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ABSTRACT: Hoare’s FIND algorithm can be used to select the jth element out of a file of n
elements. It bears a remarkable similarity to Quicksort; in each pass of the algorithm, a
pivot element is used to split the file into two subfiles, and recursively the algorithm
proceeds with the subfile that contains the sought element. As in Quicksort, different
strategies for selecting the pivot are reasonable. In this paper, we consider the Median-of-
three version, where the pivot element is chosen as the median of a random sample of three
elements. Establishing some hypergeometric differential equations, we find explicit formulae
for both the average number of passes and comparisons. We compare these results with the
corresponding ones for the basic partition strategy. Q 1997 John Wiley & Sons, Inc. Random

Ž .Struct. Alg., 10, 143]156 1997

1. INTRODUCTION

Ž .The problem of selection consists in finding the jth smallest or jth largest
element out of a given set of n elements. Particular important cases are finding the

Ž . Ž . Ž .minimum js1 , the maximum jsn or the median js nq1 r2 . The firstŽ .
w xreasonably efficient solution to this problem was devised by Hoare 6 in the early
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1960s. Hoare’s FIND algorithm has expected linear running time and is based upon
the same design principles as the well-known sorting algorithm Quicksort, also by

w xHoare 7 . In fact, FIND has also been called Quickselect, One-sided Quicksort, and
the like.

Soon after Hoare’s work and continuing up to the present, many other solutions
have been proposed for the problem of selection. A closely related topic that has
attracted much interest is that of lower bounds for this problem, both for the
average and worst-case number of comparisons. Here, we mention only the

Ž .worst-case OO n solution to find the median of n elements, proposed by Blum,
w xFloyd, Pratt, Rivest, and Tarjan 2 in 1973. The reader may find a comprehensive

w xlist of references in Gonnet and Baeza-Yates’s Handbook 4 about the topic of
selection.

Most of the solutions proposed so far, although better than Hoare’s algorithm
on a theoretical basis, are not practical because they are difficult to implement, the
constant factors and hidden lower-order terms are too large, some of them have
been devised for the particular instance of finding the median so their generaliza-
tion to arbitrary j is difficult, etc. The simplicity, elegance, and robustness of FIND

make it the algorithm of choice for most practical situations, like Quicksort for
sorting. The probability of large deviations from the expected performance of FIND

is probably very small, and the lower-order terms, hidden constant factors, etc. of
any reasonable implementation of the algorithm are also quite small.

Ž .We now introduce the basic algorithm in detail see Algorithm 1 . We are given
an array A of n)0 items, and a rank j, 1F jFn. For simplicity, we assume that
the elements of A are integers. Since we are presenting a recursive implemen-

w xtation, the procedure find operates in a segment A l : u of the array, such
that it must contain the sought element. The first call to find is, obviously,

Ž .find A, j, 1, n .

Algorithm 1 FIND

� w x w x4lF jFu, A l : u contains the jth smallest of A 1 : n

Ž w x .function find var A : array 1 . . n of integer; j, l, u : integer
var r, k : integer;

begin
w xif lsu then return A l ;

Ž .r[select pivot A, l, u ;]

Ž w x w x.swap A l , A r ;

� w x w x 4A l sp, A l : u contains the jth element

Ž .partition A, l, u, k ;

� w x w x w x 4; i : lF i-k : A i Fp, A k sp, and ; i : k- iFu : A i )p

w xif jsk then return A k ;
Ž .else if j-k then return find A, j, l, ky1 ;
Ž .else return find A, j, kq1, u

end
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In order to select the jth smallest element, a certain element of the given segment,
the pï ot, is brought into its correct position, left of it being only smaller, right of it
only larger elements. The index r of the pivot is computed by select pï ot. For the]
time being, we can assume that this function returns a value between l and u at

w xrandom. Then the pivot is exchanged with A l and the procedure partition is
w xcalled. After the partition, the segment A l : u is divided into three parts: the first

w x w xone, A l : ky1 , contains all elements smaller or equal to the pivot; A k contains
w x Žthe pivot; and A kq1 : u contains all elements larger than the pivot see Algo-

.rithm 2 . Clearly, if m is the number of elements in the segment, then my1
comparisons are needed to determine the correct position of the pivot. Recall that

w xk is the final position of the pivot after the partition. Hence, if jsk, then A k is
returned, and we are done. Otherwise, if j-k, then the jth element must be in

w xA 1 . . ky1 and the procedure is recursively applied to that segment. If k- j, then
w xthe jth element lies in A kq1 . . n , and we call find on that segment.

