
On the Average Performance of Fixed Partial
Match Queries in Random Relaxed K -d Trees

Conrado Martínez
Univ. Politècnica Catalunya, Barcelona

AofA 2014, Paris, France

–Dedicated to Ph. Flajolet

Joint work with:

Amalia Duch Gustavo Lau

The problem
Input:

a collection of n multidimensional records, each with a
K -dimensional key

x = (x0, . . . , xK−1) ∈ D0 × · · · ×DK−1

stored in a suitable multidimensional data structure, e.g., a
K -d tree, a K -dimensional quadtree, a K -d trie, . . .
a query

q = (q0, . . . ,qK−1), qi ∈ Di ∪ {∗}

with s specified coordinates (qi 6= ∗), 0 < s < K , for
example

q = (0.1, ∗, ∗,0.3,0.07), s = 3,K = 5

Output: the set of records such that x satisfies the query q
(i.e., xi = qi whenever qi 6= ∗)

The problem
Input:

a collection of n multidimensional records, each with a
K -dimensional key

x = (x0, . . . , xK−1) ∈ D0 × · · · ×DK−1

stored in a suitable multidimensional data structure, e.g., a
K -d tree, a K -dimensional quadtree, a K -d trie, . . .
a query

q = (q0, . . . ,qK−1), qi ∈ Di ∪ {∗}

with s specified coordinates (qi 6= ∗), 0 < s < K , for
example

q = (0.1, ∗, ∗,0.3,0.07), s = 3,K = 5

Output: the set of records such that x satisfies the query q
(i.e., xi = qi whenever qi 6= ∗)

The problem
Input:

a collection of n multidimensional records, each with a
K -dimensional key

x = (x0, . . . , xK−1) ∈ D0 × · · · ×DK−1

stored in a suitable multidimensional data structure, e.g., a
K -d tree, a K -dimensional quadtree, a K -d trie, . . .
a query

q = (q0, . . . ,qK−1), qi ∈ Di ∪ {∗}

with s specified coordinates (qi 6= ∗), 0 < s < K , for
example

q = (0.1, ∗, ∗,0.3,0.07), s = 3,K = 5

Output: the set of records such that x satisfies the query q
(i.e., xi = qi whenever qi 6= ∗)

The problem
Input:

a collection of n multidimensional records, each with a
K -dimensional key

x = (x0, . . . , xK−1) ∈ D0 × · · · ×DK−1

stored in a suitable multidimensional data structure, e.g., a
K -d tree, a K -dimensional quadtree, a K -d trie, . . .
a query

q = (q0, . . . ,qK−1), qi ∈ Di ∪ {∗}

with s specified coordinates (qi 6= ∗), 0 < s < K , for
example

q = (0.1, ∗, ∗,0.3,0.07), s = 3,K = 5

Output: the set of records such that x satisfies the query q
(i.e., xi = qi whenever qi 6= ∗)

K -d trees

J.L. Bentley

Definition
A K -d tree for a set X is either the empty tree if X = ∅ or a
binary tree where:

the root contains y ∈ X and some value i (the
discriminant), 0 6 i < K
the left subtree is a K -d tree for X− = {x ∈ X | xi < yi }

the right subtree is a K -d tree for X+ = {x ∈ X | yi < xi }

K -d trees

A

A

K -d trees

A
D

A

D

K -d trees

A

B

D

A

D B

K -d trees

A

B

D

E

A

D B

E

K -d trees

A

B

C

D

E

F

G

H

A

D B

F

H

E C

G

K -d trees

All discriminants at level ` equal to ` mod K ⇒ standard
K -d trees
Discriminants independent and uniformly drawn from
{0, . . . ,K − 1}⇒ relaxed K -d trees
Discriminants chosen to cut along the longest side of the
region where a new key is inserted⇒ squarish K -d trees
. . .

