
Branch Mispredictions in Quicksort

K. Kaligosi1 C. Martínez2 P. Sanders3

1Max-Planck-Inst., Germany

2Univ. Politècnica de Catalunya, Spain

3Univ. Karlsruhe, Germany

AofA 2006

Alden Biesen, Belgium

Introduction

I Modern hardware executes several sequential

instructions in a pipelined fashion

I Jump instructions pose a major challenge!

I So we try to predict which branch will be taken ...

I Branch mispredictions are expensive: we have to

rollback the pipeline

Introduction

I Modern hardware executes several sequential

instructions in a pipelined fashion

I Jump instructions pose a major challenge!

I So we try to predict which branch will be taken ...

I Branch mispredictions are expensive: we have to

rollback the pipeline

Introduction

I Modern hardware executes several sequential

instructions in a pipelined fashion

I Jump instructions pose a major challenge!

I So we try to predict which branch will be taken ...

I Branch mispredictions are expensive: we have to

rollback the pipeline

Introduction

I Modern hardware executes several sequential

instructions in a pipelined fashion

I Jump instructions pose a major challenge!

I So we try to predict which branch will be taken ...

I Branch mispredictions are expensive: we have to

rollback the pipeline

Introduction

I In comparison-based algorithms, we want

comparisons to yield as much information as

possible =) difficult to predict!

I In static branch prediction, jump instructions are

statically predicted as TAKEN or NOT TAKEN

I In dynamic branch prediction, the hardware predicts
what to do during execution, taking the past into
account

I 1-bit: We predict the instruction will take the same

direction it took the last time it was executed
I 2-bit: We must be wrong twice before we change

the prediction
I . . .

Introduction

I In comparison-based algorithms, we want

comparisons to yield as much information as

possible =) difficult to predict!

I In static branch prediction, jump instructions are

statically predicted as TAKEN or NOT TAKEN

I In dynamic branch prediction, the hardware predicts
what to do during execution, taking the past into
account

I 1-bit: We predict the instruction will take the same

direction it took the last time it was executed
I 2-bit: We must be wrong twice before we change

the prediction
I . . .

Introduction

I In comparison-based algorithms, we want

comparisons to yield as much information as

possible =) difficult to predict!

I In static branch prediction, jump instructions are

statically predicted as TAKEN or NOT TAKEN

I In dynamic branch prediction, the hardware predicts
what to do during execution, taking the past into
account

I 1-bit: We predict the instruction will take the same

direction it took the last time it was executed
I 2-bit: We must be wrong twice before we change

the prediction
I . . .

Introduction

I In comparison-based algorithms, we want

comparisons to yield as much information as

possible =) difficult to predict!

I In static branch prediction, jump instructions are

statically predicted as TAKEN or NOT TAKEN

I In dynamic branch prediction, the hardware predicts
what to do during execution, taking the past into
account

I 1-bit: We predict the instruction will take the same

direction it took the last time it was executed

I 2-bit: We must be wrong twice before we change

the prediction
I . . .

Introduction

I In comparison-based algorithms, we want

comparisons to yield as much information as

possible =) difficult to predict!

I In static branch prediction, jump instructions are

statically predicted as TAKEN or NOT TAKEN

I In dynamic branch prediction, the hardware predicts
what to do during execution, taking the past into
account

I 1-bit: We predict the instruction will take the same

direction it took the last time it was executed
I 2-bit: We must be wrong twice before we change

the prediction

I . . .

Introduction

I In comparison-based algorithms, we want

comparisons to yield as much information as

possible =) difficult to predict!

I In static branch prediction, jump instructions are

statically predicted as TAKEN or NOT TAKEN

I In dynamic branch prediction, the hardware predicts
what to do during execution, taking the past into
account

I 1-bit: We predict the instruction will take the same

direction it took the last time it was executed
I 2-bit: We must be wrong twice before we change

the prediction
I . . .