Unlike Quicksort, where both segments of the partitioned array have to be
sorted recursively, the FIND algorithm has only to work on either the left or the
right segment. As a consequence, an iterative implementation of FIND is almost
straightforward, and no additional auxiliary storage is needed.

w xAlgorithm 2 Partition of the segment A l : u

Ž w xprocedure partition var A : array 1 . . n of integer; l, u : integer;
.var k : integer

var i, p : integer;
begin

w xk[ lq1; p[A l ;
for i[ lq1 to u do

w xif A i Fp then begin
Ž w x w x.swap A k , A i ;

k[kq1

end

Ž w x w x.swap A l , A k
end

w xThe preliminary analysis of FIND is by Hoare 7 . In 1970, Kruseman-Aretz showed
Ž .that it makes approximately 2 1q log 2 n comparisons to find the median of n

w xelements 13 . One year after, Knuth presented the first detailed analysis of this
w xalgorithm 9 , where he computed the expected number of comparisons to find the

jth out of n. A similar approach may be used to compute the expected number of
passes or calls to find, the expected number of exchanges in the array, etc. Devroye
w x3 has identified upper bounds on the moments of arbitrary order for the number

w xof comparisons, and Mahmoud, Modarres, and Smythe 11 have investigated the
expectation, variance, and distribution of the number of comparisons needed to
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select an element of random rank, that is, when j is the value of a uniformly
distributed random variable, between 1 and n.

Several variations of the basic scheme may yield significant improvements in the
algorithm’s performance. For instance, instead of taking a random element as the
pivot, a random sample of 3 elements is taken, and the middle of it is used as the
pivot element. The idea is that it is more likely that no subfile is degenerate. This
strategy, called the Median-of-three variant, is very well understood in the case of

w xQuicksort 10, 12 . Of course, the Median-of-three strategy can also be used in the
w xcontext of selection. Quite recently, Anderson and Brown 1 presented a prelimi-

nary analysis of this variant of the FIND algorithm.
In this paper, we give a precise and detailed analysis of the Median-of-three. We

will find an explicit expression for the average number of passes of the recursive
algorithm, when the jth element has to be selected out of n and for the average
number of comparisons between elements made during the partitioning. We show
how to solve the intricate recurrences arising in the analysis of this variant, and
how the theory of hypergeometric differential equations comes into play in the
solution.

For the rest of the paper, we will assume that the n given elements are distinct.
Since the behavior of the algorithm only depends on the relative ordering of the
elements and the pivot is selected from random samples, the analysis can be

� 4carried out as if the input were a random permutation of 1, 2, . . . , n . In Section 2,
we present the analysis of the expected number of passes, and in Section 3, that of
the number of comparisons.

Section 4 is devoted to discuss several related results and various comparisons of
the cost of the Median-of-three variant with the cost of the basic algorithm.

2. THE NUMBER OF PASSES

Ž .Let P z be the probability generating function of the number of passes, whenn, j
k Ž .selecting the jth element out of n. The coefficient of z in P z , denotedn, j

w k x Ž . w xz P z as usual, is by definition 5n, j

w k x � 4z P z sProb ‘‘number of passes to select the jth out of n’’sk .Ž .n , j

A file of size 1 or 2 is not treated recursively; hence

P z sP z sP z sz .Ž . Ž . Ž .1, 1 2, 1 2, 2

For nG3 we have

jy1 n

P z sz p P z qp q p P z . 1Ž . Ž . Ž . Ž .Ý Ýn , j n , k nyk , jyk n , j n , k ky1, j
ks1 ksjq1
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Here and in the sequel,

ky1 nykŽ . Ž .
p s 2Ž .n , k nŽ .3

are the splitting probabilities. It is easy to see that this quantity is the probability
that the middle element of a random sample of 3 elements is the k th element in a
random permutation of n elements. The recursion above is almost self-explanatory.
If k- j, we have to search in the right subfile of size nyk, but the sought element