The algorithm

procedure PARTIAL_MATCH(T ,q)
if T = � then return
i ← T .discr ;x← T .key
if x satisfies q then

Add x to the output
if qi = ∗ then

PARTIAL_MATCH(T .left,q)
PARTIAL_MATCH(T .right,q)

else
if qi < xi then

PARTIAL_MATCH(T .left,q)
else

PARTIAL_MATCH(T .right,q)

The probability model

Without loss of generality: we assume Di = [0,1]
The standard probability model in this area: the n keys are
drawn i.i.d from some continuous distribution in [0,1]K and
inserted into an initially empty K -d tree⇒ random
(standard/relaxed/. . .) K -d tree Tn

Equivalently: for any i , 0 6 i < K , and any y in the random
K -d tree Tn, y is the r th smallest along the i th coordinate
with

P {#{x ∈ Tn | xi 6 yi } = r } =
1
n

for r = 1,2, . . . ,n⇒ shapes of K -d trees behave as binary
search trees

The probability model

Without loss of generality: we assume Di = [0,1]
The standard probability model in this area: the n keys are
drawn i.i.d from some continuous distribution in [0,1]K and
inserted into an initially empty K -d tree⇒ random
(standard/relaxed/. . .) K -d tree Tn

Equivalently: for any i , 0 6 i < K , and any y in the random
K -d tree Tn, y is the r th smallest along the i th coordinate
with

P {#{x ∈ Tn | xi 6 yi } = r } =
1
n

for r = 1,2, . . . ,n⇒ shapes of K -d trees behave as binary
search trees

The probability model

Without loss of generality: we assume Di = [0,1]
The standard probability model in this area: the n keys are
drawn i.i.d from some continuous distribution in [0,1]K and
inserted into an initially empty K -d tree⇒ random
(standard/relaxed/. . .) K -d tree Tn

Equivalently: for any i , 0 6 i < K , and any y in the random
K -d tree Tn, y is the r th smallest along the i th coordinate
with

P {#{x ∈ Tn | xi 6 yi } = r } =
1
n

for r = 1,2, . . . ,n⇒ shapes of K -d trees behave as binary
search trees

Previous work: Random queries

Ph. Flajolet C. Puech

For a query q its pattern u(q) = (u0, . . . ,uK−1) is a
bitvector with ui = S if qi 6= ∗ and ui = ∗ if qi = ∗. For
example, q = (0.1, ∗, ∗,0.3,0.07)⇒ u = S ∗ ∗SS
Let Pn,u denote the cost (number of visited nodes) of a
random partial match query with pattern u, and let
ρ = s/K . Then

Pn,u := E (Pn,u) = βunα + o(nα)

where α = α(ρ) is 0 < α < 1 for any ρ ∈ (0,1) and βu is a
constant depending on the query pattern

Previous work: Random queries

Ph. Flajolet C. Puech

For a query q its pattern u(q) = (u0, . . . ,uK−1) is a
bitvector with ui = S if qi 6= ∗ and ui = ∗ if qi = ∗. For
example, q = (0.1, ∗, ∗,0.3,0.07)⇒ u = S ∗ ∗SS
Let Pn,u denote the cost (number of visited nodes) of a
random partial match query with pattern u, and let
ρ = s/K . Then

Pn,u := E (Pn,u) = βunα + o(nα)

where α = α(ρ) is 0 < α < 1 for any ρ ∈ (0,1) and βu is a
constant depending on the query pattern

Previous work: Random queries

Different data structures have different “characteristic”
exponents α

Example (s = 1,K = 2)

Standard K -d trees: α = 0.56 . . .

Relaxed K -d trees: α = 0.61 . . .

Squarish K -d trees: α = 0.5

K -d tries: α = 0.5

In general, α(ρ) = 1 − ρ+ ϑ(ρ), with ϑ(ρ) > 0 “small” in
(0,1)
Obs: the constant β for relaxed K -d trees only depends on
s and K , not on the pattern, because of the randomly
chosen discriminants

Previous work: Random queries

Different data structures have different “characteristic”
exponents α

Example (s = 1,K = 2)

Standard K -d trees: α = 0.56 . . .

Relaxed K -d trees: α = 0.61 . . .

