Branch Mispredictions in Quicksort

K. Kaligosi¹ C. Martínez² P. Sanders³

¹Max-Planck-Inst., Germany

²Univ. Politècnica de Catalunya, Spain

³Univ. Karlsruhe, Germany

AofA 2006 Alden Biesen, Belgium

 Modern hardware executes several sequential instructions in a pipelined fashion

- Modern hardware executes several sequential instructions in a pipelined fashion
- Jump instructions pose a major challenge!

- Modern hardware executes several sequential instructions in a pipelined fashion
- Jump instructions pose a major challenge!
- So we try to predict which Branch will be taken ...

- Modern hardware executes several sequential instructions in a pipelined fashion
- Jump instructions pose a major challenge!
- So we try to predict which Branch will be taken ...
- Branch mispredictions are expensive: we have to rollback the pipeline

 In comparison-based algorithms, we want comparisons to yield as much information as possible => difficult to predict!

- In comparison-based algorithms, we want comparisons to yield as much information as possible approximation difficult to predict!
- In static Branch prediction, jump instructions are statically predicted as TAKEN OR NOT TAKEN

- In comparison-based algorithms, we want comparisons to yield as much information as possible and difficult to predict!
- In static Branch prediction, jump instructions are statically predicted as TAKEN OR NOT TAKEN
- In dynamic Branch prediction, the hardware predicts what to do during execution, taking the past into account

- In comparison-based algorithms, we want comparisons to yield as much information as possible approximation to predict!
- In static Branch prediction, jump instructions are statically predicted as TAKEN OR NOT TAKEN
- In dynamic Branch prediction, the hardware predicts what to do during execution, taking the past into account
 - I-Bit: We predict the instruction will take the same direction it took the last time it was executed

- In comparison-based algorithms, we want comparisons to yield as much information as possible approximation to predict!
- In static Branch prediction, jump instructions are statically predicted as TAKEN OR NOT TAKEN
- In dynamic Branch prediction, the hardware predicts what to do during execution, taking the past into account
 - I-Bit: We predict the instruction will take the same direction it took the last time it was executed
 - ► 2-Bit: We must be wrong twice before we change the prediction

- In comparison-based algorithms, we want comparisons to yield as much information as possible approximation difficult to predict!
- In static Branch prediction, jump instructions are statically predicted as TAKEN OR NOT TAKEN
- In dynamic Branch prediction, the hardware predicts what to do during execution, taking the past into account
 - I-Bit: We predict the instruction will take the same direction it took the last time it was executed
 - ► 2-Bit: We must be wrong twice before we change the prediction

▶ ...

2-Bit Predictor

Partition

```
// We have to partition A[i..j] around the pivot
// that we have already put on A[i]
int l = i; int u = j + 1; Elem pv = A[i];
for ( ; ; ) {
   do ++1; while(A[1] < pv); // Loop S</pre>
   do --u; while(A[u] > pv); // Loop G
   if (1 \ge u) break;
   swap(A[1], A[u]);
}:
swap(A[i], A[u]); k = u;
```

}

► Probability that the chosen pivot is the kth smallest element out of the n: $\pi_{n,k}$

- ► Probability that the chosen pivot is the kth smallest element out of the n: $\pi_{n,k}$
- Average number of Branch mispredictions when partitioning an array of size n and the pivot is the kth: b_{n,k}

- ► Probability that the chosen pivot is the kth smallest element out of the n: $\pi_{n,k}$
- Average number of Branch mispredictions when partitioning an array of size n and the pivot is the kth: b_{n,k}
- Average number of Branch Mispredictions whan partitioning an array of size n:

$$b_n = \sum_{1 \leq k \leq n} \pi_{n,k} \cdot b_{n,k}$$

• Average number of Branch mispredictions B_n to sort n elements:

$$B_n = b_n + \sum_{k=1}^n \pi_{n,k} \cdot (B_{k-1} + B_{n-k})$$

Average number of Branch mispredictions B_n to sort n elements:

$$B_n = b_n + \sum_{k=1}^n \pi_{n,k} \cdot (B_{k-1} + B_{n-k})$$

• We will later consider the total cost T_n which satisfies the same recurrence with toll function

$$t_n = n + \xi \cdot b_n + o(n)$$

It is well-known that using samples to select the pivot of each recursive stage improves the average performance of quicksort and reduces the probability of worst-case behavior