Ž .is the jyk th of the subfile. If ks j, we are done, and if k) j, we are still looking
for the jth element in the left subfile of size ky1.

Solving the recurrence above is a very difficult problem; however, it is straight-
forward to obtain recurrences for each factorial moment of the random variable
‘‘‘number of passes’’ in a systematic way, the most important moment being the

Ž . Ž . <expectation. The average number P of passes is given by drdz P z .zs1n, j n, j
Hence we have P sP sP s1 and for nG31, 1 2, 1 2, 2

jy1 n

P s1q p P q p P . 3Ž .Ý Ýn , j n , k nyk , jyk n , k ky1, j
ks1 ksjq1

For convenience, we set P s0 whenever n- j. We also note the symmetryn, j
P sP which holds for obvious combinatorial reasons.n, j n, nq1yj

It is now natural to set up generating functions

P z s P z n .Ž . Ýj n , j
nGj

n ny3Multiplying the recursion by z and summing up, we obtainž /3

jy1 jy1 X1 1 P zŽ .jkZ Xky3 ky2P z s y z q ky1 z P z q . 4Ž . Ž . Ž . Ž .Ý Ýj jyk4 2ž /36 1yz 1yzŽ . Ž .ks3 ks2

Ž . XŽ . w xThis equation holds for all jG1 and the initial values are P 0 s0, P 0 s js1 ,j j
YŽ . w x w xand P 0 s2 ? jF2 , where the value of R is 1 if the predicate R is true and 0j

Ž w x.otherwise compare 5 . It is simple to reduce the order of the differential
Ž . XŽ . Ž .equations; we define Q z sP z and rewrite Eq. 4 asj j

jy1 jy11 1 Q zŽ .jkY ky3 ky2Q z s y z q ky1 z Q z q 5Ž . Ž . Ž . Ž .Ý Ýj jyk4 2ž /36 1yz 1yzŽ . Ž .ks3 ks2

Ž . w x X Ž . w xwith initial conditions Q 0 s js1 and Q 0 s2 ? jF2 .j j
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Solving the first few instances, we get

6 1 1 19 1 6 3Q z s log q q 1yz ,Ž . Ž .1 2 25 1yz 25 251yz 1yzŽ . Ž .
6 1 1 4 1 4 3Q z s log q y 1yz ,Ž . Ž .2 2 25 1yz 25 251yz 1yzŽ . Ž .
6 1 1 108 1 6 1

Q z s log q y logŽ .3 2 25 1yz 175 5 1yz1yz 1yzŽ . Ž .
24 6 183 5y q 1yz q 1yz ,Ž . Ž .
25 25 175

etc.
It is meaningful to define the double generating function

QQ z , u [ Q z u j.Ž . Ž .Ý j
jG1

Ž .Then the system of differential equations 5 translates into a single equation, viz.,

1 ­ 2QQ 1 u2 u 1 u3

y q QQs y , 6Ž .2 2 2 4 4ž / ž /6 1yu­ z 1yz 1yuz 1yz 1yuzŽ . Ž . Ž . Ž .

Ž . Ž .Ž . Ž .with the initial conditions QQ 0, u su and ­ QQr­ z 0, u s2u 1qu .
Ž .In order to solve this equation it is helpful to express QQ z, u as

1
QQ z , u s EE z , u , 7Ž . Ž . Ž .2 21yz 1yuzŽ . Ž .

Ž .and substitute zs1q t 1yu ru. With the notation

1yu
QQ t , u sEE 1q t , u , 8Ž . Ž .ž /u

Ž .the original differential equation 6 transforms into the hypergeometric equation

42 4­ GG ­ GG u 1y t y tŽ .
t 1y t q y4q8t y8 GGs6 1yu , 9Ž . Ž . Ž . Ž .2 ­ t t 1y t­ t Ž .