2-bit Predictor

00

PNTPNT

01

02

PT

03

PT

T

NT

T

NT

NT

T

T

NT

Partition

// We have to partition A[i::j] around the pivot

// that we have already put on A[i]
int l = i; int u = j + 1; Elem pv = A[i];

for (; ;) {

do ++l; while(A[l] < pv); // Loop S

do --u; while(A[u] > pv); // Loop G

if (l >= u) break;

swap(A[l], A[u]);

};

swap(A[i], A[u]); k = u;

}

Setting up the Recurrences

I Probability that the chosen pivot is the kth
smallest element out of the n: �n;k

I Average number of branch mispredictions when

partitioning an array of size n and the pivot is the

kth: bn;k

I Average number of branch mispredictions whan

partitioning an array of size n:

bn =
X

1�k�n

�n;k � bn;k

Setting up the Recurrences

I Probability that the chosen pivot is the kth
smallest element out of the n: �n;k

I Average number of branch mispredictions when

partitioning an array of size n and the pivot is the

kth: bn;k

I Average number of branch mispredictions whan

partitioning an array of size n:

bn =
X

1�k�n

�n;k � bn;k

Setting up the Recurrences

I Probability that the chosen pivot is the kth
smallest element out of the n: �n;k

I Average number of branch mispredictions when

partitioning an array of size n and the pivot is the

kth: bn;k

I Average number of branch mispredictions whan

partitioning an array of size n:

bn =
X

1�k�n

�n;k � bn;k

Setting up the Recurrences

I Average number of branch mispredictions Bn to

sort n elements:

Bn = bn +
nX
k=1

�n;k � (Bk�1 +Bn�k)

I We will later consider the total cost Tn which

satisfies the same recurrence with toll function

tn = n+ � � bn + o(n)

Setting up the Recurrences

I Average number of branch mispredictions Bn to

sort n elements:

Bn = bn +
nX
k=1

�n;k � (Bk�1 +Bn�k)

I We will later consider the total cost Tn which

satisfies the same recurrence with toll function

tn = n+ � � bn + o(n)

Sampling

I It is well-known that using samples to select the

pivot of each recursive stage improves the

average performance of quicksort and reduces the

probability of worst-case behavior

I For quicksort with samples of size s from which

we pick the (p+ 1)th element as the pivot, we have

�n;k =

�k�1
p

�� n�k
s�1�p

�
�n
s

�

Sampling

I It is well-known that using samples to select the

pivot of each recursive stage improves the

average performance of quicksort and reduces the

probability of worst-case behavior

I For quicksort with samples of size s from which

we pick the (p+ 1)th element as the pivot, we have

�n;k =

�k�1
p

�� n�k
s�1�p

�
�n
s

�

Sampling

I A typical case is to pick the median of the sample

with s = 2t+ 1 and p = t

I We can use variable-size samples with s = s(n);
then s!1 as n!1 but must grow sublinearly,

s = o(n); we use to denote the relative rank of

the pivot within the sample =) e.g., = 1=2 means

choosing the median of the sample

Sampling

I A typical case is to pick the median of the sample

with s = 2t+ 1 and p = t

I We can use variable-size samples with s = s(n);
then s!1 as n!1 but must grow sublinearly,

s = o(n); we use to denote the relative rank of

the pivot within the sample =) e.g., = 1=2 means

choosing the median of the sample

General results

Theorem

The average number of branch mispredictions to sort

n elements with quicksort using samples of size s and

choosing the (p+ 1)th in the sample of each stage is

Bn =
�(s; p)

H(s; p)
n lnn+O(n);

where

H(s; p) = Hs+1 �
p+ 1

s+ 1
Hp+1 �

s� p

s+ 1
Hs�p:

and

�(s; p) = lim
n!1

bn
n

= lim
n!1

1

n

X
1�k�n

�
(s;p)
n;k bn;k

General results

Theorem

For variable-sized sampling, if s!1 as n!1 with

s = o(n), and p=s! then

Bn =
�()

H()
n lnn+ o(n logn);

with �() = limn!1 �(s; � s+ o(s)) and

H(x) = �(x lnx+ (1� x) ln(1� x))

General results

Theorem

The total cost Tn of quicksort is given by

Tn =
1 + � � �(s; p)

H(s; p)
n lnn+O(n); s = �(1)

and

Tn =
1 + � � �()

H()
n lnn+ o(n logn); s = !(1); s = o(n)

General results

I In order to compute �(s; p), we can use, under

suitable conditions,

�(s; p) =
s!

p!(s� 1� p)!

