Adaptive Sampling for Quickselect

C. Martínez
D. Panario
A. Viola

Univ. Politècnica de Catalunya, Spain
Carleton University, Canada
Univ. de la República, Uruguay \& LIPN - Université de Paris-Nord, France

Introduction

- Quickselect (Hoare, 1962) selects the m-th smallest element out of n elements

Introduction

- Quickselect (Hoare, 1962) selects the m-th smallest element out of n elements
- It partitions the given array around a pivot and continues into the appropriate subarray

Introduction

- Quickselect (Hoare, 1962) selects the m-th smallest element out of n elements
- It partitions the given array around a pivot and continues into the appropriate subarray
- Quickselect is efficient: e.g. (Knuth, 1971)

$$
\begin{aligned}
& \quad C_{n, m}=m_{0}(\alpha) \cdot n+o(n)=2(1+\mathcal{H}(\alpha)) \cdot n+o(n) \\
& =(2-2(\alpha \ln \alpha+(1-\alpha) \ln (1-\alpha))) \cdot n+o(n),
\end{aligned}
$$

$$
\text { with } 0 \leq \alpha=\frac{m}{n} \leq 1 \text {. }
$$

The Algorithm

Elem quickselect(vector<Elem>\& A,
int m) \{
int $1=0$; int $u=A . s i z e()-1$;
int k, p;
while (l $\leq u)$ \{
$\mathrm{p}=$ get_pivot (A, l, u, m);
swap(A[p], A[l]);
partition (A, l, u, k);
if ($\mathrm{m}<\mathrm{k}$) $u=k-1$;
else if (m > k) l = k+1;
else return A[k];
\} \}

Median-of- $(2 t+1)$

- Using a sample of $s=2 t+1$ in each iteration improves the performance and reduces the probability of worst-case

Median-of- $(2 t+1)$

- Using a sample of $s=2 t+1$ in each iteration improves the performance and reduces the probability of worst-case
- For median-of-3 quickselect (Kirschenhofer, Martínez, Prodinger, 1995)

$$
m_{1}(\alpha)=2+3 \alpha(1-\alpha) .
$$

Median-of- $(2 t+1)$

- Using a sample of $s=2 t+1$ in each iteration improves the performance and reduces the probability of worst-case
- For median-of-3 quickselect (Kirschenhofer, Martínez, Prodinger, 1995)

$$
m_{1}(\alpha)=2+3 \alpha(1-\alpha) .
$$

- For all $\alpha, 0 \leq \alpha \leq 1, m_{0}(\alpha) \leq m_{1}(\alpha)$. Also, $\bar{m}_{0}=3$ and $\bar{m}_{1}=2.5$.

Adaptive Sampling

- Use the element in the sample with relative rank close to $\alpha=m / n$

Adaptive Sampling

- Use the element in the sample with relative rank close to $\alpha=m / n$
- In general: $r(\alpha)=$ rank of the pivot within the sample, when selecting the m-th out of n elements and $\alpha=m / n$

Adaptive Sampling

- Use the element in the sample with relative rank close to $\alpha=m / n$
- In general: $r(\alpha)=$ rank of the pivot within the sample, when selecting the m-th out of n elements and $\alpha=m / n$
- Divide $[0,1]$ into ℓ intervals with endpoints

$$
0=a_{0}<a_{1}<a_{2}<\cdots<a_{\ell}=1
$$

and let r_{k} denote the value of $r(\alpha)$ for α in the k-th interval

Adaptive Sampling

- For median-of- $(2 t+1): \ell=1$ and $r_{1}=t+1$

Adaptive Sampling

- For median-of- $(2 t+1): \ell=1$ and $r_{1}=t+1$
- For proportion-from- $s: \ell=s, a_{k}=k / s$ and $r_{k}=k$

Adaptive Sampling

- For median-of- $(2 t+1): \ell=1$ and $r_{1}=t+1$
- For proportion-from- $s: \ell=s, a_{k}=k / s$ and $r_{k}=k$
- "Proportion-from"-like strategies: $\ell=s$ and $r_{k}=k$, but the endpoints of the intervals $a_{k} \neq k / s$

Adaptive Sampling

- For median-of- $(2 t+1): \ell=1$ and $r_{1}=t+1$
- For proportion-from- $s: \ell=s, a_{k}=k / s$ and $r_{k}=k$
- "Proportion-from"-like strategies: $\ell=s$ and $r_{k}=k$, but the endpoints of the intervals $a_{k} \neq k / s$
- A sampling strategy is symmetric if

$$
r(\alpha)=s+1-r(1-\alpha)
$$

The Recurrence

- Probability that the r-th element in a sample of size s is the j-th element of the n given elements:

$$
\begin{aligned}
\pi_{n, j}^{(s, r)}=\frac{\binom{j-1}{r-1}\binom{n-j}{s-r}}{\binom{n}{s}} & \\
& 1 \leq r \leq s \leq n, \quad 1 \leq j \leq n
\end{aligned}
$$

