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A relaxed K-d tree is a variant of K-d trees

(Bentley, 1975), where each node stores a random

discriminant i, 0 � i < K

They were introduced by Duch, Estivill-castro and

Martínez (1998) and subsequently analyzed by

Martínez, Panholzer and Prodinger (2001), by Duch

and Martínez (2002a, 2002b), and by Broutin,

Dalal, Devroye and McLeish (2006)
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Relaxation allows insertions at arbitrary positions

Subtree sizes can be used to guarantee

randomness under arbitrary insertions or

deletions, hence we can provide guarantees on

expected performance

The average performance of associative queries

(e.g., partial match, orthogonal range search,

nearest neighbors) is slightly worse than standard

K-d trees
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struct node {
Elem key;
int discr, size;
node* left, * right;

};
typedef node* rkdt;

Insertion in relaxed K-d trees

rkdt insert(rkdt t, const Elem& x) {

int n = size(t);

int u = random(0,n); // returns a random int in [0..n]

if (u == n)

return insert_at_root(t, x);

else { // t cannot be empty

int i = t -> discr;

if (x[i] < t -> key[i])

t -> left = insert(t -> left, x);

else

t -> right = insert(t -> right, x);

return t;

}
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Insertion at root

rkdt insert_at_root(rkdt t, const Elem& x) {

rkdt r = new node;

r -> info = x;

r -> discr = random(0, K-1);

pair<rkdt, rkdt> p = split(t, r);

r -> left = p.first;

r -> right = p.second;

return r;

}
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Split

pair<rkdt, rkdt> split(rkdt t, rkdt r) {

if (t == NULL) return make_pair(NULL, NULL);

int i = r -> discr; int j = t -> discr;

if (i == j) {

// Case I

...

} else {

// Case II

...

}

}
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Split: Case I

if (i == j) {

if (r -> key[i] < t -> key[i]) {

pair<rkdt,rkdt> p = split(t -> left, r);

t -> left = p.second;

return make_pair(p.first, t);

} else {

pair<rkdt, rkdt> p = split(t -> right, r);

t -> right = p.first;

return make_pair(t, p.second);

}

} else { // i != j

...

}
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Split: Case II

if (i == j) {

...

} else { // i != j

pair<rkdt, rkdt> L = split(t -> left, r);

pair<rkdt, rkdt> R = split(t -> right, r);

if (r -> key[i] < t -> key[i]) {

t -> left = L.second;

t -> right = R.second;

return make_pair(join(L.first, R.first, j), t);

} else {

t -> left= L.first;

t -> right = R.first;

return make_pair(t, join(L.second, R.second, j));

}

}
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Deletion in relaxed K-d trees

rkdt delete(rkdt t, const Elem& x) {

if (t == NULL) return NULL;

int i = t -> discr;

if (t -> key == x)

return join(t -> left, t -> right, i);

if (x -> key[i] < t -> key[i]) {

t -> left = delete(t -> left, x);

else

t -> right = delete(t -> right, x);

return t;

}
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Joining two trees

rkdt join(rkdt L, rkdt R, int i) {

if (L == NULL) return R;

if (R == NULL) return L;

// L != NULL and R != NULL

int m = size(L); int n = size(R);

int u = random(0, m+n-1);

if (u < m) // with probability m / (m + n)

// the joint root is that of L

...

else // with probability n / (m + n)

// the joint root is that of R

}
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sn = avg. number of visited nodes in a split

mn = avg. number of visited nodes in a join

sn = 1 +
2

nK

X
0�j<n

j + 1

n+ 1
sj +

2(K � 1)

nK

X
0�j<n

sj

+
K � 1

K

X
0�j<n

�n;jmj ;

where �n;j is probability of joining two trees with

total size j .
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The recurrence for sn is

sn = 1 +
2

nK

X
0�j<n

j + 1

n+ 1
sj +

2(K � 1)

nK

X
0�j<n

sj

+
2(K � 1)

nK

X
0�j<n

n� j

n+ 1
mj ;

with s0 = 0.

The recurrence for mn has exactly the same shape

with the rôles of sn and mn interchanged; it easily

follows that sn = mn .
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Define

S(z) =
X
n�0

snz
n

The recurrence for sn translates to

z
d2S

dz2
+ 2

1� 2z

1� z

dS

dz

� 2

�
3K � 2

K
� z

�
S(z)

(1� z)2
=

2

(1� z)3
;

with initial conditions S(0) = 0 and S0(0) = 1.
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The homogeneous second order linear ODE is of

hypergeometric type.

An easy particular solution of the ODE is

�
1

2

�
K

K � 1

�
1

1� z
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Theorem

The generating function S(z) of the expected cost of

split is, for any K � 2,

S(z) =
1

2

1

1� 1
K

�
(1� z)�� � 2F1

�
1� �; 2� �

2

���� z
�
�

1

1� z

�
;

where � = �(K) = 1
2

�
1 +

q
17� 16

K

�
.
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Theorem

The expected cost sn of splitting a relaxed K-d tree of

size n is

sn = � n�(K) + o(n);

with

� =
1

2

1

1� 1
K

�(2�� 1)

��3(�)
;

� = �� 1 =
1

2

0
@
s
17�

16

K
� 1

1
A :
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The recurrence for the expected cost of an

insertion is

E[In] =
sn

n+ 1

+

�
1�

1

n+ 1

�0@1 +
2

n

X
0�j<n

j + 1

n+ 1
E[Ij ]

1
A

=
sn

n+ 1
+ 1 +O

�
1

n

�
+

2

n+ 1

X
0�j<n

j + 1

n+ 1
E[Ij ] :

The expected cost of deletions satisfies a similar

recurrence; it is asymptotically equivalent to the

average cost of insertions
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For K = 2,

E[In] = 4 lnn+O(1);

For K > 2,

E[In] =
�

1� 2
�+1

n��1 + 2 lnn+O(1)

= �
�+ 1

�� 1
n��1 + 2 lnn+O(1):

where � and � are as in previous theorem.
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Recently, we have succeeded in showing that the

copy-based insertion at root and root deletion

algorithms by Broutin, Dalal, Devroye and McLeish

(2006) have sublinear complexity for any K . We find

explicit closed forms for the factor and exponent in

the leading term. This leads to insertions and deletions

in expected logarithmic time, as the “reconstruction”

phase has expected constant time.
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