Z 1

0
xp(1� x)s�1�pb(x) dx

with

b(x) = lim
n!1

bn;x�n
n

I Computing �() is easier!

�() = b()

General results

I In order to compute �(s; p), we can use, under

suitable conditions,

�(s; p) =
s!

p!(s� 1� p)!

Z 1

0
xp(1� x)s�1�pb(x) dx

with

b(x) = lim
n!1

bn;x�n
n

I Computing �() is easier!

�() = b()

General results

I The optimal value � for minimizes the total

cost, i.e., minimizes

��() =
1 + � � �()

H()

and depends on �

I It’s not difficult to prove that for any s and p,

�(s; p)

H(s; p)
>
�(�)

H(�)

General results

I The optimal value � for minimizes the total

cost, i.e., minimizes

��() =
1 + � � �()

H()

and depends on �

I It’s not difficult to prove that for any s and p,

�(s; p)

H(s; p)
>
�(�)

H(�)

General results

I In general, there exists a threshold value �c such

that if � � �c (branch mispredictions are not too

expensive) then we have to take the median of the

samples, i.e., � = 1=2

I If � > �c (that can happen often in practice!) then

 � < 1=2 and it is given by the unique solution in

[0; 1=2) of the equation

� � b0()H() = (1 + � � b())H0()

(provided that b(x) is in C2[0; 1=2))

General results

I In general, there exists a threshold value �c such

that if � � �c (branch mispredictions are not too

expensive) then we have to take the median of the

samples, i.e., � = 1=2

I If � > �c (that can happen often in practice!) then

 � < 1=2 and it is given by the unique solution in

[0; 1=2) of the equation

� � b0()H() = (1 + � � b())H0()

(provided that b(x) is in C2[0; 1=2))

General results

I The threshold value �c is the solution of

d2��()

d 2

�����
 =1=2

= 0

I That is

�c = �
4

b00(1=2) ln 2 + 4b(1=2)

General results

I The threshold value �c is the solution of

d2��()

d 2

�����
 =1=2

= 0

I That is

�c = �
4

b00(1=2) ln 2 + 4b(1=2)

Static branch prediction

I We analyze here optimal prediction: if the position

of the pivot k � n=2 then we predict Loop S not

taken and loop G taken, and the other way around

I If k � n=2 we incur a branch misprediction every

time there is an element which is smaller than the

pivot; symetrically, if k > n=2 then the number of

branch mispredictions is n� k

I Hence, bn;k = min(k� 1; n� k), b() = min(; 1�) and

��() =
1 + � �min(; 1�)

H()

Static branch prediction

I We analyze here optimal prediction: if the position

of the pivot k � n=2 then we predict Loop S not

taken and loop G taken, and the other way around

I If k � n=2 we incur a branch misprediction every

time there is an element which is smaller than the

pivot; symetrically, if k > n=2 then the number of

branch mispredictions is n� k

I Hence, bn;k = min(k� 1; n� k), b() = min(; 1�) and

��() =
1 + � �min(; 1�)

H()

Static branch prediction

I We analyze here optimal prediction: if the position

of the pivot k � n=2 then we predict Loop S not

taken and loop G taken, and the other way around

I If k � n=2 we incur a branch misprediction every

time there is an element which is smaller than the

pivot; symetrically, if k > n=2 then the number of

branch mispredictions is n� k

I Hence, bn;k = min(k� 1; n� k), b() = min(; 1�) and

��() =
1 + � �min(; 1�)

H()

Static branch prediction

0.2

0.16

5

0.44

0.32

0.4

20 25

0.36

15

0.28

10

0.08

0.12

0 30

0.24

0.48

The value of � as a function of �

1-bit branch prediction

I The number of branch mispredictions is twice the

number of exchanges: we incur a misprediction

each time we abandon the loops S and G

I Hence, bn;k = 2(k � 1)(n� k) and b() = 2 (1�)

1-bit branch prediction

I The number of branch mispredictions is twice the

number of exchanges: we incur a misprediction

each time we abandon the loops S and G

I Hence, bn;k = 2(k � 1)(n� k) and b() = 2 (1�)

1-bit branch prediction

I We can analyze in full detail the performance when

using fixed-sized samples. For example, for

median-of-(2t+ 1) we have

�(2t+ 1; t) =
t+ 1

2t+ 3

I For variable-size samples, �() = 2 (1�).