The Recurrence

- Average number of comparisons $C_{n, m}$ to select the m-th out of n :

$$
\begin{aligned}
C_{n, m}=n+\Theta(1)+ & \sum_{j=m+1}^{n} \pi_{n, j}^{(s, r)} \cdot C_{j-1, m} \\
& +\sum_{j=1}^{m-1} \pi_{n, j}^{(s, r)} \cdot C_{n-j, m-j}
\end{aligned}
$$

A General Theorem

Theorem 1. Let $f(\alpha)=\lim _{n \rightarrow \infty, m / n \rightarrow \alpha} \frac{C_{n, m}}{n}$. Then

$$
\begin{aligned}
f(\alpha)= & 1+\frac{s!}{(r(\alpha)-1)!(s-r(\alpha))!} \times \\
& {\left[\int_{\alpha}^{1} f\left(\frac{\alpha}{x}\right) x^{r(\alpha)}(1-x)^{s-r(\alpha)} d x\right.} \\
& \left.+\int_{0}^{\alpha} f\left(\frac{\alpha-x}{1-x}\right) x^{r(\alpha)-1}(1-x)^{s+1-r(\alpha)} d x\right]
\end{aligned}
$$

Two Elementary Facts

- If $r(\alpha)$ is symmetric then $f(\alpha)=f(1-\alpha)$.

Two Elementary Facts

- If $r(\alpha)$ is symmetric then $f(\alpha)=f(1-\alpha)$.
- Let $r_{0}=\lim _{\alpha \rightarrow 0} r(\alpha)$. Then

$$
\lim _{\alpha \rightarrow 0} f(\alpha)=\frac{s+1}{s+1-r_{0}}
$$

In proportion-from strategies $r_{0}=1$; hence, $f(0)=1+1 / s$, while for median-of- $(2 t+1)$, we have $m_{t}(0)=2$

The General Differential Equation

Denote f_{k} the restriction of $f(\alpha)$ to the k-th interval of $[0,1]$.
Lemma 1. For any adaptive sampling strategy

$$
\begin{aligned}
\frac{d^{s+2}}{d \alpha^{s+2}} f_{k}(\alpha) & =\frac{(-1)^{s+1-r_{k}} \cdot s!}{\alpha^{s+1-r_{k}}\left(r_{k}-1\right)!} \frac{d^{r_{k}+1}}{d \alpha^{r_{k}+1}} f_{k}(\alpha) \\
& +\frac{s!}{(1-\alpha)^{r_{k}}\left(s-r_{k}\right)!} \frac{d^{s+2-r_{k}}}{d \alpha^{s+2-r_{k}}} f_{k}(\alpha) .
\end{aligned}
$$

Two Problems and a Trick

- Solving high-order linear differential equations

Two Problems and a Trick

- Solving high-order linear differential equations
- We do not know the initial values of the f_{k} 's and their derivatives

Two Problems and a Trick

- Solving high-order linear differential equations
- We do not know the initial values of the f_{k} 's and their derivatives
- Plug the general form of the f_{k} 's back into the integral equation(s) and solve for the unknown constants

Proportion-from-2

- The differential equation is

$$
\frac{d^{2} \phi_{1}}{d x^{2}}-\frac{2}{1-x} \frac{d \phi_{1}}{d x}-\frac{2}{x^{2}} \phi_{1}=0
$$

with $\phi_{1}(x)=f_{1}^{\prime \prime}(x)$ and $f_{2}(x)=f_{1}(1-x)$.

Proportion-from-2

- The differential equation is

$$
\frac{d^{2} \phi_{1}}{d x^{2}}-\frac{2}{1-x} \frac{d \phi_{1}}{d x}-\frac{2}{x^{2}} \phi_{1}=0
$$

with $\phi_{1}(x)=f_{1}^{\prime \prime}(x)$ and $f_{2}(x)=f_{1}(1-x)$.

