Branch Mispredictions in Quicksort
K. Kaligosi ${ }^{1}$ C. Martínez ${ }^{2} \quad$ P. Sanders ${ }^{3}$
${ }^{1}$ Max-Planck-Inst., Germany
${ }^{2}$ Univ. Politècnica de Catalunya, Spain
${ }^{3}$ Univ. Karlsruhe, Germany
AofA 2006
Alden Biesen, Belgium

Introduction

- Modern hardware executes several sequential instructions in a pipelined fashion

Introduction

- Modern hardware executes several sequential instructions in a pipelined fashion
- Jump instructions pose a major challenge!

Introduction

- Modern hardware executes several sequential instructions in a pipelined fashion
- Jump instructions pose a major challenge!
- So we try to predict which Branch will Be taken ...

Introduction

- Modern hardware executes several sequential instructions in a pipelined fashion
- Jump instructions pose a major challenge!
- So we try to predict which Branch will Be taken ...
- Branch mispredictions are expensive: we have to rollback the pipeline

Introduction

- In comparison-Based algorithms, we want comparisons to yield as much information as possible $\Longrightarrow$ difficult to predict!

Introduction

- In comparison-Based algorithms, we want comparisons to yield as much information as possible $\Longrightarrow$ difficult to predict!
- In static Branch prediction, jump instructions are statically predicted as TAKEN or NOT TAKEN

Introduction

- In comparison-Based algorithms, we want comparisons to yield as much information as possible $\Longrightarrow$ difficult to predict!
- In static Branch prediction, jump instructions are statically predicted as TAKEN or NOT TAKEN
- In dynamic Branch prediction, the hardware predicts what to do during execution, taking the past into account

Introduction

- In comparison-Based algorithms, we want comparisons to yield as much information as possible $\Longrightarrow$ difficult to predict!
- In static Branch prediction, jump instructions are statically predicted as TAKEN or NOT TAKEN
- In dynamic Branch prediction, the hardware predicts what to do during execution, taking the past into account
- I-Bit: We predict the instruction will take the same direction it took the last time it was executed

Introduction

- In comparison-Based algorithms, we want comparisons to yield as much information as possible $\Longrightarrow$ difficult to predict!
- In static Branch prediction, jump instructions are statically predicted as TAKEN or NOT TAKEN
- In dynamic Branch prediction, the hardware predicts what to do during execution, taking the past into account
- I-Bit: We predict the instruction will take the same direction it took the last time it was executed
- 2-bit: We must be wrong twice before we change the prediction

Introduction

- In comparison-Based algorithms, we want comparisons to yield as much information as possible $\Longrightarrow$ difficult to predict!
- In static Branch prediction, jump instructions are statically predicted as TAKEN or NOT TAKEN
- In dynamic Branch prediction, the hardware predicts what to do during execution, taking the past into account
- I-Bit: We predict the instruction will take the same direction it took the last time it was executed
- 2-bit: We must be wrong twice before we change the prediction


## 2-Bit Predictor



## Partition

```
// We have to partition }A[i..j] around the pivo
// that we have already put on A[i]
int l = i; int u = j + 1; Elem pv = A[i];
for ( ; ; ) {
    do ++l; while(A[l] < pv); // Loop S
    do --u; while(A[u] > pv); // Loop G
    if (l >= u) break;
    swap(A[l], A[u]);
};
swap(A[i], A[u]); k = u;
```

\}

Setting up the Recurrences

- Probability that the chosen pivot is the $k$ th smallest element out of the $n: \pi_{n, k}$

Setting up the Recurrences

- Probability that the chosen pivot is the $k$ th smallest element out of the $n: \pi_{n, k}$
- Average number of Branch mispredictions when partitioning an array of size $n$ and the pivot is the $k$ th: $b_{n, k}$

Setting up the Recurrences

- Probability that the chosen pivot is the $k$ th smallest element out of the $n: \pi_{n, k}$
- Average number of Branch mispredictions when partitioning an array of size $n$ and the pivot is the $k$ th: $b_{n, k}$
- Average number of Branch mispredictions what partitioning an array of size $n$ :

$$
b_{n}=\sum_{1 \leq k \leq n} \pi_{n, k} \cdot b_{n, k}
$$

## Setting up the Recurrences

- Average number of Branch mispredictions $B_{n}$ to sort $n$ elements:

$$
B_{n}=b_{n}+\sum_{k=1}^{n} \pi_{n, k} \cdot\left(B_{k-1}+B_{n-k}\right)
$$

Setting up the Recurrences

- Average number of Branch mispredictions $B_{n}$ to sort $n$ elements:

$$
B_{n}=b_{n}+\sum_{k=1}^{n} \pi_{n, k} \cdot\left(B_{k-1}+B_{n-k}\right)
$$

- We will later consider the total cost $T_{n}$ which satisfies the same recurrence with toll function

$$
t_{n}=n+\xi \cdot b_{n}+o(n)
$$

Sampling

- It is well-known that using samples to select the pivot of each recursive stage improves the average performance of quicksort and reduces the probability of worst-case Behavior

