On the averace cost of insertions on
random relaxed K-d trees

Amalia Duch! Conrado Martinez!

lUniv. Paolitéenica de Catalunya, Spain

On the averaae cost of insertions on random relaxed K-d trees

o A relaxed K-d tree is a variant of K-d trees
(Berttley, 1973), where each Nnode stores a random
diseriminant 2, 0 <1 < K

o They were introduced By Duch, Estivill-castro and
Martinez (1998) and sussequently analyzed By
Martinez, Panholzer and Prodinaer (200D, gy Duch
and Martinez (200235, 200728), and By Broutin,
Dalal, Devroye and Mcleish (2006)

On the averaae cost of insertions on random relaxed K-d trees

On the averaae cost of insertions on random relaxed K-d trees

S

On the averaae cost of insertions on random relaxed K-d trees

On the averaae cost of insertions on random relaxed K-d trees

On the averaae cost of insertions on random relaxed K-d trees

AN

-

On the averaae cost of insertions on random relaxed K-d trees

On the averaae cost of insertions on random relaxed K-d trees

o Relaxation allows insertions at areitrary positions

o Suktree sizes can Be used tO Guarantee
randomness under areitrary insertions or
deletions, hence we can provide guarantees on
expected performance

o The average performance of associative Queries
(e, partial match, orthogonal ranae search,
nearest Neigheors) is slightly worse than standard
K-d trees

On the averaae cost of insertions on random relaxed K-d trees

struct node {
Elem key;
int discr, size;
node* left, * right;
};
typedef node* rkdt;

Insertion in relaxed K-d trees

rkdt insert(rkdt t, const Elem& x) {

int n = size(t);
int u = random(0,n); // returns a random int in [0..n]
if (u == n)

return insert_at_root(t, x);
else { // t cannot be empty

int i = t -> discr;

if (x[i] < t -> key[il)

t -> left = insert(t -> left, x);

else
t -> right = insert(t -> right, x);
return t;

3

On -the}ave_rae.e cost of insertions on random relaxed K-d trees

Insertion at root

rkdt insert_at_root(rkdt t, const Elem& x)
rkdt r = new node;
r -> info = x;
r -> discr = random(0, K-1);
pair<rkdt, rkdt> p = split(t, r);
r -> left = p.first;
r -> right = p.second;
return r;

On the averaae cost of insertions on random relaxed K-d trees

Srlit

pair<rkdt, rkdt> split(rkdt t, rkdt r) {
if (t == NULL) return make_pair(NULL, NULL);
int 1 = r -> discr; int j = t -> discr;

if (1 == j) {
// Case I
} elsé‘{
// Case II
}

On the averaae cost of insertions on random relaxed K-d trees

Split: Case |
if (== {
if (r -> keyl[i]l < t -> key[il) {
pair<rkdt,rkdt> p = split(t -> left, r);
t -> left = p.second;
return make_pair(p.first, t);
} else {
pair<rkdt, rkdt> p = split(t -> right, r);
t -> right = p.first;
return make_pair(t, p.second);
}
}else { // 1 '= j

3

On the averaae cost of insertions on random relaxed K-d trees

On the averaae cost of insertions on random relaxed K-d trees

On the averace cost of insertions on random relaxed K-d trees

On the averace cost of insertions on random relaxed K-d trees

Split: Case |l
if (i == j) {

}else { // 1 '=j
pair<rkdt, rkdt> L = split(t -> left, r);
pair<rkdt, rkdt> R = split(t -> right, r);
if (r -> keyl[i]l < t -> keyl[il) {
t -> left = L.second;
t -> right = R.second;
return make_pair(join(L.first, R.first, j), t);
} else {
t -> left= L.first;
t -> right = R.first;
return make_pair(t, join(L.second, R.second, j));

3

On the averaae cost of insertions on random relaxed K-d trees

On the averaae cost of insertions on random relaxed K-d trees

On the averaae cost of insertions on random relaxed K-d trees

77

On the averaae cost of insertions on random relaxed K-d trees

—

On the averaae cost of insertions on random relaxed K-d trees

Deletion in relaxed K-d trees

rkdt delete(rkdt t, const Elem& x) {
if (t == NULL) return NULL;
int 1 = t -> discr;
if (¢t -> key == x)
return join(t -> left, t -> right, i);
if (x -> key[i]l < t -> key[il) {
t -> left = delete(t -> left, x);

else
t -> right = delete(t -> right, x);
return t;

