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Introduction

The problem: Given a collection of n multidimensional records,
each with K coordinates, and values i, 1 6 i 6 n, and j,
1 6 j 6 K, find the i-th record along the j-th coordinate

n = 15
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Introduction

C.A.R. Hoare R. Floyd R. Rivest

Easy solution: use an efficient selection algorithm, with
(expected) linear cost, e.g., using Hoare’s or Floyd and Rivest’s
algorithms for selection



Introduction

• What if the collection is organized in some
multidimensional index? (e.g., a K-d tree, a quadtree, . . . )

• If K = 1 and the collection of n records is stored in some
kind of binary search tree⇒ (expected) time Θ(logn),
using some little extra space

• We look for an algorithm that uses space Θ(n),
independent of K

• The data structure for the n records should also efficiently
support usual spatial queries, e.g., orthogonal range
search

• We assume w.l.o.g. the n records are points from [0, 1]K
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K-d trees

J.L. Bentley

Definition
A K-d tree for a set X ⊂ [0, 1]K is either the empty tree if X = ∅
or a binary tree where:
• the root contains y ∈ X and some value j, 1 6 j 6 K
• the left subtree is a K-d tree for X− = {x ∈ X | xj < yj}

• the right subtree is a K-d tree for X+ = {x ∈ X |yj < xj}



K-d trees

• In standard K-d trees, discriminants (the values j) of the
nodes are cyclically assigned by level: the root has j = 1,
the nodes in next level have j = 2, . . . , nodes at level K
have j = K, then at level K+ 1 all nodes have j = 1, etc.

• In relaxed K-d trees discriminants are assigned uniformly
at random

• In squarish K-d trees discriminants are assigned to divide
the region corresponding to each node as evenly as
possible
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K-d trees

• In a partial match query we are given a query
q = (q1, . . . ,qK) where s coordinates are specified and
K− s are “don’t cares”

• The goal is to find all records in a collection that satisfy the
query

• Flajolet and Puech (1986) showed that a partial match in a
random standard K-d tree of size n has expected cost
Θ(nα(s/K)), where α(x) = 1 − x+ φ(x), 0 6 φ(x) < 0.07

• Similar results have been proved for other variants of K-d
trees, quadtrees, etc.
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K-d trees

L. Devroye

• Orthogonal range queries ask for all records falling inside
an hyperrectangle (with sides parallel to the axis); their
expected cost has been analyzed by Chanzy, Devroye and
Zamora-Cura (2001) and Duch and Martínez (2002):

n · volume of query + nα(1/K) · perimeter of query + l.o.t.



The algorithm

Our algorithm has three main steps
• The main loop starts with a strip xj ∈ [low,high] = [0, 1]

and explores the K-d tree, reducing the strip in such a way
that it always contains the i-th record along coordinate j

• When the main loop finishes, it has found the sought
element (if it is stored in a node that discriminates w.r.t. j)
or the strip does only contain nodes discriminating w.r.t. a
coordinate 6= j; if needed, the second step performs an
orthogonal range search to locate all records within the
strip

• A conventional selection algorithm is used to find the
sought element among the elements reported in the
previous step
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The algorithm: main loop
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The algorithm

procedure KD-SELECT(T , i, j)
Q.PUSH(T)
low← 0; high← 1
found← false
while ¬Q.EMPTY() ∧ ¬found do
t←Q.POP()
if t.discr 6= j then
Q.PUSH(t.left);Q.PUSH(t.right)

else
. . . next slide . . .

. found = true or the “strip” [low,high] contains

. the i-th record along coordinate j

. . .



The algorithm

while ¬Q.EMPTY() ∧ ¬found do
t←Q.POP()
if t.discr 6= j then . . .
else . t.discr = j
z← t.key[j]
if z ∈ [low,high] then

. BELOW returns the number of points x in T such that xj 6 z
r← BELOW(T , j,z)
if i < r then high← z
else if i > r then low← z
else found← true

if z 6 low thenQ.PUSH(t.right)
if high 6 z thenQ.PUSH(t.left)



Analysis

Hypothesis for the analysis:
• The n records are independently drawn from a continuous

distribution in [0, 1]K (standard probability model for
random K-d tree)

• The sought rank i is random, with uniform probability in
[1..n]

• The given coordinate j is also random, with uniform
probability in [1..K]
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Analysis

Five key observations
1 The number of visited nodes in the main loop is at most the

number of nodes visited by an orthogonal range search
with the strip [low,high]

2 The cost of a call to BELOW is that of a partial match with a
single specified coordinate

3 The expected number of calls to BELOW is Θ(logn)

4 The main loop finds the sought point when the node
discriminates along j-th coordinate or the strip [low,high]

contains it and no point that discriminates with respect to j
5 The strip contains Θ(1) points on average
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Analysis

To achieve a good expected performance for a call to BELOW, it
is necessary that each node contains the size of the subtree
rooted at that tree

procedure BELOW(T , j, z)
if T = � then return 0
if T .discr 6= j then
c← [[T .key[j] 6 z]]
return BELOW(z, j, T .left) + BELOW(z, j, T .right) + c

else
if z < T .key[j] then return BELOW(z, j, T .left)
else return T .left.size+ BELOW(z, j, T .right)



Analysis

• The expected cost of the second and third phases (if
needed) is Θ(1) (Observation #5)

• The expected cost of the main loop, without counting the
cost of calls to BELOW is Θ(nα) (Observation #1), where
α = α(K) depends on the type of K-d tree; for any K and
any variant of K-d trees

1 −
1
K
6 α(K) < 1

For instance α(2) ≈ 0.56 for standard K-d trees
• The expected cost of a call to BELOW is Θ(nα)

(Observation #2)
• The expected cost of the algorithm is Θ(nα logn)

(Observations #1 – #3)
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Final remarks

• A simple algorithm with sublinear expected cost
• It can easily be extended to many other multidimensional

data structures
• Very little overhead: storing the size of each subtree is not

very space consuming and it can also be sucessfully used
for balancing (e.g., randomized relaxed K-d trees)

• Experiments show that it is competitive in practice
compared to alternative solutions, for reasonably low
dimensions (when K grows, α(K)→ 1)
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Merci beaucoup!


