Analysis of Hoare’s FIND Algorithm with
Median-of-Three Partition

P. Kirschenhofer,! H. Prodinger,’ C. Martinez>

"Institut fiir Algebra und Diskrete Mathematik, Technical University of Vienna,
Wiedner HauptstraBe 8-10, A-1040 Vienna, Austria

’Departament de Llenguatges i Sistemes Informatics, Polytechnical University of
Catalonia, Pau Gargallo 5, E-08028 Barcelona, Spain

Received 28 December 1996; revised 20 August 1996

ABSTRACT: Hoare’s FIND algorithm can be used to select the jth element out of a file of n
elements. It bears a remarkable similarity to Quicksort; in each pass of the algorithm, a
pivot element is used to split the file into two subfiles, and recursively the algorithm
proceeds with the subfile that contains the sought element. As in Quicksort, different
strategies for selecting the pivot are reasonable. In this paper, we consider the Median-of-
three version, where the pivot element is chosen as the median of a random sample of three
elements. Establishing some hypergeometric differential equations, we find explicit formulae
for both the average number of passes and comparisons. We compare these results with the
corresponding ones for the basic partition strategy. © 1997 John Wiley & Sons, Inc. Random
Struct. Alg., 10, 143-156 (1997)

1. INTRODUCTION

The problem of selection consists in finding the jth smallest (or jth largest)
element out of a given set of n elements. Particular important cases are finding the
minimum (j = 1), the maximum (j = n) or the median (j = [(n + 1) /2|). The first
reasonably efficient solution to this problem was devised by Hoare [6] in the early

Correspondence to: C. Martinez

Contract grant sponsor: Acciones Integradas Hispano-Austriacas (Austrian-Spanish Scientific Exchange
Program)

Contract grant sponsor: ESPRIT BRA Program of the EC, Project ALCOM II; contract grant number:
7141

© 1997 John Wiley & Sons, Inc. CCC 1042-9832 /97/100143-14

143

144 KIRSCHENHOFER, MARTINEZ, AND PRODINGER

1960s. Hoare’s FIND algorithm has expected linear running time and is based upon
the same design principles as the well-known sorting algorithm Quicksort, also by
Hoare [7]. In fact, FIND has also been called Quickselect, One-sided Quicksort, and
the like.

Soon after Hoare’s work and continuing up to the present, many other solutions
have been proposed for the problem of selection. A closely related topic that has
attracted much interest is that of lower bounds for this problem, both for the
average and worst-case number of comparisons. Here, we mention only the
worst-case @(n) solution to find the median of n elements, proposed by Blum,
Floyd, Pratt, Rivest, and Tarjan [2] in 1973. The reader may find a comprehensive
list of references in Gonnet and Baeza-Yates’s Handbook [4] about the topic of
selection.

Most of the solutions proposed so far, although better than Hoare’s algorithm
on a theoretical basis, are not practical because they are difficult to implement, the
constant factors and hidden lower-order terms are too large, some of them have
been devised for the particular instance of finding the median so their generaliza-
tion to arbitrary j is difficult, etc. The simplicity, elegance, and robustness of FIND
make it the algorithm of choice for most practical situations, like Quicksort for
sorting. The probability of large deviations from the expected performance of FIND
is probably very small, and the lower-order terms, hidden constant factors, etc. of
any reasonable implementation of the algorithm are also quite small.

We now introduce the basic algorithm in detail (see Algorithm 1). We are given
an array A of n > 0 items, and a rank j, 1 <j <n. For simplicity, we assume that
the elements of A are integers. Since we are presenting a recursive implemen-
tation, the procedure find operates in a segment A[l:u] of the array, such
that it must contain the sought element. The first call to find is, obviously,
find(A,j,1,n).