On the averaae cost of insertions on random relaxed K-d trees

Joining two trees

rkdt join(rkdt L, rkdt R, int i) {
if (L == NULL) return R;
if (R == NULL) return L;

// L '= NULL and R != NULL

int m = size(L); int n = size(R);

int u = random(0, m+n-1);

if (u < m) // with probability m / (m + n)
// the joint root is that of L

else // with probability n / (m + n)
// the joint root is that of R

On the averaae cost of insertions on random relaxed K-d trees

@ 5, — ava. NuMmBer Of visited Nnodes In a split
@ m, = ava. Numker Of visited nodes In a join

+1
o= Z i+1j Zs]

0<]<n 0<y<n

Z Tn,; M5,

0<j<n

where 7, ; is progagility of joining two trees with
total size J.

On the averaae cost of insertions on random relaxed K-d trees

@ 5, — ava. NuMmBer Of visited Nnodes In a split
@ m, = ava. Numker Of visited nodes In a join

+1
o= Z i+1j Zs]

0<]<n 0<y<n

Z Tn,; M5,

0<j<n

where 7, ; is progagility of joining two trees with
total size J.

On the averaae cost of insertions on random relaxed K-d trees

@ 5, — ava. NuMmBer Of visited Nnodes In a split
@ m, = ava. Numker Of visited nodes In a join

+1
o= Z i+1j Zs]

0<]<n 0<j<n

Z Tn,; M5,

0<j<n

where 7, ; is progagility of joining two trees with
total size J.

On the averaae cost of insertions on random relaxed K-d trees

e The recurrence £or s, is

j+1 2(K — 1)
ot 2w IEL D
0<]<n 0<j<n
2(K —1) n—j
AR 3,
nK 0§j<nn+ 1

with so =0

o The recurrence £or m, has exactly the same shape
with the réles of s, and m, interchanaed; it easily
follows that s, = ma,.

On the averaae cost of insertions on random relaxed K-d trees

o Define

S(z) = Z Sn2"

n>0
o The recurrence for s, translates to

dz2 1—2z dz

_2(3K—2_z)(3(z) 2

K 1-2)2 (1-2)3

with initial conditions S(0) =0 and S'(0) = L

On the averaae cost of insertions on random relaxed K-d trees

o The homoaeneous second order linear ODE is of
hyperaeome-tric type.

e An easy particular solution of the ODE is

1<K> 1
2\K-1/1-2

On the averaae cost of insertions on random relaxed K-d trees

Theorem

The generating function S(z) of the expected cost of
split is, for any K > 2,
) 1
z —
1—2

1 1 l-a,2—
Bila)==——xr 1= F
@)= 7= [0 R

where a = a(K :%(1+\/)

bl

On the averaae cost of insertions on random relaxed K-d trees

Theorem
The expected cost s, Of splittina a relaxed K-d tree of

size n is
sn = Bn®E) 4 o(n),
with
5 1 1 T'(2a-1)
21— & al¥(a) ’

On the averaae cost of insertions on random relaxed K-d trees

15

1.4

13

12

11

1.0

Plot of ¢(K)

On the averaae cost of insertions on random relaxed K-d trees

90

100

Plot of B(K)

On the averaae cost of insertions on random relaxed K-d trees

o The recurrence for the expected cost of an
insertion is

s
E[ln] = n—tl

P (5 f;iimfﬂ)

n+1

Sn 1
= 1 it - LT Rw[I].
’n,+1+ +O<n>+n+1 Z n+1E[J]

o The expected cost of deletions satisfies a similar
recurrence; it is asywmptotically equivalent to the

averace cost of insertions

On the averaae cost of insertions on random relaxed K-d trees

e For K =2,
E[l.] = 4lnn 4+ O(1),

e For K > 2,
_ B4
Elln] = ——=n® " +2lnn+ O(1)
e
1
= ﬁzjln‘p—l +2Inn+ O(1).

where G and ¢ are as in previous theorem.

On the averaae cost of insertions on random relaxed K-d trees

R ecently, we have succeeded in showing that the
copy-rased insertion at root and root deletion
alaorithms By Broutin, Dalal, Devroye and Mcleish
(2006) have suglinear complexity £or any K. We £ind
explicit closed forms for the factor and exponent in
the leading term. This leads to insertions and deletions
in expected loaarithmic time, as the "reconstruction”
phase has expected constant time.

On the averaae cost of insertions on random relaxed K-d trees