Squarish K -d trees: α = 0.5

K -d tries: α = 0.5

In general, α(ρ) = 1 − ρ+ ϑ(ρ), with ϑ(ρ) > 0 “small” in
(0,1)
Obs: the constant β for relaxed K -d trees only depends on
s and K , not on the pattern, because of the randomly
chosen discriminants

Previous work: Random queries

Different data structures have different “characteristic”
exponents α

Example (s = 1,K = 2)

Standard K -d trees: α = 0.56 . . .

Relaxed K -d trees: α = 0.61 . . .

Squarish K -d trees: α = 0.5

K -d tries: α = 0.5

In general, α(ρ) = 1 − ρ+ ϑ(ρ), with ϑ(ρ) > 0 “small” in
(0,1)
Obs: the constant β for relaxed K -d trees only depends on
s and K , not on the pattern, because of the randomly
chosen discriminants

Previous work: Random queries

Different data structures have different “characteristic”
exponents α

Example (s = 1,K = 2)

Standard K -d trees: α = 0.56 . . .

Relaxed K -d trees: α = 0.61 . . .

Squarish K -d trees: α = 0.5

K -d tries: α = 0.5

In general, α(ρ) = 1 − ρ+ ϑ(ρ), with ϑ(ρ) > 0 “small” in
(0,1)
Obs: the constant β for relaxed K -d trees only depends on
s and K , not on the pattern, because of the randomly
chosen discriminants

Previous work: Random queries

Different data structures have different “characteristic”
exponents α

Example (s = 1,K = 2)

Standard K -d trees: α = 0.56 . . .

Relaxed K -d trees: α = 0.61 . . .

Squarish K -d trees: α = 0.5

K -d tries: α = 0.5

In general, α(ρ) = 1 − ρ+ ϑ(ρ), with ϑ(ρ) > 0 “small” in
(0,1)
Obs: the constant β for relaxed K -d trees only depends on
s and K , not on the pattern, because of the randomly
chosen discriminants

Previous work: Random queries

Different data structures have different “characteristic”
exponents α

Example (s = 1,K = 2)

Standard K -d trees: α = 0.56 . . .

Relaxed K -d trees: α = 0.61 . . .

Squarish K -d trees: α = 0.5

K -d tries: α = 0.5

In general, α(ρ) = 1 − ρ+ ϑ(ρ), with ϑ(ρ) > 0 “small” in
(0,1)
Obs: the constant β for relaxed K -d trees only depends on
s and K , not on the pattern, because of the randomly
chosen discriminants

Previous work: Random queries

Different data structures have different “characteristic”
exponents α

Example (s = 1,K = 2)

Standard K -d trees: α = 0.56 . . .

Relaxed K -d trees: α = 0.61 . . .

Squarish K -d trees: α = 0.5

K -d tries: α = 0.5

In general, α(ρ) = 1 − ρ+ ϑ(ρ), with ϑ(ρ) > 0 “small” in
(0,1)
Obs: the constant β for relaxed K -d trees only depends on
s and K , not on the pattern, because of the randomly
chosen discriminants

Previous work: Random queries

Different data structures have different “characteristic”
exponents α

Example (s = 1,K = 2)

Standard K -d trees: α = 0.56 . . .

Relaxed K -d trees: α = 0.61 . . .

Squarish K -d trees: α = 0.5

K -d tries: α = 0.5

In general, α(ρ) = 1 − ρ+ ϑ(ρ), with ϑ(ρ) > 0 “small” in
(0,1)
Obs: the constant β for relaxed K -d trees only depends on
s and K , not on the pattern, because of the randomly
chosen discriminants

Previous work: Random queries

Lots of results for random partial match queries in the
literature:
Flajolet & Puech (1986), Cunto, Lau & Flajolet (1989),
Flajolet, Gonnet, Puech & Robson (1993), Kirschenhofer,
Prodinger & Szpankowski (1993), Kirschenhofer &
Prodinger (1994), Schachinger (1995, 2004), Duch,
Estivill-Castro & Martínez (1998), Devroye, Jabbour &
Zamora-Cura (2000), Neininger (2000), Martínez,
Panholzer & Prodinger (2001), Chanzy, Devroye &
Zamora-Cura (2001), Chern & Hwang (2006), . . .