Algorithm 1 FiND

{l<j <u, All:u] contains the jth smallest of A[1:n]}

function find(var A4 :array [1..n] of integer; j, I, u:integer)
var r, k :integer;

begin
if / =u then return A[!/];

r = select_pivot(A, [, u);

swap(A[1], A[r));

{A[l]1=p, All:u] contains the jth element}

partition(A4, [, u, k);

(Vi:l<i<k:Alil<p, Alkl=p,and Vi:k<i<u: Ali]>p}

if j =k then return A[k];
else if j <k then return find(A4, j,, k — 1);
else return find(A, j, k + 1,u)

end

HOARE'S FIND ALGORITHM 145

In order to select the jth smallest element, a certain element of the given segment,
the pivot, is brought into its correct position, left of it being only smaller, right of it
only larger elements. The index r of the pivot is computed by select_pivot. For the
time being, we can assume that this function returns a value between / and u at
random. Then the pivot is exchanged with A[/] and the procedure partition is
called. After the partition, the segment A[/:u] is divided into three parts: the first
one, A[l:k — 1], contains all elements smaller or equal to the pivot; A[k] contains
the pivot; and A[k + 1:u] contains all elements larger than the pivot (see Algo-
rithm 2). Clearly, if m is the number of elements in the segment, then m — 1
comparisons are needed to determine the correct position of the pivot. Recall that
k is the final position of the pivot after the partition. Hence, if j =k, then A[k] is
returned, and we are done. Otherwise, if j <k, then the jth element must be in
A[l..k — 1] and the procedure is recursively applied to that segment. If k <j, then
the jth element lies in A[k + 1..n], and we call find on that segment.

Unlike Quicksort, where both segments of the partitioned array have to be
sorted recursively, the FIND algorithm has only to work on either the left or the
right segment. As a consequence, an iterative implementation of FIND is almost
straightforward, and no additional auxiliary storage is needed.

Algorithm 2 Partition of the segment A[]: u]

procedure partition(var A4 : array [1..n] of integer; [, u:integer;
var k : integer)

var i, p:integer;
begin
k:==1+1; p=All];
for i:=1+1to u do
if A[i] <p then begin
swap(A[k], AliD;
k=k+1

end

swap(A[l], ALkD
end

The preliminary analysis of FIND is by Hoare [7]. In 1970, Kruseman-Aretz showed
that it makes approximately 2(1 4+ log2)n comparisons to find the median of n
elements [13]. One year after, Knuth presented the first detailed analysis of this
algorithm [9], where he computed the expected number of comparisons to find the
jth out of n. A similar approach may be used to compute the expected number of
passes or calls to find, the expected number of exchanges in the array, etc. Devroye
[3] has identified upper bounds on the moments of arbitrary order for the number
of comparisons, and Mahmoud, Modarres, and Smythe [11] have investigated the
expectation, variance, and distribution of the number of comparisons needed to

146 KIRSCHENHOFER, MARTINEZ, AND PRODINGER

select an element of random rank, that is, when j is the value of a uniformly
distributed random variable, between 1 and 7.

Several variations of the basic scheme may yield significant improvements in the
algorithm’s performance. For instance, instead of taking a random element as the
pivot, a random sample of 3 elements is taken, and the middle of it is used as the
pivot element. The idea is that it is more likely that no subfile is degenerate. This
strategy, called the Median-of-three variant, is very well understood in the case of
Quicksort [10, 12]. Of course, the Median-of-three strategy can also be used in the
context of selection. Quite recently, Anderson and Brown [1] presented a prelimi-
nary analysis of this variant of the FIND algorithm.

In this paper, we give a precise and detailed analysis of the Median-of-three. We
will find an explicit expression for the average number of passes of the recursive
algorithm, when the jth element has to be selected out of n and for the average
number of comparisons between elements made during the partitioning. We show
how to solve the intricate recurrences arising in the analysis of this variant, and
how the theory of hypergeometric differential equations comes into play in the
solution.

For the rest of the paper, we will assume that the #n given elements are distinct.
Since the behavior of the algorithm only depends on the relative ordering of the
elements and the pivot is selected from random samples, the analysis can be
carried out as if the input were a random permutation of {1,2,...,n}. In Section 2,
we present the analysis of the expected number of passes, and in Section 3, that of
the number of comparisons.

Section 4 is devoted to discuss several related results and various comparisons of
the cost of the Median-of-three variant with the cost of the basic algorithm.

2. THE NUMBER OF PASSES

Let P, /(z) be the probability generating function of the number of passes, when
selecting the jth element out of n. The coefficient of z* in P, j(z), denoted
[*]p, ;(2) as usual, is by definition [5]

[z*]P, ;(z) = Prob{ “number of passes to select the jth out of n” =k}.

A file of size 1 or 2 is not treated recursively; hence

P (2) =Py 4(2) =P, ,(2) =z.