- It is well-known that using samples to select the pivot of each recursive stage improves the average performance of quicksort and reduces the probability of worst-case behavior
- For quicksort with samples of size s from which we pick the (p + 1)th element as the pivot, we have

$$\pi_{n,k}=rac{\binom{k-1}{p}\binom{n-k}{s-1-p}}{\binom{n}{s}}$$

▶ A typical case is to pick the median of the sample with s = 2t + 1 and p = t

- A typical case is to pick the median of the sample with s = 2t + 1 and p = t
- We can use variable-size samples with s = s(n); then $s \to \infty$ as $n \to \infty$ but must grow sublinearly, s = o(n); we use ψ to denote the relative rank of the pivot within the sample \implies e.g., $\psi = 1/2$ means choosing the median of the sample

Theorem

The average number of Branch mispredictions to sort n elements with quicksort using samples of size s and choosing the (p + 1)th in the sample of each stage is

$$B_n = rac{eta(s,p)}{\mathcal{H}(s,p)} n \ln n + O(n),$$

where

$$\mathcal{H}(s,p) = H_{s+1} - rac{p+1}{s+1}H_{p+1} - rac{s-p}{s+1}H_{s-p}.$$

and

$$eta(s,p) = \lim_{n o \infty} rac{b_n}{n} = \lim_{n o \infty} rac{1}{n} \sum_{1 \le k \le n} \pi^{(s,p)}_{n,k} b_{n,k}$$

Theorem For variable-sized sampling, if $s \to \infty$ as $n \to \infty$ with s = o(n), and $p/s \to \psi$ then

$$B_n = rac{eta(\psi)}{\mathcal{H}(\psi)} n \ln n + o(n \log n),$$

with $eta(\psi) = \lim_{n o \infty} eta(s, \psi \cdot s + o(s))$ and $\mathcal{H}(x) = -(x \ln x + (1-x) \ln(1-x))$

Theorem The total cost T_n of quicksort is given by

$$T_n = rac{1+\xi\cdoteta(s,p)}{\mathcal{H}(s,p)}n\ln n + O(n), \qquad s = \Theta(1)$$

and

$$T_n = rac{1+\xi \cdot eta(\psi)}{\mathcal{H}(\psi)} n \ln n + o(n\log n), \qquad s = \omega(1), s = o(n)$$

► In order to compute $\beta(s, p)$, we can use, under suitable conditions,

$$eta(s,p) = rac{s!}{p!(s-1-p)!} \int_0^1 x^p (1-x)^{s-1-p} b(x) \, dx$$

with

$$b(x) = \lim_{n o \infty} rac{b_{n,x \cdot n}}{n}$$

► In order to compute $\beta(s, p)$, we can use, under suitable conditions,

$$eta(s,p)=rac{s!}{p!(s-1-p)!}\int_0^1 x^p(1-x)^{s-1-p}b(x)\,dx$$
 with $b(x)=\lim_{n o\infty}rac{b_{n,x\cdot n}}{n}$

• Computing
$$\beta(\psi)$$
 is easier!

 $eta(\psi)=b(\psi)$

• The optimal value ψ^* for ψ minimizes the total cost, i.e., minimizes

$$au_{\xi}(oldsymbol{\psi}) = rac{1+\xi \cdot oldsymbol{eta}(oldsymbol{\psi})}{\mathcal{H}(oldsymbol{\psi})}$$

and depends on ξ

• The optimal value ψ^* for ψ minimizes the total cost, i.e., minimizes

$$au_{\xi}(oldsymbol{\psi}) = rac{1+\xi \cdot oldsymbol{eta}(oldsymbol{\psi})}{\mathcal{H}(oldsymbol{\psi})}$$

and depends on ξ

 \blacktriangleright It's not difficult to prove that for any s and p,

$$rac{eta(s,p)}{\mathcal{H}(s,p)} > rac{eta(\psi^*)}{\mathcal{H}(\psi^*)}$$

▶ In general, there exists a threshold value ξ_c such that if $\xi \leq \xi_c$ (Branch mispredictions are not too expensive) then we have to take the median of the samples, i.e., $\psi^* = 1/2$

- ▶ In general, there exists a threshold value ξ_c such that if $\xi \leq \xi_c$ (Branch mispredictions are not too expensive) then we have to take the median of the samples, i.e., $\psi^* = 1/2$
- ▶ If $\xi > \xi_c$ (that can happen often in practice!) then $\psi^* < 1/2$ and it is given by the unique solution in [0, 1/2) of the equation

