to other data structures and in finding a general
argument which proves the “universality” of the factor

s—1

r 0(+ 2 “/2
BU rzs H ql 1 -
i=0

Concluding remarks

@ Our on-going work is now focused in extending our
analysis to other data structures and in finding a general
argument which proves the “universality” of the factor

s—1

. rs(0(+2)) . . /2
Bu s (5 1 1) ’_l_g(cm)

@ Partial match can be regarded as a generalization to higher
dimensions of the selection of order statistics; we have
heavily relied on techniques which have proven extremely
useful in the analysis of classical quickselect and variants

Thanks for your attention!

See you in Strobl (Austria) next June 2015