Fixed queries

Our goal: get answers for the following question

What is the (expected) cost Pn,q of a partial match query with a
given fixed query q?

Remarks (valid for relaxed K -d trees!):
We can assume that the specified coordinates are the first
s coordinates: q = (q0, . . . ,qs−1, ∗, ∗, . . .)
A query q ′ which contains a permutation of the specified
coordinates of q will have the same cost as Pn,q
If q ′ = (q0, . . . ,1 − qi , . . . ,qs−1, ∗, ∗, . . .) then Pn,q = Pn,q′

Fixed queries

Our goal: get answers for the following question

What is the (expected) cost Pn,q of a partial match query with a
given fixed query q?

Remarks (valid for relaxed K -d trees!):
We can assume that the specified coordinates are the first
s coordinates: q = (q0, . . . ,qs−1, ∗, ∗, . . .)
A query q ′ which contains a permutation of the specified
coordinates of q will have the same cost as Pn,q
If q ′ = (q0, . . . ,1 − qi , . . . ,qs−1, ∗, ∗, . . .) then Pn,q = Pn,q′

Fixed queries

Our goal: get answers for the following question

What is the (expected) cost Pn,q of a partial match query with a
given fixed query q?

Remarks (valid for relaxed K -d trees!):
We can assume that the specified coordinates are the first
s coordinates: q = (q0, . . . ,qs−1, ∗, ∗, . . .)
A query q ′ which contains a permutation of the specified
coordinates of q will have the same cost as Pn,q
If q ′ = (q0, . . . ,1 − qi , . . . ,qs−1, ∗, ∗, . . .) then Pn,q = Pn,q′

Fixed queries

Our goal: get answers for the following question

What is the (expected) cost Pn,q of a partial match query with a
given fixed query q?

Remarks (valid for relaxed K -d trees!):
We can assume that the specified coordinates are the first
s coordinates: q = (q0, . . . ,qs−1, ∗, ∗, . . .)
A query q ′ which contains a permutation of the specified
coordinates of q will have the same cost as Pn,q
If q ′ = (q0, . . . ,1 − qi , . . . ,qs−1, ∗, ∗, . . .) then Pn,q = Pn,q′

Fixed queries

Our goal: get answers for the following question

What is the (expected) cost Pn,q of a partial match query with a
given fixed query q?

Remarks (valid for relaxed K -d trees!):
We can assume that the specified coordinates are the first
s coordinates: q = (q0, . . . ,qs−1, ∗, ∗, . . .)
A query q ′ which contains a permutation of the specified
coordinates of q will have the same cost as Pn,q
If q ′ = (q0, . . . ,1 − qi , . . . ,qs−1, ∗, ∗, . . .) then Pn,q = Pn,q′

Fixed queries

Our goal: get answers for the following question

What is the (expected) cost Pn,q of a partial match query with a
given fixed query q?

Remarks (valid for relaxed K -d trees!):
We can assume that the specified coordinates are the first
s coordinates: q = (q0, . . . ,qs−1, ∗, ∗, . . .)
A query q ′ which contains a permutation of the specified
coordinates of q will have the same cost as Pn,q
If q ′ = (q0, . . . ,1 − qi , . . . ,qs−1, ∗, ∗, . . .) then Pn,q = Pn,q′

Ranks

Given a collection X and a query q, the rank vector is
r(q) = (r0, . . . , rK−1), with ri = ∗ if qi = ∗ and

ri = the number of x ∈ X with xi 6 qi

We will only write the ranks of specified coordinates
r = (r0, . . . , rs−1)

We wil concentrate in the analysis of the cost
Pn,r := E (Pn,r)

Ranks

Given a collection X and a query q, the rank vector is
r(q) = (r0, . . . , rK−1), with ri = ∗ if qi = ∗ and

ri = the number of x ∈ X with xi 6 qi

We will only write the ranks of specified coordinates
r = (r0, . . . , rs−1)

We wil concentrate in the analysis of the cost
Pn,r := E (Pn,r)

