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Introduction

A common task in distributed computing is to choose a
leader among n agents in a decentralized manner
A typical protocol requires each agent flipping a biased
coin: if the outcome is heads (with probability q), proceed
to next round, if the outcome is tails (with probability
p = 1 − q) the agent gets out of the process
If a single agent “survives” after a certain number of
rounds, it is declared the leader
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Example
n = 14
Number of rounds = 6 (Rn)
Number of coin flippings = 14+8+5+5+3+3=28 (Fn)
Number of stalled rounds = 1
Number of null rounds = 1 (In)



Introduction

The Swedish election protocol introduces a new parameter
τ, the maximum number of consecutive null rounds
If more than τ null rounds occur in a row the protocol fails
to declare a leader
Other variants might restrict the maximum number of
consecutive stalled rounds, the total number of null rounds
(consecutive or not), etc.
In a practical setting, bounding the number of stalled
rounds corresponds to setting time-outs



Introduction

The model is inspired in the k-silent elimination protocol by
the Swedish researchers L. Bondesson, T. Nilsson and G.
Wikstrand
The case τ→∞ is the classical Leader Election Protocol
R. Kalpathy and H. Mahmoud have investigated a similar
problem with τ = 1



Introduction

We use standard techniques (analytic
Poissonization-depoissonization, Mellin transforms, etc.) to
analyze the protocol
The asymtotic analysis of the quantities of interest involves
these unknown quantities! E.g., the probability of success
Sn := Sn(τ) is

Sn = C(q, τ) + δ(logQ n) +O(1/n), as n→∞,

where Q = 1/q, L = logQ,

C(q, τ) =
1
L

(
qpτ +

∑
k>0

Sk
k

(
pk −

qkpτk

(1 − pτ+1)k

))
,

and δ(x) is a periodic function of “small” amplitude
(depending on q and τ) and period 1, also involving the
unknown Sk’s



Introduction

But only a few exact values of the unknowns (of Sk in the
example) are actually needed to get useful asymptotic
estimates, as the error term that we incur if we discard all
but the first few terms in the summations is very small
For all practical purposes, it suffices to compute Sn exactly
for n up to, say, N = 20, using the exact recurrence and
use the approximation given by the first N terms of the
summation
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Dashed lines: Exact value of Sn
Solid lines: Approximation C+ δ with N = 20 terms
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What’s next

1 A sketch of the methods: computing the probability of
success of the protocol

2 Other results
3 Final remarks



Probability of success

τ: maximum number of consecutive null rounds; if there
are τ+ 1 consecutive null rounds, the protocol fails
Sn(t): probability of success of the protocol when t− 1
additional consecutive null rounds is allowed; Sn := Sn(τ)

Sn(0) = 0 if n > 2; S1(t) = 1 if t > 0



Probability of success

The recurrence for Sn(t) when n > 2 and t > 0:

Sn(t) =
∑

16j6n

(
n

j

)
pn−jqjSj(τ)+p

nSn(t−1), t > 0,n > 2,

where q is the probability of heads (agents passes to next
round)



Probability of success

Define Kn(τ) =
∑

16j6n
(
n
j

)
pn−jqjSj(τ), hence

Sn(t) = Kn(τ)+p
nSn(t−1) = Kn(τ)+pnKn(τ)+p2nSn(t−2)

= · · · = Kn(τ)
(
1+pn+p2n+· · ·+p(k−1)n)+pknSn(t−k)

Therefore, for Sn := Sn(τ)

Sn =
1 − pτn

1 − pn

n∑
j=1

(
n

j

)
pn−jqjSj, n > 2,

and S1 = 1.



Probability of success: The “pipeline”

Sn = · · ·

S(z) = · · ·

S(z) =
∑
n>0 Sn

zn

n!
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Probability of success: The “pipeline”

Sn = · · ·

S(z) = · · · Ŝ(z) ∼ · · · (z→∞)

Ŝ(z) = · · · S∗(s) = · · ·

S(z) =
∑
n>0 Sn

zn

n!

Poissonize:
Ŝ(z) = e−zS(z)

Mellin:

S∗(s) =
∞∫
0
Ŝ(z)zs−1 dz

Invert Mellin:

Ŝ(z) = 1
2πi

−c+i∞∫
−c−i∞S∗(s)z−s ds



Probability of success: The “pipeline”

Sn = · · · Sn ∼ Ŝ(n) + l.o.t

S(z) = · · · Ŝ(z) ∼ · · · (z→∞)

Ŝ(z) = · · · S∗(s) = · · ·

S(z) =
∑
n>0 Sn

zn

n!

Poissonize:
Ŝ(z) = e−zS(z)

Mellin:

S∗(s) =
∞∫
0
Ŝ(z)zs−1 dz

Invert Mellin:

Ŝ(z) = 1
2πi

−c+i∞∫
−c−i∞S∗(s)z−s ds

Depoissonize



Probability of success

Step #1: Translate the recurrence into a functional equation
over the EGF

Sn =
1 − pτn

1 − pn

n∑
j=1

(
n

j

)
pn−jqjSj, n > 2

⇓

S(z) − S(pz) = epzS(qz) − ep
τ+1zS(qpτz) + qpτz

with S(z) =
∑
n>0 Sn z

n/n!