For n >3 we have

Jj—1 n
Pn,j(z) =z Z 77'n,kPn—k,j—k(Z) t+m, ;i t Z 7Tn,kPk—1,j(Z) . (1)
k=1 k=j+1

HOARE'S FIND ALGORITHM 147

Here and in the sequel,

C(k=1)(n—k)

Ty k = n
(5)

are the splitting probabilities. 1t is easy to see that this quantity is the probability
that the middle element of a random sample of 3 elements is the kth element in a
random permutation of n elements. The recursion above is almost self-explanatory.
If k& <j, we have to search in the right subfile of size n — k, but the sought element
is the (j — k)th of the subfile. If k =j, we are done, and if k > j, we are still looking
for the jth element in the left subfile of size £ — 1.

Solving the recurrence above is a very difficult problem; however, it is straight-
forward to obtain recurrences for each factorial moment of the random variable
“number of passes” in a systematic way, the most important moment being the
expectation. The average number P, ; of passes is given by (d/dz)P, (2)l.-.
Hence we have P, =P, =P, ,=1and for n >3

(2)

j—1 "
P, =1+)y LY RS r T kB,)
k=1 k=j+1

For convenience, we set P, ;=0 whenever n <j. We also note the symmetry
P, =P, ,.1—; which holds for obvious combinatorial reasons.
It is now natural to set up generating functions

[)](Z) = ZPn,jZn'

nxj

n—

Multiplying the recursion by () 3 and summing up, we obtain

Pi(2)

—. (4
T @

1 1 j—1 j-1
I)]//r(z)=—4— Z (k)zk_3+ Z (k—l)Zk_ZP]-,_k(Z)"—
6 (1-z2)" Z5\3 k=2

This equation holds for all j > 1 and the initial values are P,(0) =0, P/(0) =[j = 1],
and P]-”(O) = 2-[j < 2], where the value of [R] is 1 if the predicate R is true and 0
otherwise (compare [5]. It is simple to reduce the order of the differential
equations; we define Q;(z) = P/(z) and rewrite Eq. (4) as

LYV _j_l k\ k-3 = 1y k=2 Q()
@O = L[Bk ten@ s 5)

with initial conditions Q;(0) =[j=1] and Qj(0)=2-[j <2].

148 KIRSCHENHOFER, MARTINEZ, AND PRODINGER

Solving the first few instances, we get

6 119 1 \
Ql(z)zg (1—2)2 log 1—2 E (1)2 25(—-z),

6 1 1 4 1 \
0,(2) -3 (1_2)2 log 1-2 " 25 (1)2 25(1_2))

6 1 108 1 6 1
G = s Ly BT T s 1oy 5 =

24
—g—i—g(l—z) +175(1—z)

etc.
It is meaningful to define the double generating function

@(z,u)=) Q;(z)u’.

j=1

Then the system of differential equations (5) translates into a single equation, viz.,

17e L. v) — (L (6)
6 9z | (1-2)" (1-uz)’ (1-z2) (1-u)

with the initial conditions @(0,u) =u and (€ /3z)0,u) = 2u(l + u).
In order to solve this equation it is helpful to express @(z,u) as

1
@(2) = ey Q)

and substitute z =1+ #(1 —u) /u. With the notation

@’(z,u)=g(1+ 1;ut,u), (8)

the original differential equation (6) transforms into the hypergeometric equation

9*°Z 0% u(l1—1)t—¢*
+(4+8t)——8? 6(1-”)W,

with the initial conditions £(—u /(1 —uw),u) =u and (4Z /) —u/(1 —u),u) = 0.
For the reader’s convenience, we recall [8] that, under certain assumptions on
the parameters, the hypergeometric differential equation

t(1 —t) (9)

t(1-1)g"(t) +(c—(1+a+b)t)g'(t) —abg(t)=0

HOARE'S FIND ALGORITHM 149

/)

where , F, denotes a hypergeometric function [5]. In our instance, the two hypergeo-
metric functions degenerate to polynomials (“terminating hypergeometric series”),
and we get the homogeneous solution

has a neighborhood of ¢ = 0 the solution

e a—c+1,b—c+1
g(t)=c1'2F1(a’cb ‘t)+cztl '2F1(¢

10 5
g[hom](t’u) =c(u)(1-21) + Cz(u)t5(1 -2t + 7t2 — ﬁﬁ).

