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o A relaxed K-d tree is a variant of K-d trees
(Berttley, 1973), where each Nnode stores a random
diseriminant 2, 0 <1 < K

o They were introduced By Duch, Estivill-castro and
Martinez (1998) and sussequently analyzed By
Martinez, Panholzer and Prodinaer (200D, gy Duch
and Martinez (200235, 200728), and By Broutin,
Dalal, Devroye and Mcleish (2006)
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o Relaxation allows insertions at areitrary positions

o Suktree sizes can Be used tO Guarantee
randomness under areitrary insertions or
deletions, hence we can provide guarantees on
expected performance

o The average performance of associative Queries
(e, partial match, orthogonal ranae search,
nearest Neigheors) is slightly worse than standard
K-d trees
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struct node {
Elem key;
int discr, size;
node* left, * right;
};
typedef node* rkdt;

Insertion in relaxed K-d trees

rkdt insert(rkdt t, const Elem& x) {

int n = size(t);
int u = random(0,n); // returns a random int in [0..n]
if (u == n)

return insert_at_root(t, x);
else { // t cannot be empty

int i = t -> discr;

if (x[i] < t -> key[il)

t -> left = insert(t -> left, x);

else
t -> right = insert(t -> right, x);
return t;

3
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Insertion at root

rkdt insert_at_root(rkdt t, const Elem& x)
rkdt r = new node;
r -> info = x;
r -> discr = random(0, K-1);
pair<rkdt, rkdt> p = split(t, r);
r -> left = p.first;
r -> right = p.second;
return r;
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pair<rkdt, rkdt> split(rkdt t, rkdt r) {
if (t == NULL) return make_pair(NULL, NULL);
int 1 = r -> discr; int j = t -> discr;

if (1 == j) {
// Case I
} elsé‘{
// Case II
}
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Split: Case |
if (== {
if (r -> keyl[i]l < t -> key[il) {
pair<rkdt,rkdt> p = split(t -> left, r);
t -> left = p.second;
return make_pair(p.first, t);
} else {
pair<rkdt, rkdt> p = split(t -> right, r);
t -> right = p.first;
return make_pair(t, p.second);
}
}else { // 1 '= j

3
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Split: Case |l
if (i == j) {

}else { // 1 '=j
pair<rkdt, rkdt> L = split(t -> left, r);
pair<rkdt, rkdt> R = split(t -> right, r);
if (r -> keyl[i]l < t -> keyl[il) {
t -> left = L.second;
t -> right = R.second;
return make_pair(join(L.first, R.first, j), t);
} else {
t -> left= L.first;
t -> right = R.first;
return make_pair(t, join(L.second, R.second, j));

3
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Deletion in relaxed K-d trees

rkdt delete(rkdt t, const Elem& x) {
if (t == NULL) return NULL;
int 1 = t -> discr;
if (¢t -> key == x)
return join(t -> left, t -> right, i);
if (x -> key[i]l < t -> key[il) {
t -> left = delete(t -> left, x);

else
t -> right = delete(t -> right, x);
return t;
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Joining two trees

rkdt join(rkdt L, rkdt R, int i) {
if (L == NULL) return R;
if (R == NULL) return L;

// L '= NULL and R != NULL

int m = size(L); int n = size(R);

int u = random(0, m+n-1);

if (u < m) // with probability m / (m + n)
// the joint root is that of L

else // with probability n / (m + n)
// the joint root is that of R
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@ 5, — ava. NuMmBer Of visited Nnodes In a split
@ m, = ava. Numker Of visited nodes In a join

+1
o= Z i+1j Zs]

0<]<n 0<y<n

Z Tn,; M5,

0<j<n

where 7, ; is progagility of joining two trees with
total size J.
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e The recurrence £or s, is

j+1 2(K — 1)
ot 2w IEL D
0<]<n 0<j<n
2(K —1) n—j
AR 3,
nK 0§j<nn+ 1

with so =0

o The recurrence £or m, has exactly the same shape
with the réles of s, and m, interchanaed; it easily
follows that s, = ma,.
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o Define

S(z) = Z Sn2"

n>0
o The recurrence for s, translates to

dz2 1—2z dz

_2(3K—2_z)(3(z) 2

K 1-2)2 (1-2)3

with initial conditions S(0) =0 and S'(0) = L
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o The homoaeneous second order linear ODE is of
hyperaeome-tric type.

e An easy particular solution of the ODE is

1<K> 1
2\K-1/1-2
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Theorem

The generating function S(z) of the expected cost of
split is, for any K > 2,
) 1
z —
1—2

1 1 l-a,2—
Bila)==——xr 1= F
@)= 7= [0 R

where a = a(K :%(1+\/ )

bl
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Theorem
The expected cost s, Of splittina a relaxed K-d tree of

size n is
sn = Bn®E) 4 o(n),
with
5 1 1 T'(2a-1)
21— & al¥(a) ’
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o The recurrence for the expected cost of an
insertion is

s
E[ln] = n—tl

P ( 5 f;iimfﬂ)

n+1

Sn 1
= 1 it - LT Rw[I].
’n,+1+ +O<n>+n+1 Z n+1E[J]

o The expected cost of deletions satisfies a similar
recurrence; it is asywmptotically equivalent to the

averace cost of insertions
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e For K =2,
E[l.] = 4lnn 4+ O(1),

e For K > 2,
_ B4
Elln] = ——=n® " +2lnn+ O(1)
e
1
= ﬁzjln‘p—l +2Inn+ O(1).

where G and ¢ are as in previous theorem.
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R ecently, we have succeeded in showing that the
copy-rased insertion at root and root deletion
alaorithms By Broutin, Dalal, Devroye and Mcleish
(2006) have suglinear complexity £or any K. We £ind
explicit closed forms for the factor and exponent in
the leading term. This leads to insertions and deletions
in expected loaarithmic time, as the "reconstruction”
phase has expected constant time.
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