Ranks

Given a collection X and a query q, the rank vector is
r(q) = (r0, . . . , rK−1), with ri = ∗ if qi = ∗ and

ri = the number of x ∈ X with xi 6 qi

We will only write the ranks of specified coordinates
r = (r0, . . . , rs−1)

We wil concentrate in the analysis of the cost
Pn,r := E (Pn,r)

Ranks

Relating Pn,q and Pn,r

Pn,q =
∑

r
Pn,r · P {r(q) = r}

= Pn,r + l.o.t.

with r i = qi · n (the expected value of the rank of qi)

Previous work: Fixed queries

Theorem (Curien & Joseph, 2011)
The cost of a partial match with q = (t , ∗) (equiv. q = (∗, t)) and
t 6= 0,1 in a random 2-dimensional quadtree satisfies

lim
n→∞ Pn,q

nα
= β · Γ(α+ 2)

Γ2
(
α
2 + 1

) · (t(1 − t))α/2

with α = (
√

17 − 3)/2 ≈ 0.561 . . . and
β = constant factor for random partial match queries

Previous work: Fixed queries

Theorem (Curien & Joseph, 2011)
The cost of a partial match with q = (t , ∗) (equiv. q = (∗, t)) and
t 6= 0,1 in a random 2-dimensional quadtree satisfies

lim
n→∞ Pn,q

nα
= β · Γ(α+ 2)

Γ2
(
α
2 + 1

) · (t(1 − t))α/2

with α = (
√

17 − 3)/2 ≈ 0.561 . . . and
β = constant factor for random partial match queries

Broutin, Neininger, Sulzbach (2012, 2013): Distributional
results (convergence in law to a random continuous function
P(t)), variance; also for standard 2-d trees

Previous work: Fixed queries

Theorem (Duch, Jiménez & Martínez, 2012)
The cost of a partial match with rank vector r = (r , ∗, ∗, . . .) in a
random relaxed K -d tree

Pn,r = β
Γ(α+ 2)
Γ2
(
α
2 + 1

) · (r(n − r))α/2 + o(nα)

with α = α(1/K), α(ρ) = (
√

9 − 8ρ− 3)/2 and β = β(1/K),
provided that

0 < lim
n→∞ r

n
< 1

Previous work: Fixed queries

Theorem (Duch, Jiménez & Martínez, 2012)
The cost of a partial match with rank vector r = (r , ∗, ∗, . . .) in a
random relaxed K -d tree

Pn,r = β
Γ(α+ 2)
Γ2
(
α
2 + 1

) · (r(n − r))α/2 + o(nα)

with α = α(1/K), α(ρ) = (
√

9 − 8ρ− 3)/2 and β = β(1/K),
provided that

0 < lim
n→∞ r

n
< 1

A similar result holds for standard K -d trees

Results

Theorem (AofA 2014)
The expected cost of a partial match with rank vector
r = (r0, r1, . . . , rs−1, ∗, ∗, . . .) in a random relaxed K -d tree is

Pn,r = β
Γ s(α+ 2)
Γ2s
(
α
2 + 1

) · s−1∏
i=0

(ri

n

(
1 −

ri

n

))α/2
· nα + o(nα)

with α = α(s/K), α(ρ) = (
√

9 − 8ρ− 3)/2 and β = β(s/K),
provided that

0 < lim
n→∞ ri

n
< 1, 0 6 i < s

Results

Theorem (AofA 2014)
The expected cost of a partial match with rank vector
r = (∗, . . . , r0, ∗, . . . , r1, . . . , rs−1, ∗, . . .) in a random standard
K -d tree is

Pn,r = βu(r)
Γ s(α+ 2)
Γ2s
(
α
2 + 1

) · s−1∏
i=0

(ri

n

(
1 −

ri

n

))α/2
· nα + o(nα)

with α = α(s/K), α(ρ) the unique solution in [0,1] of

(α+ 2)ρ(α+ 1)1−ρ = 2

and provided that 0 < limn→∞ ri
n < 1, 0 6 i < s

Results

Corollary
The expected cost of a partial match with query
q = (q0,q1, . . . ,qs−1, ∗, ∗, . . .) in a random relaxed K -d tree is