Using the variation of parameters method [8], inserting the initial conditions, and,
resubstituting, we find

@(z,u) =@\(z,u) +u’@ (uz,u™ ') +@,(z,u), (10)
where
~ u | 1 6 | 12 .
@(z,u) = 12—y ogl_z{g(—u) + —u(1-2)
24 (1+u)u’ L) 48 (1+u)u’ 6
BT R I T
48 (1+u)u® ;12 (T+u)u’ . g
T T T)
~ B (I —u)(R(u) +94)
@y(z,u) = (1_2)2(1_uz)2{ 175
2(uR(u) — 75 + 124u) u(9 — Su) 2
- 175 Ty 7Y
_4uz(1—+uz) 1-2)° 13u3($z)(1—z)4
7(1—u) 7(1—u)
. 2(7S(u) + 2u4(2114+ 379u)) (1 —Z)S
175(1 — u)
. 2u(28(u) + 3u4(95+ 41u)) R _2)6
25(1 - u)
RGO ST Gt T)) P
35(1 — u)
w(S(u) —24u*(1—u
L0k TR I
(1-u)

and R(u) = —(1 —w)(11 — 3u)7 — 2u + u?) and S(u) == w’R(u) — u*R(u™").

150 KIRSCHENHOFER, MARTINEZ, AND PRODINGER

We notice that the symmetry property P, ; =P, ,,_; is reflected on the level of
generating functions by @(z,u) =u’@(uz,u™'); in fact we have @,(z,u)=
uw*@y(uz,u™).

Recall that Q(z) =P/(z) and therefore P, ;= Lz 'w/l@(z,u). To extract

these coefficients from Eq. (10), we use

1 (1-2) 1 r+1 (=D

—[z"" '] 5 log——= T

n (1 —uz) 1-z n (n—1-r)y—

forO<i<n—1-r,
['] 1 | 1 r+1H

—|z"u 0 = ey

n (1—:/:)(1—142)2 512 no

1 1 1 r+1)(n—r

_[anlur] 2 210g =()()(anr_l)’
n (1-2)"(1 —uz) 1-2z n

and Theorem 2.1 follows. Here, and for the rest of the paper, n' =n(n —1)...(n —
i + 1) denotes the ith falling factorial of n and H, =YX, _,_, 1/i the nth harmonic
number [5].

Theorem 2.1. The average number of passes to select the jth element out of a random
permutation of n elements using Hoare’s FIND algorithm with Median-of-three parti-
tion is

b 24 18H 18H 12 12
=—H, +—H + — =t
w35t 35T 35 T 355 0 35(n+ 1 —)

304 6 18 12(j—1)° 4(2j-3)(j—1)

175 7n 35n 35 35n°
B (OO CIC) [k M € (€) MO
35nt 35n3 35n8

for 5<j<n—4. Table 1 collects also the formulae for the cases j=1,2,3,4. The
remaining cases, when j <n <j + 3, are handled by using the symmetry P, ; =P, , . ,_;.
Since 1 <n +1—j <4, the expressions for j = 1,2,3,4 apply.

The formula for P, ; is symmetric in j and n+1—j, even though it is not
apparent at the first glance. It is possible to produce obviously symmetric expres-
sions for P, ;, but they are messier and we stick to the presented form.

n,j>

3. THE NUMBER OF COMPARISONS

The analysis of the average number of comparisons follows the pattern shown in
Section 2.

HOARE'S FIND ALGORITHM 151

TABLE I Average number of passes to select the jth element out of n (Theorem 2.1)

J P
6 11
1 -H,— —, forn>5
5 25
P =1 P,,=1, Py,=2, P =2
6 26
2 sH, = forn>5
P,o=1, P3,=1 P =+
; " 102 61 ¢ ;
-H — — — — — >
"5 s OTNE
3 11 23
Ps 5 2, P43—E’ P5,3—?’ P6,3 1_0
A " 209 18 1 12 1 ; g
-H - — = — — — — — >
"T350 52 sa o
P 5 p 17 P 23 P 12
4,4 > 5,4 10> 6,4 107 7,4 5
24 18 18
S5<j<n—4 —H,+ H+H,;

