
On the average cost of insertions on

random relaxed K-d trees

Amalia Duch1 Conrado Martínez1

1Univ. Politècnica de Catalunya, Spain

On the average cost of insertions on random relaxed K-d trees



A relaxed K-d tree is a variant of K-d trees

(Bentley, 1975), where each node stores a random

discriminant i, 0 � i < K

They were introduced by Duch, Estivill-castro and

Martínez (1998) and subsequently analyzed by

Martínez, Panholzer and Prodinger (2001), by Duch

and Martínez (2002a, 2002b), and by Broutin,

Dalal, Devroye and McLeish (2006)

On the average cost of insertions on random relaxed K-d trees



On the average cost of insertions on random relaxed K-d trees



1

1

On the average cost of insertions on random relaxed K-d trees



1

2

1

2

On the average cost of insertions on random relaxed K-d trees



1

2

1

2

3
3

On the average cost of insertions on random relaxed K-d trees



1

2

1

2

3
3

4

4

On the average cost of insertions on random relaxed K-d trees



1

2

1

2

3
3

4

4

5 5

On the average cost of insertions on random relaxed K-d trees



Relaxation allows insertions at arbitrary positions

Subtree sizes can be used to guarantee

randomness under arbitrary insertions or

deletions, hence we can provide guarantees on

expected performance

The average performance of associative queries

(e.g., partial match, orthogonal range search,

nearest neighbors) is slightly worse than standard

K-d trees

On the average cost of insertions on random relaxed K-d trees



struct node {
Elem key;
int discr, size;
node* left, * right;

};
typedef node* rkdt;

Insertion in relaxed K-d trees

rkdt insert(rkdt t, const Elem& x) {

int n = size(t);

int u = random(0,n); // returns a random int in [0..n]

if (u == n)

return insert_at_root(t, x);

else { // t cannot be empty

int i = t -> discr;

if (x[i] < t -> key[i])

t -> left = insert(t -> left, x);

else

t -> right = insert(t -> right, x);

return t;

}

}On the average cost of insertions on random relaxed K-d trees



Insertion at root

rkdt insert_at_root(rkdt t, const Elem& x) {

rkdt r = new node;

r -> info = x;

r -> discr = random(0, K-1);

pair<rkdt, rkdt> p = split(t, r);

r -> left = p.first;

r -> right = p.second;

return r;

}

On the average cost of insertions on random relaxed K-d trees



Split

pair<rkdt, rkdt> split(rkdt t, rkdt r) {

if (t == NULL) return make_pair(NULL, NULL);

int i = r -> discr; int j = t -> discr;

if (i == j) {

// Case I

...

} else {

// Case II

...

}

}

On the average cost of insertions on random relaxed K-d trees



Split: Case I

if (i == j) {

if (r -> key[i] < t -> key[i]) {

pair<rkdt,rkdt> p = split(t -> left, r);

t -> left = p.second;

return make_pair(p.first, t);

} else {

pair<rkdt, rkdt> p = split(t -> right, r);

t -> right = p.first;

return make_pair(t, p.second);

}

} else { // i != j

...

}

On the average cost of insertions on random relaxed K-d trees



t
r

On the average cost of insertions on random relaxed K-d trees



t
r

On the average cost of insertions on random relaxed K-d trees



t
r

On the average cost of insertions on random relaxed K-d trees



Split: Case II

if (i == j) {

...

} else { // i != j

pair<rkdt, rkdt> L = split(t -> left, r);

pair<rkdt, rkdt> R = split(t -> right, r);

if (r -> key[i] < t -> key[i]) {

t -> left = L.second;

t -> right = R.second;

return make_pair(join(L.first, R.first, j), t);

} else {

t -> left= L.first;

t -> right = R.first;

return make_pair(t, join(L.second, R.second, j));

}

}

On the average cost of insertions on random relaxed K-d trees



t

r

On the average cost of insertions on random relaxed K-d trees



t

r

On the average cost of insertions on random relaxed K-d trees



t

r

On the average cost of insertions on random relaxed K-d trees



t

r

On the average cost of insertions on random relaxed K-d trees



Deletion in relaxed K-d trees

rkdt delete(rkdt t, const Elem& x) {

if (t == NULL) return NULL;

int i = t -> discr;

if (t -> key == x)

return join(t -> left, t -> right, i);

if (x -> key[i] < t -> key[i]) {

t -> left = delete(t -> left, x);

else

t -> right = delete(t -> right, x);

return t;

}

On the average cost of insertions on random relaxed K-d trees



Joining two trees

rkdt join(rkdt L, rkdt R, int i) {

if (L == NULL) return R;

if (R == NULL) return L;

// L != NULL and R != NULL

int m = size(L); int n = size(R);

int u = random(0, m+n-1);

if (u < m) // with probability m / (m + n)

// the joint root is that of L

...

else // with probability n / (m + n)

// the joint root is that of R

}

On the average cost of insertions on random relaxed K-d trees



sn = avg. number of visited nodes in a split

mn = avg. number of visited nodes in a join

sn = 1 +
2

nK

X
0�j<n

j + 1

n+ 1
sj +

2(K � 1)

nK

X
0�j<n

sj

+
K � 1

K

X
0�j<n

�n;jmj ;

where �n;j is probability of joining two trees with

total size j .