Sampling

- It is well-known that using samples to select the pivot of each recursive stage improves the average performance of quicksort and reduces the probability of worst-case Behavior
- For quicksort with samples of size $s$ from which we pick the $(p+1)$ th element as the pivot, we have

$$
\pi_{n, k}=\frac{\binom{k-1}{p}\binom{n-k}{s-1-p}}{\binom{n}{s}}
$$

Sampling

- A typical case is to pick the median of the sample with $s=2 t+1$ and $p=t$

Sampling

- A typical case is to pick the median of the sample with $s=2 t+1$ and $p=t$
- We can use variable-size samples with $s=s(n)$; then $s \rightarrow \infty$ as $n \rightarrow \infty$ But must Grow sublinearly, $s=o(n)$; we use $\psi$ to denote the relative rank of the pivot within the sample $\Longrightarrow$ eGG., $\psi=1 / 2$ means choosing the median of the sample


## General results

Theorem
The average number of Branch mispredictions to sort $n$ elements with quicksort using samples of size $s$ and choosing the $(p+1)$ th in the sample of each stage is

$$
B_{n}=\frac{\beta(s, p)}{\mathcal{H}(s, p)} n \ln n+O(n)
$$

where

$$
\mathcal{H}(s, p)=H_{s+1}-\frac{p+1}{s+1} H_{p+1}-\frac{s-p}{s+1} H_{s-p}
$$

and

$$
\beta(s, p)=\lim _{n \rightarrow \infty} \frac{b_{n}}{n}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{1 \leq k \leq n} \pi_{n, k}^{(s, p)} b_{n, k}
$$

## General results

Theorem
For variable-sized sampling, if $s \rightarrow \infty$ as $n \rightarrow \infty$ with $s=o(n)$, and $p / s \rightarrow \psi$ then

$$
B_{n}=\frac{\beta(\psi)}{\mathcal{H}(\psi)} n \ln n+o(n \log n)
$$

with $\beta(\psi)=\lim _{n \rightarrow \infty} \beta(s, \psi \cdot s+o(s))$ and $\mathcal{H}(x)=-(x \ln x+(1-x) \ln (1-x))$

## General results

## Theorem

The total cost $T_{n}$ of quicksort is Given By

$$
T_{n}=\frac{1+\xi \cdot \beta(s, p)}{\mathcal{H}(s, p)} n \ln n+O(n), \quad s=\Theta(1)
$$

and

$$
T_{n}=\frac{1+\xi \cdot \beta(\psi)}{\mathcal{H}(\psi)} n \ln n+o(n \log n), \quad s=\omega(1), s=o(n)
$$

## General results

- In order to compute $\beta(s, p)$, we can use, under suitable conditions,

$$
\beta(s, p)=\frac{s!}{p!(s-1-p)!} \int_{0}^{1} x^{p}(1-x)^{s-1-p} b(x) d x
$$

with

$$
b(x)=\lim _{n \rightarrow \infty} \frac{b_{n, x \cdot n}}{n}
$$

## General results

- In order to compute $\beta(s, p)$, we can use, under suitable conditions,

$$
\beta(s, p)=\frac{s!}{p!(s-1-p)!} \int_{0}^{1} x^{p}(1-x)^{s-1-p} b(x) d x
$$

with

$$
b(x)=\lim _{n \rightarrow \infty} \frac{b_{n, x \cdot n}}{n}
$$

- Computing $\beta(\psi)$ is easier!

$$
\beta(\psi)=b(\psi)
$$

General results

- The optimal value $\psi^{*}$ for $\psi$ minimizes the total cost, i.e., minimizes

$$
\tau_{\xi}(\psi)=\frac{1+\xi \cdot \beta(\psi)}{\mathcal{H}(\psi)}
$$

and depends on $\xi$

General results

- The optimal value $\psi^{*}$ for $\psi$ minimizes the total cost, i.e., Minimizes

$$
\tau_{\xi}(\psi)=\frac{1+\xi \cdot \beta(\psi)}{\mathcal{H}(\psi)}
$$

and depends on $\xi$

- It's not difficult to prove that for any $s$ and $p$,

$$
\frac{\beta(s, p)}{\mathcal{H}(s, p)}>\frac{\beta\left(\psi^{*}\right)}{\mathcal{H}\left(\psi^{*}\right)}
$$

General results

- In General, there exists a threshold value $\xi_{c}$ such that if $\xi \leq \xi_{c}$ (Branch mispredictions are not too expensive) then we have to take the median of the samples, i.e., $\psi^{*}=1 / 2$

General results

- In General, there exists a threshold value $\xi_{c}$ such that if $\xi \leq \xi_{c}$ (Branch mispredictions are not too expensive) then we have to take the median of the samples, i.e., $\psi^{*}=1 / 2$
- If $\xi>\xi_{c}$ (that can happen often in practice!) then $\psi^{*}<1 / 2$ and it is given By the unique solution in $[0,1 / 2)$ of the equation

$$
\xi \cdot b^{\prime}(\psi) \mathcal{H}(\psi)=(1+\xi \cdot b(\psi)) \mathcal{H}^{\prime}(\psi)
$$