Ž Ž . . Ž .Ž Ž . .with the initial conditions GG yur 1yu , u su and ­ GGr­ t yur 1yu , u s0.
w xFor the reader’s convenience, we recall 8 that, under certain assumptions on

the parameters, the hypergeometric differential equation

t 1y t g 0 t q cy 1qaqb t g 9 t yab g t s0Ž . Ž . Ž . Ž . Ž .Ž .
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has a neighborhood of ts0 the solution

aycq1, bycq1a, b 1yct tg t sc ? F qc t ? F ,Ž . 1 2 1 2 2 1ž /c ž /2yc

w xwhere F denotes a hypergeometric function 5 . In our instance, the two hypergeo-2 1
Ž .metric functions degenerate to polynomials ‘‘terminating hypergeometric series’’ ,

and we get the homogeneous solution

10 5
whomx 5 2 3GG t , u sc u 1y2 t qc u t 1y2 tq t y t .Ž . Ž . Ž . Ž .1 2 ž /7 14

w xUsing the ¨ariation of parameters method 8 , inserting the initial conditions, and,
resubstituting, we find

QQ z , u sQQ z , u qu2QQ uz , uy1 qQQ z , u , 10Ž . Ž . Ž . Ž . Ž .1 1 2

where

u 1 6 12
QQ z , u s log 1yu q u 1yzŽ . Ž . Ž .1 2 2 ½1yz 5 51yz 1yuzŽ . Ž .

24 1qu u4 48 1qu u5Ž . Ž .5 6y 1yz y 1yzŽ . Ž .4 55 51yu 1yuŽ . Ž .

48 1qu u6 12 1qu u7Ž . Ž .7 8y 1yz y 1yz ,Ž . Ž .6 7 57 71yu 1yuŽ . Ž .

u 1yu R u q94Ž . Ž .Ž .
QQ z , u s yŽ .2 2 2 ½ 1751yz 1yuzŽ . Ž .

2 uR u y75q124u u 9y5uŽ . Ž .Ž . 2y 1yz q 1yzŽ . Ž .
175 7 1yuŽ .

4u2 1qu 13u3 1quŽ . Ž .3 4y 1yz q 1yzŽ . Ž .2 37 1yu 7 1yuŽ . Ž .

2 7S u q2u4 211q379uŽ . Ž .Ž . 5q 1yzŽ .4175 1yuŽ .

2u 2S u q3u4 9q41uŽ . Ž .Ž . 6q 1yzŽ .525 1yuŽ .

4u2 S u y3u4 3y13uŽ . Ž .Ž . 7q 1yzŽ .635 1yuŽ .

u3 S u y24u4 1yuŽ . Ž .Ž . 8q 1yz ,Ž .7 535 1yuŽ .
Ž . Ž .Ž .Ž 2 . Ž . 5 Ž . 4 Ž y1 .and R u [y 1yu 11y3u 7y2uqu and S u [u R u yu R u .
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We notice that the symmetry property P sP is reflected on the level ofn, j n, nq1yj
Ž . 2 Ž y1 . Ž .generating functions by QQ z, u su QQ uz, u ; in fact we have QQ z, u s2

2 Ž y1 .u QQ uz, u .2
X 1 ny1 jŽ . Ž . w x Ž .Recall that Q z sP z and therefore P s z u QQ z, u . To extractj j n, j n
Ž .these coefficients from Eq. 10 , we use

i i1 1yz 1 rq1 y1 i!Ž . Ž .
ny1 rw xz u log s ,2 iq1n 1yz n1yuz ny1y rŽ . Ž .

for 0F i-ny1y r ,
1 1 1 rq1

ny1 rw xz u log s H ,ny1yr2n 1yz n1yz 1yuzŽ . Ž .
1 1 1 rq1 ny rŽ . Ž .

ny1 rw xz u log s H y1 ,Ž .ny r2 2n 1yz n1yz 1yuzŽ . Ž .

i Ž . Žand Theorem 2.1 follows. Here, and for the rest of the paper, n sn ny1 . . . ny
.iq1 denotes the ith falling factorial of n and H sÝ 1ri the nth harmonicn 1F iF n

w xnumber 5 .