On the average cost of insertions on random relaxed K-d trees



sn = avg. number of visited nodes in a split

mn = avg. number of visited nodes in a join

sn = 1 +
2

nK

X
0�j<n

j + 1

n+ 1
sj +

2(K � 1)

nK

X
0�j<n

sj

+
K � 1

K

X
0�j<n

�n;jmj ;

where �n;j is probability of joining two trees with

total size j .

On the average cost of insertions on random relaxed K-d trees



sn = avg. number of visited nodes in a split

mn = avg. number of visited nodes in a join

sn = 1 +
2

nK

X
0�j<n

j + 1

n+ 1
sj +

2(K � 1)

nK

X
0�j<n

sj

+
K � 1

K

X
0�j<n

�n;jmj ;

where �n;j is probability of joining two trees with

total size j .

On the average cost of insertions on random relaxed K-d trees



The recurrence for sn is

sn = 1 +
2

nK

X
0�j<n

j + 1

n+ 1
sj +

2(K � 1)

nK

X
0�j<n

sj

+
2(K � 1)

nK

X
0�j<n

n� j

n+ 1
mj ;

with s0 = 0.

The recurrence for mn has exactly the same shape

with the rôles of sn and mn interchanged; it easily

follows that sn = mn .

On the average cost of insertions on random relaxed K-d trees



Define

S(z) =
X
n�0

snz
n

The recurrence for sn translates to

z
d2S

dz2
+ 2

1� 2z

1� z

dS

dz

� 2

�
3K � 2

K
� z

�
S(z)

(1� z)2
=

2

(1� z)3
;

with initial conditions S(0) = 0 and S0(0) = 1.

On the average cost of insertions on random relaxed K-d trees



The homogeneous second order linear ODE is of

hypergeometric type.

An easy particular solution of the ODE is

�
1

2

�
K

K � 1

�
1

1� z

On the average cost of insertions on random relaxed K-d trees



Theorem

The generating function S(z) of the expected cost of

split is, for any K � 2,

S(z) =
1

2

1

1� 1
K

�
(1� z)�� � 2F1

�
1� �; 2� �

2

���� z
�
�

1

1� z

�
;

where � = �(K) = 1
2

�
1 +

q
17� 16

K

�
.

On the average cost of insertions on random relaxed K-d trees



Theorem

The expected cost sn of splitting a relaxed K-d tree of

size n is

sn = � n�(K) + o(n);

with

� =
1

2

1

1� 1
K

�(2�� 1)

��3(�)
;

� = �� 1 =
1

2

0
@
s
17�

16

K
� 1

1
A :

On the average cost of insertions on random relaxed K-d trees



7060

1.1

K

100908010

1.2

403020

1.5

1.4

50

1.3

1.0

Plot of �(K)

On the average cost of insertions on random relaxed K-d trees



30

0.7

K

1009080706050

1.0

40

0.9

0.8

0.6

2010

Plot of �(K)

On the average cost of insertions on random relaxed K-d trees



The recurrence for the expected cost of an

insertion is

E[In] =
sn

n+ 1

+

�
1�

1

n+ 1

�0@1 +
2

n

X
0�j<n

j + 1

n+ 1
E[Ij ]

1
A

=
sn

n+ 1
+ 1 +O

�
1

n

�
+

2

n+ 1

X
0�j<n

j + 1

n+ 1
E[Ij ] :

The expected cost of deletions satisfies a similar

recurrence; it is asymptotically equivalent to the

average cost of insertions

On the average cost of insertions on random relaxed K-d trees



For K = 2,

E[In] = 4 lnn+O(1);

For K > 2,

E[In] =
�

1� 2
�+1

n��1 + 2 lnn+O(1)

= �
�+ 1

�� 1
n��1 + 2 lnn+O(1):

where � and � are as in previous theorem.

On the average cost of insertions on random relaxed K-d trees



Recently, we have succeeded in showing that the

copy-based insertion at root and root deletion

algorithms by Broutin, Dalal, Devroye and McLeish

(2006) have sublinear complexity for any K . We find

explicit closed forms for the factor and exponent in

the leading term. This leads to insertions and deletions

in expected logarithmic time, as the “reconstruction”

phase has expected constant time.

On the average cost of insertions on random relaxed K-d trees