- The solution is

$$
\begin{array}{r}
f_{1}(x)=a\left((x-1) \ln (1-x)+\frac{x^{3}}{6}+\frac{x^{2}}{2}-x\right) \\
-b(1+\mathcal{H}(x))+c x+d
\end{array}
$$

Proportion-from-2

- The maximum is at $\alpha=1 / 2$. There $f(1 / 2)=3.112 \ldots$

Proportion-from-2

- The maximum is at $\alpha=1 / 2$. There $f(1 / 2)=3.112 \ldots$
- Proportion-from-2 beats standard quickselect: $f(\alpha) \leq m_{0}(\alpha)$

Proportion-from-2

- The maximum is at $\alpha=1 / 2$. There $f(1 / 2)=3.112 \ldots$
- Proportion-from-2 beats standard quickselect: $f(\alpha) \leq m_{0}(\alpha)$
- Proportion-from-2 beats median-of-three in some regions: $f(\alpha) \leq m_{1}(\alpha)$ if $\alpha \leq 0.140 \ldots$ or $\alpha \geq 0.860 \ldots$

Proportion-from-2

- The maximum is at $\alpha=1 / 2$. There $f(1 / 2)=3.112 \ldots$
- Proportion-from-2 beats standard quickselect: $f(\alpha) \leq m_{0}(\alpha)$
- Proportion-from-2 beats median-of-three in some regions: $f(\alpha) \leq m_{1}(\alpha)$ if $\alpha \leq 0.140 \ldots$ or $\alpha \geq 0.860 \ldots$
- The grand-average: $C_{n}=\bar{f} \cdot n+o(n)$, with

$$
\bar{f}=2.598 \ldots
$$

Proportion-from-2

Proportion-from-3

For proportion-from-3,

$$
\begin{aligned}
& f_{1}(x)=-C_{0}(1+\mathcal{H}(x))+C_{1}+C_{2} x+C_{3} K_{1}(x)+C_{4} K_{2}(x), \\
& f_{2}(x)=-C_{5}(1+\mathcal{H}(x))+C_{6} x(1-x)+C_{7},
\end{aligned}
$$

with

$$
\begin{aligned}
& K_{1}(x)=\cos (\sqrt{2} \ln x) \cdot \sum_{n \geq 0} A_{n} x^{n+4}+\sin (\sqrt{2} \ln x) \cdot \sum_{n \geq 0} B_{n} x^{n+4} \\
& K_{2}(x)=\sin (\sqrt{2} \ln x) \cdot \sum_{n \geq 0} A_{n} x^{n+4}-\cos (\sqrt{2} \ln x) \cdot \sum_{n \geq 0} B_{n} x^{n+4}
\end{aligned}
$$

Proportion-from-3

- Two maxima at $\alpha=1 / 3$ and $\alpha=2 / 3$. There $f(1 / 3)=f(2 / 3)=2.883 \ldots$

Proportion-from-3

- Two maxima at $\alpha=1 / 3$ and $\alpha=2 / 3$. There $f(1 / 3)=f(2 / 3)=2.883 \ldots$
- The median is not the most difficult rank: $f(1 / 2)=2.723 \ldots$

Proportion-from-3

- Two maxima at $\alpha=1 / 3$ and $\alpha=2 / 3$. There $f(1 / 3)=f(2 / 3)=2.883 \ldots$
- The median is not the most difficult rank: $f(1 / 2)=2.723 \ldots$
- Proportion-from-3 beats median-of-three in some regions: $f(\alpha) \leq m_{1}(\alpha)$ if $\alpha \leq 0.201 \ldots$, $\alpha \geq 0.798 \ldots$ or $1 / 3<\alpha<2 / 3$

Proportion-from-3

- Two maxima at $\alpha=1 / 3$ and $\alpha=2 / 3$. There $f(1 / 3)=f(2 / 3)=2.883 \ldots$
- The median is not the most difficult rank: $f(1 / 2)=2.723 \ldots$
- Proportion-from-3 beats median-of-three in some regions: $f(\alpha) \leq m_{1}(\alpha)$ if $\alpha \leq 0.201 \ldots$, $\alpha \geq 0.798 \ldots$ or $1 / 3<\alpha<2 / 3$
- The grand-average: $C_{n}=\bar{f} \cdot n+o(n)$, with

$$
\bar{f}=2.421 \ldots
$$

Proportion-from-3: Batfind

$$
2.723 .75
$$

Proportion-from-3: Batfind

ν-find

- Like proportion-from-3, but $a_{1}=\nu$ and $a_{2}=1-\nu$

ν-find

- Like proportion-from-3, but $a_{1}=\nu$ and $a_{2}=1-\nu$
- Same differential equation, same f_{i} 's, with $C_{i}=C_{i}(\nu)$

ν-find

- Like proportion-from-3, but $a_{1}=\nu$ and $a_{2}=1-\nu$
- Same differential equation, same f_{i} 's, with $C_{i}=C_{i}(\nu)$
- If $\nu \rightarrow 0$ then $f_{\nu} \rightarrow m_{1}$ (median-of-three)