Theorem 2.1. The a¨erage number of passes to select the j th element out of a random
permutation of n elements using Hoare’s FIND algorithm with Median-of-three parti-
tion is

24 18 18 12 12
P s H q H q H q qn , j n j nq1yj35 35 35 35 j 35 nq1y jŽ .

2 2304 6 18 j 12 jy1 4 2 jy3 jy1Ž . Ž . Ž .
y y q y y2 3175 7n 35n 35n 35n

3 4 56 jy2 jy1 6 2 jy5 jy1 4 jy3 jy1Ž . Ž . Ž . Ž . Ž . Ž .
y q y 11Ž .4 5 635n 35n 35n

for 5F jFny4. Table I collects also the formulae for the cases js1, 2, 3, 4. The
remaining cases, when jFnF jq3, are handled by using the symmetry P sP .n, j n, nq1yj
Since 1Fnq1y jF4, the expressions for js1, 2, 3, 4 apply.

The formula for P is symmetric in j and nq1y j, even though it is notn, j
apparent at the first glance. It is possible to produce obviously symmetric expres-
sions for P , but they are messier and we stick to the presented form.n, j

3. THE NUMBER OF COMPARISONS

The analysis of the average number of comparisons follows the pattern shown in
Section 2.
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( )TABLE I Average number of passes to select the jth element out of n Theorem 2.1

j Pn, j

6 11
1 H y , for nG5n5 25

P s1, P s1, P s2, P s21, 1 2, 1 3, 1 4, 1

6 26
2 H y , for nG5n5 25

3
P s1, P s1, P s2, 2 3, 2 4, 2 2

6 102 6 1
3 H y y , for nG7n 25 175 5 n

3 11 23
P s2, P s , P s , P s3, 3 4, 3 5, 3 6, 32 5 10

6 209 18 1 12 1
4 H y y y , for nG8n 2 35 350 5 5n n

17 23 12
P s2, P s , P s , P s4, 4 5, 4 6, 4 7, 410 10 5

24 18 18
5F jFny4 H q H q Hn j nq1y j35 35 35

12 12 304 6
q q y y

35 j 35 nq1y j 175 7nŽ .
2 218 j 12 jy1 4 2 jy3 jy1Ž . Ž .Ž .

q y y2 335n 35n 35n
3 4 56 jy2 jy1 6 2 jy5 jy1 4 jy3 jy1Ž .Ž . Ž .Ž . Ž .Ž .

y q y4 5 635n 35n 35n

Ž .First, we introduce C z , the probability generating function of the number ofn, j
comparisons. We will not count the comparisons made to select pivots, i.e., to
decide the middle element in the random samples of three elements. A file of size
1 or 2 is not treated recursively; hence

C z s1, C z sC z sz .Ž . Ž . Ž .1, 1 2, 1 2, 2

For nG3 we have

jy1 n
ny1C z sz p C z qp q p C z . 12Ž . Ž . Ž . Ž .Ý Ýn , j n , k nyk , jyk n , j n , k ky1, j

ks1 ksjq1
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The recurrence is obtained in the same way as the one for the number of passes,
the factor z ny1 in front of everything counting for the ny1 comparisons needed
to partition the file around the pivot element.