3’5" 357 35
12 12 304 6

tm o
357 35(n+1-j) 175 7n
18/ 12(j-1) 42j-3)(j-1)*

35n 35n2 3503
C6G-G-D 6QI-HG DT 4G -G 1)
3504 3512 351

First, we introduce C,, ;(z), the probability generating function of the number of
comparisons. We will not count the comparisons made to select pivots, i.e., to
decide the middle element in the random samples of three elements. A file of size
1 or 2 is not treated recursively; hence

For n >3 we have

Cl,l(z)=1’ C2,1(2)=C2,2(2)=Z-

j—1 n
Cn,j(z) =Zn71 Z Wn,kcnfk,jfk(z) +7Tn,j+ Z Wn,kckfl,j(z) . (12)
k=1

k=j+1

152 KIRSCHENHOFER, MARTINEZ, AND PRODINGER

The recurrence is obtained in the same way as the one for the number of passes,
the factor z"~! in front of everything counting for the n — 1 comparisons needed
to partition the file around the pivot element.

The average number C, ; of comparisons is given by (d/dz)C, (z)I.-1. Hence,
we have C, | =0, C21—C22—1 and for n >3

- n
C,j=n—1+ b Ty kCo—k,j—i + b T 1k Cro1, - (13)
k=1 k=j+1

Again, we have C, ;=C, ,,,_; for any j, 1 <j<n. As in the analysis of the
number of passes, we assume C, ;=0 whenever n <j and set up generating
functions

Ci(z)= Y C, 2"

nxj

It turns out that the order of differential equations for the C,(z)’s, corresponding
to the recurrence (13), may be reduced by using D;(z) = Cj(z) instead. As in the
analysis of the number of passes, the bivariate generating function

D (z,u) =), D(z)u,

j=1

satisfies a second-order partial differential equation. After appropriate transforma-
tions, the problem reduces to solving an hypergeometric differential equation. We
will not repeat the intermediate steps, since they are completely analogous to those
shown in the previous section. The final result is cast into the form of Theorem 3.1.

Theorem 3.1. The average number of comparisons to select the jth element out of a
random permutation of n elements using Hoare’s FIND algorithm with Median-of-three
partition is

72 156 156 36 36 113 24
C,j=2n+-—_-H ———H—-—H, | +—+————+ -+
35 35 7 35 7355 35(n+1-j) 175 7n

3(-1)° 156) 36(j-1)" 12(2j=3)(j—1)°

+3j— - -
! 3¥n 352 35n°
_BG-9G-DT BR-HG-DT 2G-HG-DT
35n* 35n° 35n®

for 5<j<n—4. Table 11 also collects the formulae for the cases j =1,2,3,4. The
remaining cases, when j<n <j+3, are handled by using the symmeiry C, ;=
C Since 1 <n +1—j <4, the expressions for j = 1,2,3,4 apply.

n,n+1-—j*

HOARE’S FIND ALGORITHM 153

TABLE II Average number of comparisons to select the jth element out of n
(Theorem 3.1).

j C

n,j

12 12
1 2n—?Hn+E, forn>5

7
Ci1=0, Cou=1, C3,=2, C4,1=5

12 12
2 2n—?Hn+E, for n > 5
7
Cra=1, C5,=12, C4,2=5
12 314 6 12
3 2n—-—H, + ———+— forn>7

57" 175 n o 5n%
7 26
C3,3 =2, C4,3 = 5, C5,3 = ?’ C6,3 =17

12 634 18 36 24

4 2]1—?Hn+ﬁ—7+ﬁ+§, forn>8
7 316
C4,4=5> Csa=35, Cou=7 Cyy= g
) 72 156 156
5<j<n—4 2n+ ooH, = o= Hy= = H,
36 36 13 24 3(j-1)7

+—t———+ ==+ — +3
35 35(n+1-j) 175 0’
156j 36(j—1)° 12(2j—3)(j —1)*

35n 35n2 35,3
L BG-2(G-1D) | BR-HG-D 12 -3 -1
35n* 35n° 3510

4. RELATED RESULTS

The procedure shown in Sections 2 and 3 can be used, in principle, to analyze many
other quantities such as the average number of exchanges X, ;, the number of
calls to the partition procedure—which is not actually the same as the number of
passes—etc. For instance, in the paper [1], the authors make the assumption that
each partitioning phase costs n — 3 comparisons, as opposed to the assumption of
n — 1 comparisons to partition a file of size n. The idea behind their approach is
that the comparisons between the pivot and the other two elements in the sample
during the partitioning can be avoided since they were already compared when
selecting the pivot. In this instance, the result, very similar to the one given in