(provided that $b(x)$ is in $C^{2}[0,1 / 2)$ )

General results

- The threshold value $\xi_{c}$ is the solution of

$$
\left.\frac{d^{2} \tau_{\xi}(\psi)}{d \psi^{2}}\right|_{\psi=1 / 2}=0
$$

## General results

- The threshold value $\xi_{c}$ is the solution of

$$
\left.\frac{d^{2} \tau_{\xi}(\psi)}{d \psi^{2}}\right|_{\psi=1 / 2}=0
$$

- That is

$$
\xi_{c}=-\frac{4}{b^{\prime \prime}(1 / 2) \ln 2+4 b(1 / 2)}
$$

Static Branch prediction

- We analyze here optimal prediction: if the position of the pivot $k \leq n / 2$ then we predict Loop $S$ not taken and loop $G$ taken, and the other way around

Static Branch prediction

- We analyze here optimal prediction: if the position of the pivot $k \leq n / 2$ then we predict Loop $S$ not taken and loop $G$ taken, and the other way around
- If $k \leq n / 2$ we incur a Branch misprediction every time there is an element which is smaller than the pivot; symetrically, if $k>n / 2$ then the number of Branch mispredictions is $n-k$

Static Branch prediction

- We analyze here optimal prediction: if the position of the pivot $k \leq n / 2$ then we predict Loop $S$ not taken and loop $G$ taken, and the other way around
- If $k \leq n / 2$ we incur a Branch misprediction every time there is an element which is smaller than the pivot; symetrically, if $k>n / 2$ then the number of Branch mispredictions is $n-k$
- Hence, $b_{n, k}=\min (k-1, n-k), b(\psi)=\min (\psi, 1-\psi)$ and

$$
\tau_{\xi}(\psi)=\frac{1+\xi \cdot \min (\psi, 1-\psi)}{\mathcal{H}(\psi)}
$$

## Static Branch prediction



The value of $\psi^{*}$ as a function of $\xi$

I-Bit Branch prediction

- The number of Branch mispredictions is twice the number of exchanges: we incur a misprediction each time we abandon the loops $S$ and $G$

I-Bit Branch prediction

- The number of branch mispredictions is twice the number of exchanges: we incur a misprediction each time we abandon the loops $S$ and $G$
- Hence, $b_{n, k}=2(k-1)(n-k)$ and $b(\psi)=2 \psi(1-\psi)$


## I-Bit Branch prediction

- We can analyze in full detail the performance when using fixed-sized samples. For example, for median-of- $(2 t+1)$ we have

$$
\beta(2 t+1, t)=\frac{t+1}{2 t+3}
$$

## I-Bit Branch prediction

- We can analyze in full detail the performance when using fixed-sized samples. For example, for median-of- $(2 t+1)$ we have

$$
\beta(2 t+1, t)=\frac{t+1}{2 t+3}
$$

- For variable-size samples, $\beta(\psi)=2 \psi(1-\psi)$.


## I-Bit Branch prediction

- We can analyze in full detail the performance when using fixed-sized samples. For example, for median-of- $(2 t+1)$ we have

$$
\beta(2 t+1, t)=\frac{t+1}{2 t+3}
$$

- For variable-size samples, $\beta(\psi)=2 \psi(1-\psi)$.
- The threshold is then at $\xi_{c}=2 /(2 \ln 2-1) \approx 5.177 \ldots$ and $\psi^{*}$ is the solution of

$$
\ln \psi+2 \xi \psi^{2} \ln \psi=\ln (1-\psi)+2 \xi(1-\psi)^{2} \ln (1-\psi)
$$

## |-bit Branch prediction



The value of $\psi^{*}$ as a function of $\xi$

## 2-Bit Branch prediction

- In (Kaligosi, Sanders, 2006), an approximate model to compute $b_{n, k}$ is Given, from which

$$
b(x)=\frac{2 x^{4}-4 x^{3}+x^{2}+x}{1-x(1-x)}
$$

follows

2-Bit Branch prediction

- In (Kaligosi, Sanders, 2006), an approximate model to compute $b_{n, k}$ is Given, from which

$$
b(x)=\frac{2 x^{4}-4 x^{3}+x^{2}+x}{1-x(1-x)}
$$

follows

- We are working on a more refined analysis of $b_{n, k}$ for this prediction scheme; once $b_{n, k}$ has Been found, we should only have to apply the machinery shown here

Some real data


Time vs. size on a Pentium 4 (from (Kaligosi, Sanders, 2006))

## Some real data



Time vs. $1 / \psi$ on a Pentium 4

## Some real data



Time vs. size on an Athlon 64

## Some real data



Time vs. size on an Opteron

## Some real data



Time vs. size on a Sun

Future work

- Complete the analysis of static Branch prediction with fixed-size samples (it's not easy to obtain $\beta(s, p)$ for General $s$ and $p!$ )
- Analyze the 2-Bit prediction scheme and possibly others
- Conduct additional experiments, compare theoretical analysis to real data
- Analyze branch mispredictions and their impact on the performance of other algorithms