Ž . Ž . <The average number C of comparisons is given by drdz C z . Hence,zs1n, j n, j
we have C s0, C sC s1, and for nG31, 1 2, 1 2, 2

jy1 n

C sny1q p C q p C . 13Ž .Ý Ýn , j n , k nyk , jyk n , k ky1, j
ks1 ksjq1

Again, we have C sC for any j, 1F jFn. As in the analysis of then, j n, nq1yj
number of passes, we assume C s0 whenever n- j and set up generatingn, j
functions

C z s C z n .Ž . Ýj n , j
nGj

Ž .It turns out that the order of differential equations for the C z ’s, correspondingj
Ž . Ž . XŽ .to the recurrence 13 , may be reduced by using D z sC z instead. As in thej j

analysis of the number of passes, the bivariate generating function

DD z , u [ D z u j,Ž . Ž .Ý j
jG1

satisfies a second-order partial differential equation. After appropriate transforma-
tions, the problem reduces to solving an hypergeometric differential equation. We
will not repeat the intermediate steps, since they are completely analogous to those
shown in the previous section. The final result is cast into the form of Theorem 3.1.

Theorem 3.1. The a¨erage number of comparisons to select the j th element out of a
random permutation of n elements using Hoare’s FIND algorithm with Median-of-three
partition is

72 156 156 36 36 113 24
C s2nq H y H y H q q q qn , j n j nq1yj35 35 35 35 j 35 nq1y j 175 7nŽ .

2 2 23 jy1 156 j 36 jy1 12 2 jy3 jy1Ž . Ž . Ž . Ž .
q3 jy y y y2 3n 35n 35n 35n

3 4 518 jy2 jy1 18 2 jy5 jy1 12 jy3 jy1Ž . Ž . Ž . Ž . Ž . Ž .
y q y 14Ž .4 5 635n 35n 35n

for 5F jFny4. Table II also collects the formulae for the cases js1, 2, 3, 4. The
remaining cases, when jFnF jq3, are handled by using the symmetry C sn, j
C . Since 1Fnq1y jF4, the expressions for js1, 2, 3, 4 apply.n, nq1yj
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TABLE II Average number of comparisons to select the jth element out of n
( )Theorem 3.1 .

j Cn, j

12 12
1 2ny H q , for nG5n5 25

7
C s0, C s1, C s2, C s1, 1 2, 1 3, 1 4, 1 2

12 12
2 2ny H q , for nG5n5 25

7
C s1, C s2, C s2, 2 3, 2 4, 2 2

12 314 6 12
3 2ny H q y q , for nG7n 25 175 n 5n

7 26
C s2, C s , C s , C s73, 3 4, 3 5, 3 6, 32 5

12 634 18 36 24
4 2ny H q y q q , for nG8n 2 35 175 n 5n 5n

7 316
C s , C s5, C s7, C s4, 4 5, 4 6, 4 7, 42 35

72 156 156
5F jFny4 2nq H y H y Hn j nq1y j35 35 35

236 36 113 24 3 jy1Ž .
q q q q q3 jy

35 j 35 nq1y j 175 7n nŽ .
2 2156 j 36 jy1 12 2 jy3 jy1Ž . Ž .Ž .

y y y2 335n 35n 35n
3 4 518 jy2 jy1 18 2 jy5 jy1 12 jy3 jy1Ž .Ž . Ž .Ž . Ž .Ž .

y q y4 5 635n 35n 35n

4. RELATED RESULTS

The procedure shown in Sections 2 and 3 can be used, in principle, to analyze many
other quantities such as the average number of exchanges X , the number ofn, j

calls to the partition procedure}which is not actually the same as the number of
w xpasses}etc. For instance, in the paper 1 , the authors make the assumption that

each partitioning phase costs ny3 comparisons, as opposed to the assumption of
ny1 comparisons to partition a file of size n. The idea behind their approach is
that the comparisons between the pivot and the other two elements in the sample
during the partitioning can be avoided since they were already compared when
selecting the pivot. In this instance, the result, very similar to the one given in
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Theorem 3.1, is

24 192 192 12 12 921 36
C s2nq H y H y H q q q qn , j n j nq1yj35 35 35 35 j 35 nq1y j 175 7nŽ .