ν-find

- Like proportion-from-3, but $a_{1}=\nu$ and $a_{2}=1-\nu$
- Same differential equation, same f_{i} 's, with $C_{i}=C_{i}(\nu)$
- If $\nu \rightarrow 0$ then $f_{\nu} \rightarrow m_{1}$ (median-of-three)
- However, if $\nu \rightarrow 1 / 2$ then f_{ν} behaves like proportion-from-2, but it is not the same

The optimal ν

Theorem 2. There exists a value ν^{*}, namely, $\nu^{*}=0.182 \ldots$, such that for any $\nu, 0<\nu<1 / 2$, and any α,

$$
f_{\nu^{*}}(\alpha) \leq f_{\nu}(\alpha)
$$

Furthermore, ν^{*} is the unique value of ν such that f_{ν} is continuous,i.e.,

$$
f_{\nu^{*}, 1}\left(\nu^{*}\right)=f_{\nu^{*}, 2}\left(\nu^{*}\right) .
$$

More on ν-find

- If $\nu>\tilde{\nu}=0.268 \ldots$ then f_{ν} has two absolute maxima at $\alpha=\nu$ and $\alpha=1-\nu$; otherwise there is one absolute maximum at $\alpha=1 / 2$

More on ν-find

- If $\nu>\tilde{\nu}=0.268 \ldots$ then f_{ν} has two absolute maxima at $\alpha=\nu$ and $\alpha=1-\nu$; otherwise there is one absolute maximum at $\alpha=1 / 2$
- Obviously, the value ν^{*} minimizes the maximum

$$
f_{\nu^{*}}(1 / 2)=2.659 \ldots
$$

and the mean

$$
\bar{f}_{\nu^{*}}=2.342 \ldots .
$$

More on ν-find

More on ν-find

- If $\nu \leq \bar{\nu}^{\prime}=0.404 \ldots$ then ν-find beats median-of-3 on average ranks: $\bar{f}_{\nu} \leq 5 / 2$

More on ν-find

- If $\nu \leq \bar{\nu}^{\prime}=0.404 \ldots$ then ν-find beats median-of-3 on average ranks: $\bar{f}_{\nu} \leq 5 / 2$
- If $\nu \leq \nu_{m}^{\prime}=0.364 \ldots$ then ν-find beats median-of-3 to find the median:
$f_{\nu}(1 / 2) \leq 11 / 4$

More on ν-find

- If $\nu \leq \bar{\nu}^{\prime}=0.404 \ldots$ then ν-find beats median-of-3 on average ranks: $\bar{f}_{\nu} \leq 5 / 2$
- If $\nu \leq \nu_{m}^{\prime}=0.364 \ldots$ then ν-find beats median-of-3 to find the median:
$f_{\nu}(1 / 2) \leq 11 / 4$
- If $\nu \leq \nu^{\prime}=0.219 \ldots$ then ν-find beats median-of-3 for all ranks: $f_{\nu}(\alpha) \leq m_{1}(\alpha)$

More on ν-find

More on ν-find

More on ν-find

More on ν-find

More on ν-find

More on ν-find

$$
\begin{aligned}
& 2.5 \text { - } \\
& 2.3 \\
& 2.1- \\
& 1.9 \\
& 1.7- \\
& 1.5 \\
& \begin{array}{llllll}
0.0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5
\end{array}
\end{aligned}
$$

More on ν-find

- We have investigated the average total cost of ν-find
$\lambda_{1} \cdot$ \# of comparisons $+\lambda_{2} \cdot \#$ of exchanges
- The values of ν^{*} (optimum), ν^{\prime} (ν-find beats median-of-three), etc. now depend on $\lambda_{2} / \lambda_{1}$; for instance, if $\lambda_{2} / \lambda_{1}=\infty$ we minimize the average number of exchanges with $\nu^{*}=0.43 \ldots$

Proportion-from- s : Sharkfind

Proportion-from-s: $s \rightarrow \infty$

Theorem 3. Let $f_{s}(\alpha)=\lim _{n \rightarrow \infty, m / n \rightarrow \alpha} \frac{C_{n, m}}{n}$ when using samples of size s. Then for any adaptive sampling strategy such that $\lim _{s \rightarrow \infty} r(\alpha) / s=\alpha$

$$
f_{\infty}(\alpha)=\lim _{s \rightarrow \infty} f_{s}(\alpha)=1+\min (\alpha, 1-\alpha)
$$

This is theoretically optimal for comparison-based selection algorithms.