Pn,q = β
Γ s(α+ 2)
Γ2s
(
α
2 + 1

) · s−1∏
i=0

(qi (1 − qi))
α/2 · nα + o(nα)

with α = α(s/K), α(ρ) = (
√

9 − 8ρ− 3)/2 and β = β(s/K),
provided that qi 6= 0,1

Results

Results

Overview of the proof

Let the rank vector be r = (r0, . . . , rs−1). For n > 0

Pn,r =
1
K
(A0 + · · ·+ As−1 + B0 + · · ·+ BK−s−1)

with

Ai = E (Pn,r | root discr=i)
Bi = E (Pn,r | root discr=i + s)

Overview of the proof

Ai =
1
n

n−1∑
j=0

E (Pn,r | root x discr = i ∧ left subtree of size j)

=
1
n

n−1∑
j=ri

E (Pn,r | root x discr = i ∧ left subtree of size j)

+
1
n

ri−1∑
j=0

E (Pn,r | root x discr = i ∧ left subtree of size j)

= 1 +
1
n

n−1∑
j=ri

∑
r ′
πr,r ′Pj,r ′

1
n

ri−1∑
j=0

∑
r ′′
π ′

r,r ′′Pn−1−j,r ′′

with r ′ = (r ′
0, . . . , r

′
i−1, ri , r ′

i+1, . . . , r
′
s−1),

r ′′ = (r ′′
0 , . . . , r ′′

i−1, ri − j − 1, r ′′
i+1, . . . , r

′′
s−1) and πr,r ′ (resp. π ′

r,r ′)
the probability that the rank vector in the left (resp. right)
subtree is r ′ (resp. r ′′)

Overview of the proof

r−1

n−r

n−1−j

j+1

j

r
k

Overview of the proof

r
k

j+1

j n−1−j

j

n−1−j

What’s the prob. there are exactly r’_k elements here? (*)

Overview of the proof

j

n−1−j

r
k

n−1

j n−1−j

r

r’

k

r − r’
kkk

 ()

() ()

Overview of the proof

r−1

n−r

n−1−j

j+1

j

r
k

Overview of the proof

r
k

j+1

j n−1−j

j

n−1−j

What’s the prob. there are exactly r’_k elements here? (*)

Overview of the proof

j

n−1−j

r
k

n−1

j n−1−j

r’

k

kkk

 ()r

() ()r − r’

−1

−1

Overview of the proof

Ai ∼ 1 +
1
n

n−1∑
j=ri

Pj,r(1) +
1
n

ri−1∑
j=0

Pn−1−j,r(2)

with

r(1) = (r (1)
0 , . . . , r (1)

i−1, ri , r
(1)
i+1, . . . , r

(1)
s−1),

r(2) = (r (2)
0 , . . . , r (2)

i−1, ri − j , r (2)
i+1, . . . , r

(2)
s−1)

and for k 6= i

r (1)
k =

j
n

rk , r (2)
k =

n − 1 − j
n

rk

Terms Bi are similarly handled

Overview of the proof

Dividing by nα (α := α(s/K)), and collecting all terms

Pn,r

nα
∼

1
nα

+
1
K

s−1∑
i=0

(
1
n

n−1∑
j=ri

Pj,r(1)

jα
jα

nα

+
1
n

ri−1∑
j=0

Pn−1−j,r(2)

(n − 1 − j)α
(n − 1 − j)α

nα

)

+
K − s

K
1
n

n−1∑
j=0

Pj,r(3)

jα
jα

nα
+

Pn−1−j,r(4)

(n − 1 − j)α
(n − 1 − j)α

nα

Overview of the proof

We anticipate Pn,r/nα ∼ f (z0, . . . , zs−1) with zi = ri/n and thus,
as n→∞
f (z) ∼

1
K

s−1∑
i=0

{
1
n

n−1∑
j=ri

(
j
n

)α
· f
(

z0, . . . , zi
n
j
, . . .

)

+
1
n

ri−1∑
j=0

(
n − 1 − j

n

)α
· f
(

z0, . . . ,

(
zi −

j + 1
n

)
n

n − 1 − j
, . . .