2 2 23 jy1 192 j 12 jy1 4 2 jy3 jy1Ž . Ž . Ž . Ž .
q3 jy y y y2 3n 35n 35n 35n

3 4 56 jy2 jy1 6 2 jy5 jy1 4 jy3 jy1Ž . Ž . Ž . Ž . Ž . Ž .
y q y , 15Ž .4 5 635n 35n 35n

which holds for jG5 and nq1y jG5.
w xNeither the previous work of Anderson and Brown 1 nor this work consider the

total number of comparisons, since the comparisons made to select the pivots were
not counted. Of course, the exact average number of comparisons T can ben, j
computed using the methods presented in this paper, but it is approximately

8
T ; =P qC ,n , j n , j n , j3

since we need 8r3 comparisons on the average to select the median of three
elements. Hence, for 5F jFny4,

136 108 108
T s2nq H y H y H qOO 1 .Ž .n , j n j nq1yj35 35 35

If we assume ny3 comparisons to partition a file of size n, instead of ny1, the
same estimation results.

An interesting question that we consider now is the performance of the
algorithm when looking for the median js nq1 r2 and when selecting anŽ .
element at random, i.e., j takes any value between 1 and n with identical
probability 1rn. We compare then these performances with the corresponding
ones for the basic algorithm, that is, when the pivot is randomly chosen. Let us

w xrecall that the average number of passes for the basic algorithm 9 is

P sH qH y1, 16Ž .n , j j nq1yj

while the average number of comparisons is

C s2 nq3q nq1 H y jq2 H y nq3y j H . 17Ž . Ž . Ž . Ž .Ž .n , j n j nq1yj

Ž .If we specialize formula 11 for ns2 Nq1 and jsNq1, then

24 36 4469 1
P s H q H y qOO2 Nq1, Nq1 2 Nq1 Nq1 ž /35 35 2800 N

12 12 24 4469 1
s log Nq gq log 2y qOO .ž /7 7 35 2800 N
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On the other hand, the average number of passes to find the median in the
classical case is

1
P s2 H y1;2 log Nq2gy1qOO .2 Nq1, Nq1 Nq1 ž /N

12 14Comparing the leading coefficients, and 2s , we see that the savings by the7 7

refined method are 14.3%.
Ž . Ž .By taking ns2 Nq1 and jsNq1 in Eqs. 14 and 17 , we obtain the average

number of comparisons made to search for the median, in the case of the
Median-of-three and the basic algorithm, respectively. The formulae read this time

11 14893 72 312 1
C s Nq q H y H qOO2 Nq1, Nq1 2 Nq1 Nq1 ž /2 2800 35 35 N

11 48 48 14893 72 1
s Ny log Ny gq q log 2qOO ,ž /2 7 7 2800 35 N

and

C s4 Nq2q Nq1 H y Nq3 HŽ . Ž .Ž .2 Nq1, Nq1 2 Nq1 Nq1

1
s4 1q log 2 Ny8 log Ny8 gy1 q4 log 2qOO .Ž . Ž . ž /N

Ž .The leading coefficients of the order N , if we search for the median, are this time
11 Ž .s5.5 and 4 1q log 2 s6.772588722, so that the savings are roughly 19%. To be2

fair, the total number of comparisons T should have been used rather2 Nq1, Nq1
than C to compute these savings, but it actually does not matter since the2 Nq1, Nq1

11main term in both quantities is N.2

The average number of passes and comparisons to find an element of random
rank out of n elements are given by

1
PP s P ,Ýn n , jn 1FjFn

1
CC s C .Ýn n , jn 1FjFn

Comparing the values of PP for the classical and the Median-of-three algorithms,n
12Ž . Ž .we find that they are 2 H qOO 1 and H qOO 1 , respectively, and hence then n7

Ž .average savings are 14.3%. On the other hand, CC s3ny8 H qOO 1 for then n
5 48 Ž .standard algorithm and CC s ny H qOO 1 for the variant, showing that ann n2 7

average of 16.6% of the comparisons are saved when using the median-of-three.1
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1As in the example, where we considered the number of comparisons to find the median, the main term
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