I The threshold is then at �c = 2=(2 ln 2� 1) � 5:177 : : :
and � is the solution of

ln + 2� 2 ln = ln(1�) + 2�(1�)2 ln(1�)

1-bit branch prediction

I We can analyze in full detail the performance when

using fixed-sized samples. For example, for

median-of-(2t+ 1) we have

�(2t+ 1; t) =
t+ 1

2t+ 3

I For variable-size samples, �() = 2 (1�).

I The threshold is then at �c = 2=(2 ln 2� 1) � 5:177 : : :
and � is the solution of

ln + 2� 2 ln = ln(1�) + 2�(1�)2 ln(1�)

1-bit branch prediction

I We can analyze in full detail the performance when

using fixed-sized samples. For example, for

median-of-(2t+ 1) we have

�(2t+ 1; t) =
t+ 1

2t+ 3

I For variable-size samples, �() = 2 (1�).

I The threshold is then at �c = 2=(2 ln 2� 1) � 5:177 : : :
and � is the solution of

ln + 2� 2 ln = ln(1�) + 2�(1�)2 ln(1�)

1-bit branch prediction

0.28

0.08

5

0.44

15

0.36

10

0.12

0.16

0.48

2520

0.32

0.4

30

0.2

0

0.24

The value of � as a function of �

2-bit branch prediction

I In (Kaligosi, Sanders, 2006), an approximate model

to compute bn;k is given, from which

b(x) =
2x4 � 4x3 + x2 + x

1� x(1� x)

follows

I We are working on a more refined analysis of bn;k
for this prediction scheme; once bn;k has been

found, we should only have to apply the machinery

shown here

2-bit branch prediction

I In (Kaligosi, Sanders, 2006), an approximate model

to compute bn;k is given, from which

b(x) =
2x4 � 4x3 + x2 + x

1� x(1� x)

follows

I We are working on a more refined analysis of bn;k
for this prediction scheme; once bn;k has been

found, we should only have to apply the machinery

shown here

Some real data

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 10 12 14 16 18 20 22 24 26

tim
e

/ n
 lg

 n
 [n

s]

lg n

random pivot
median of 3

exact median
skewed pivot n/10

Time vs. size on a Pentium 4 (from (Kaligosi, Sanders,

2006))

Some real data

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 8

 2 4 6 8 10 12 14 16 18

tim
e

/ n
 lg

 n
 [n

s]

1/α

n=212

n=219

n=226

Time vs. 1= on a Pentium 4

Some real data

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

 10 12 14 16 18 20 22 24 26

tim
e

/ n
 lg

 n
 [n

s]

lg n

random pivot
median of 3

exact median
skewed pivot n/10

Time vs. size on an Athlon 64

Some real data

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 10 12 14 16 18 20 22 24 26

tim
e

/ n
 lg

 n
 [n

s]

lg n

random pivot
median of 3

exact median
skewed pivot n/10

Time vs. size on an Opteron

Some real data

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 10 12 14 16 18 20 22 24

tim
e

/ n
 lg

 n
 [n

s]

lg n

random pivot
median of 3

exact median
skewed pivot n/10

Time vs. size on a Sun

Future work

I Complete the analysis of static branch prediction

with fixed-size samples (it’s not easy to obtain

�(s; p) for general s and p!)

I Analyze the 2-bit prediction scheme and possibly

others

I Conduct additional experiments, compare

theoretical analysis to real data

I Analyze branch mispredictions and their impact on

the performance of other algorithms