)}

+
K − s

K
1
n

n−1∑
j=0

((
j
n

)α
+

(
n − 1 − j

n

)α)
· f (z0, . . . , zs−1)

Overview of the proof

Passing to the limit and substituting sums by integrals

f (z0, . . . , zs−1) ∼
1
K

s−1∑
i=0

{∫1

zi

xαf
(

z0, . . . ,
zi

x
, . . . , zs−1

)
dx

+

∫ zi

0
(1 − x)α f

(
z0, . . . ,

zi − x
1 − x

, . . . , zs−1

)
dx

}

+
K − s

K

∫1

0
f (z0, . . . , zs−1)(xα + (1 − x)α) dx

Overview of the proof

After some “massaging”

f (z0, . . . , zs−1) ∼

α+ 2
2s

s−1∑
i=0

∫1

zi

xαf
(

z0, . . . ,
zi

x
, . . . , zs−1

)
dx

+

∫ zi

0
(1 − x)α f

(
z0, . . . ,

zi − x
1 − x

, . . . , zs−1

)
dx

Overview of the proof

In order to solve the integral equation, we assume

f (z0, . . . , zs−1) = ϑ0(z0) · · · ϑs−1(zs−1)

Because of the symmetry the problem we can safely
assume ϑ = ϑ0 = ϑ1 = · · · = ϑs−1 and ϑ(z) = ϑ(1 − z)
Furthermore, the analysis of extremal queries (when for
some i , ri = o(n) or ri = n − o(n)), shows that Pn,r = o(nα)
in those cases and thus

lim
z→0

ϑ(z) = 0

Overview of the proof

The integral equation can be transformed into a
second-order linear differential equation for ϑ, which can
be easily solved

ϑ(z) = κ · (z(1 − z))α/2

for some constant κ.
Last but not least, the constant factor of f can be
determined using

β =

∫1

0

∫1

0
· · ·
∫1

0
f (z0, . . . , zs−1) dz0 dz1 · · ·dzs−1

Concluding remarks

We conjecture that the expected cost of partial matches
follows the same pattern in many multidimensional data
structures

Pn,q = β
Γ s(α+ 2)
Γ2s
(
α
2 + 1

) · s−1∏
i=0

(qi (1 − qi))
α/2 · nα + o(nα)

with β and α derived from the analysis of random queries
Moreover we conjecture the convergence (at least in
distribution), for the sequence of r.v.’s {n−αPn,q}n>0

Pn,q

nα
(d)−−→ P(q)

for a continuous random function P(q) (in s variables)

Concluding remarks

We conjecture that the expected cost of partial matches
follows the same pattern in many multidimensional data
structures

Pn,q = β
Γ s(α+ 2)
Γ2s
(
α
2 + 1

) · s−1∏
i=0

(qi (1 − qi))
α/2 · nα + o(nα)

with β and α derived from the analysis of random queries
Moreover we conjecture the convergence (at least in
distribution), for the sequence of r.v.’s {n−αPn,q}n>0

Pn,q

nα
(d)−−→ P(q)

for a continuous random function P(q) (in s variables)

Concluding remarks

Our on-going work is now focused in extending our
analysis to other data structures and in finding a general
argument which proves the “universality” of the factor

βu ·
Γ s(α+ 2)
Γ2s
(
α
2 + 1

) · s−1∏
i=0

(qi (1 − qi))
α/2

Partial match can be regarded as a generalization to higher
dimensions of the selection of order statistics; we have
heavily relied on techniques which have proven extremely
useful in the analysis of classical quickselect and variants

Concluding remarks

Our on-going work is now focused in extending our
analysis to other data structures and in finding a general
argument which proves the “universality” of the factor

βu ·
Γ s(α+ 2)
Γ2s
(
α
2 + 1

) · s−1∏
i=0

(qi (1 − qi))
α/2

Partial match can be regarded as a generalization to higher
dimensions of the selection of order statistics; we have
heavily relied on techniques which have proven extremely
useful in the analysis of classical quickselect and variants

Thanks for your attention!

See you in Strobl (Austria) next June 2015