 $\xi \cdot b'(\psi) \mathcal{H}(\psi) = (1 + \xi \cdot b(\psi)) \mathcal{H}'(\psi)$

(provided that b(x) is in $C^2[0, 1/2)$)

• The threshold value ξ_c is the solution of

$$\left.rac{d^2 au_\xi(\psi)}{d\psi^2}
ight|_{\psi=1/2}=0$$

• The threshold value ξ_c is the solution of

$$\left. \left. rac{d^2 au_\xi(\psi)}{d\psi^2}
ight|_{\psi=1/2} = 0$$

▶ That is
$$\xi_c = -rac{4}{b''(1/2)\ln 2 + 4b(1/2)}$$

Static Branch prediction

• We analyze here optimal prediction: if the position of the pivot $k \le n/2$ then we predict Loop S not taken and loop G taken, and the other way around

Static Branch prediction

- ▶ We analyze here optimal prediction: if the position of the pivot $k \le n/2$ then we predict Loop S not taken and loop G taken, and the other way around
- ▶ If $k \le n/2$ we incur a branch misprediction every time there is an element which is smaller than the pivot; symetrically, if k > n/2 then the number of branch mispredictions is n k

Static Branch prediction

- We analyze here optimal prediction: if the position of the pivot $k \le n/2$ then we predict Loop S not taken and loop G taken, and the other way around
- ▶ If $k \le n/2$ we incur a branch misprediction every time there is an element which is smaller than the pivot; symetrically, if k > n/2 then the number of branch mispredictions is n - k
- ► Hence, $b_{n,k} = \min(k-1, n-k), b(\psi) = \min(\psi, 1-\psi)$ and

$$au_{\xi}(\psi) = rac{1+ \xi \cdot \min(\psi, 1-\psi)}{\mathcal{H}(\psi)}$$

Static Branch prediction

The value of ψ^* as a function of ξ

The number of Branch Mispredictions is twice the number of exchanges: we incur a misprediction each time we abandon the loops S and G

- The number of Branch Mispredictions is twice the number of exchanges: we incur a misprediction each time we abandon the loops S and G
- ▶ Hence, $b_{n,k} = 2(k-1)(n-k)$ and $b(\psi) = 2\psi(1-\psi)$

• We can analyze in full detail the performance when using fixed-sized samples. For example, for median-of-(2t + 1) we have

$$eta(2t+1,t)=rac{t+1}{2t+3}$$

• We can analyze in full detail the performance when using fixed-sized samples. For example, for median-of-(2t + 1) we have

$$eta(2t+1,t)=rac{t+1}{2t+3}$$

For variable-size samples, $\beta(\psi) = 2\psi(1-\psi)$.

We can analyze in full detail the performance when using fixed-sized samples. For example, for median-of-(2t+1) we have

$$eta(2t+1,t)=rac{t+1}{2t+3}$$

- For variable-size samples, $eta(\psi)=2\psi(1-\psi).$
- ▶ The threshold is then at $\xi_c = 2/(2\ln 2 1) \approx 5.177...$ and ψ^* is the solution of

 $\ln\psi+2\xi\psi^2\ln\psi=\ln(1-\psi)+2\xi(1-\psi)^2\ln(1-\psi)$

The value of ψ^* as a function of ξ

▶ In (Kaligosi, Sanders, 2006), an approximate model to compute $b_{n,k}$ is given, from which

$$b(x)=rac{2x^4-4x^3+x^2+x}{1-x(1-x)}$$

follows

 In (Kaligosi, Sanders, 2006), an approximate model to compute b_{n,k} is given, from which

$$b(x)=rac{2x^4-4x^3+x^2+x}{1-x(1-x)}$$

follows

• We are working on a more refined analysis of $b_{n,k}$ for this prediction scheme; once $b_{n,k}$ has been found, we should only have to apply the machinery shown here

Time vs. size on a Pentium 4 (from (Kaligosi, Sanders, 2006))

Future work

- Complete the analysis of static branch prediction with fixed-size samples (it's not easy to obtain $\beta(s, p)$ for general s and p!)
- Analyze the 2-Bit prediction scheme and possibly others
- Conduct additional experiments, compare theoretical analysis to real data
- Analyze Branch mispredictions and their impact on the performance of other algorithms