Probability of success

Step #2: Poissonize

S(z) − S(pz) = epzS(qz) − ep
τ+1zS(qpτz) + qpτz

⇓

Ŝ(z) − e−zS(pz) = Ŝ(qz) − e−z(1−pτ+1)S(qpτz) + qpτze−z

with Ŝ(z) = e−zS(z)



Probability of success

Step #3: “Mellinize”

Ŝ(z) − Ŝ(qz) = e−zS(pz) − e−z(1−pτ+1)S(qpτz) + qpτze−z

⇓

S∗(s) =
1

1 − q−s

(
qpτΓ(s+ 1)

+M
{
e−zS(pz) − e−z(1−pτ+1)S(qpτz); s

})
with S∗(s) = M

{
Ŝ(z); s

}
=
∫∞

0 Ŝ(z)z
s−1 dz



Probability of success

Step #4: “Demellinize” (via residue computations)

S∗(s) =
1

1 − q−s

(
qpτΓ(s+ 1)

+M
{
e−zS(pz) − e−z(1−pτ+1)S(qpτz); s

})
⇓

Ŝ(z) =
1

2πi

∫− 1
2+i∞

− 1
2−i∞ S∗(s)z−sds

=
∑

poles σ

Res(S∗(s)z−s; s = σ) + error terms



Probability of success

Step #5: Depoissonize (check that conditions on growth rate of
Ŝ(z) are met to apply analytic depoissonization )

Sn ∼ Ŝ(n) +O(1/n)

=
1
L

(
qpτ +

∑
k>0

Sk
k

(
pk −

qkpτk

(1 − pτ+1)k

))
+ δ(logQ n)

+O(1/n)

δ(x) =
1
L

∑
j6=0

e−2xπij
(
qpτΓ(χj + 1)

+
∑
k>0

Sk
k!
Γ(χj + k)

(
pk −

qkpτk

(1 − pτ+1)χj+k
))

,

where Q = 1/q and L = logQ.



Probability of success

The asymptotic estimate for Sn involves the sequence Sn itself.
The trivial bound Sn > 1 can be used to easily show

1 The sum ∑
k>0

Sk
k

(
pk −

qkpτk

(1 − pτ+1)k

)
that appears in the constant term of Sn converges

2 The error term when we take only the first N terms of this
sum in numerical computations is O(pN); it suffices thus to
use a few terms to get very precise asymptotic estimations



Probability of success

Similar arguments apply with regard the fluctuation δ(x), which
has “small amplitude”, mean 0 and period 1.
For other quantities we need similar considerations about the
convergence of infinite sums appearing in the asymptotic
estimates, and about error terms when we use a few terms of
those infinite sums to do the numerical computations



Other results

We have applied the same methodology to investigate the
expectation of several other parameters, which in all cases
satisfy the recurrence:

Xn(t) =

n∑
j=1

(
n

j

)
pn−jqjXj(τ)

+ pnXn(t− 1) + Tn, t > 0,n > 2,

for some suitably chosen toll sequence Tn
The toll sequence, together with the initial values X1 = X1(τ), T1
and Xn(0), characterize many different parameters of the
protocol



Other results

1 Number of rounds Rn: Tn = 1 if n > 2,
R1 = Rn(0) = T1 = 0

2 Number of null rounds In: Tn = pn if n > 2,
T1 = I1 = In(0) = 0

3 Number of flipped coins Fn: Tn = n if n > 2,
T1 = F− 1 = Fn(0) = 0

4 Leftovers Ln: Tn = 0, L1 = 0, Ln(0) = n if n > 2

Leftovers are the players still active in the last non-null round
when the protocol stops (either with success or with a failure)



Other results

Many steps of the “pipeline” can be applied in a generic
way
The fundamental strip of definition of the Mellin transform
will differ from one problem to the other
And so the poles for residue computation, error terms, etc.



Other results

Number of rounds

Rn = logQ n+
γ

L
+

1
2
−

1
L
+

1
L

(
pτ + log(1 − pτ)

)
+ C(R;q, τ) + δR(logQ n) +O(n

−1 logn).

Number of null rounds

In = 1 −
p

L
+

1
L

(
pτ+1 + log(1 − pτ+1)

)
+ C(I;q, τ) + δI(logQ n) +O(1/n).



Other results

Number of coin flips

Fn =
n

p
+O(1).

Number of leftovers

Ln =
1
L

(
1

1 − pτ
−

1
1 − pτ+1 − pτ + pτ+1

)
+ C(L;q, τ) + δL(logQ n) +O(1/n).



Other results

Three of the parameters involve the constant terms of the
form

C(A;q, τ) :=
1
L

∑
k>1

Ak
k

(
pk −

qkpτk

(1 − pτ+1)k

)

They also involve fluctuations δR(x), δI(x) and δL(x)
whose Fourier coefficients can be explicitly computed



Final remarks

The standard analytic Poissonization-Depoissonization
works well to analyze this extension of the classical leader
election protocol; this new protocol is of independent
interest because of potential practical applications
Other extensions, like restrictions on the number of
consecutive stalled rounds, total number of null rounds
(consecutive or not), etc. can also be analyzed using the
same methodology
The asymptotic analyis can be carried out even without an
explicit solution for the Mellin transform



Final remarks

We are now working a longer journal version with our new
results about the probability distributions of several of the
parameters discussed here
Moreover, we derive results for the probability distributions
conditioned on success and on failure of the protocol



Thank you for your attention!