154 KIRSCHENHOFER, MARTINEZ, AND PRODINGER

Theorem 3.1, is

¢ 24H 2, 12 12 12 921 36
j=2n+—H,~ = +—t————F— + —
"T35 3507 35 et 35 Y sty T T
3(j-1)F 192j 12(j-1)° 4(2j-3)(j-1)
+3j - - - o~ 3
n 35n 35n= 35n2
6(j=2(j—1° 6(2j=5(j-1" 4(j-3)(-1)’
- 4 5 - 6 > (15)
35n* 35n2 35n°

which holds for j>5and n+1—j = 5.

Neither the previous work of Anderson and Brown [1] nor this work consider the
total number of comparisons, since the comparisons made to select the pivots were
not counted. Of course, the exact average number of comparisons 7, ; can be
computed using the methods presented in this paper, but it is approximately

8
Tn,jNEXPn,j+Cn,]’

since we need 8/3 comparisons on the average to select the median of three
elements. Hence, for 5 <j <n —4,

136 108 108
T 2n+¥Hn_¥[_]j_¥Hn+lfj+ﬁ(l)'

If we assume n — 3 comparisons to partition a file of size n, instead of n — 1, the
same estimation results.

An interesting question that we consider now is the performance of the
algorithm when looking for the median j=|(n+1)/2| and when selecting an
element at random, i.e., j takes any value between 1 and n with identical
probability 1/n. We compare then these performances with the corresponding
ones for the basic algorithm, that is, when the pivot is randomly chosen. Let us
recall that the average number of passes for the basic algorithm [9] is

P, ;=H+H, ,_—1, (16)

while the average number of comparisons is
C,;=2(n+3+(n+1)H,~(j+2)H,—(n+3-j)H,,, ;). (17)

If we specialize formula (11) for n =2N + 1 and j =N + 1, then

N
12 12 24 4469 (1)

24 36 4469 1
P2N+1,N+1 = §H2N+1 + gHNJrl - m + ()

= S log N+ —y+ S log2 - oo+ 0| .
7 % YT 35 °8° T 2800 N

HOARE’S FIND ALGORITHM 155

On the other hand, the average number of passes to find the median in the
classical case is

Pyyiini1=2Hy, —1~2log N+2y—1 +@’(%)
Comparing the leading coefficients, 2 and 2 = X, we see that the savings by the
refined method are 14.3%.
By taking n =2N + 1 and j = N + 1 in Egs. (14) and (17), we obtain the average
number of comparisons made to search for the median, in the case of the
Median-of-three and the basic algorithm, respectively. The formulae read this time

11 14893 72 312 1
C2N+1,N+1 = 7N+ 2800 + §H2N+1 - gHN+1 +@’(ﬁ)
11 N 48 log N 48 14893 72 log? + & 1
=—N-—— ——9y+ + = +
2 7 O8N T YT 800 T35 08 (N

and
C2N+1,N+1 =4(N+2+ (N+ 1)H2N+1 - (N+3)HN+1)

1
=4(1+10g2)N—8log N—-8(y—1) +4log2+@’(ﬁ).

The leading coefficients (of the order N), if we search for the median, are this time
L =5.5 and 4(1 + log?2) = 6.772588722, so that the savings are roughly 19%. To be
fair, the total number of comparisons 7,y y;; should have been used rather
than C, | v, to compute these savings, but it actually does not matter since the
main term in both quantities is 4 N.

The average number of passes and comparisons to find an element of random
rank out of n elements are given by

1

_ZP

S

-) C,
h 1<j<n
Comparing the values of .2, for the classical and the Median-of-three algorithms,
we find that they are 2H, + @(1) and £H, + @(1), respectively, and hence the
average savings are 14.3%. On the other hand, &, =3n—8H, + #(1) for the
standard algorithm and &, =3n — ¥H, + @(1) for the variant, showmg that an
average of 16.6% of the comparisons are saved when using the median-of-three.'

ACKNOWLEDGMENTS

We thank Friedrich Hubalek for valuable discussions. The computer algebra
system MAPLE was heavily used in the preparation of this work.

'As in the example, where we considered the number of comparisons to find the median, the main term
in %, does not change if we use 7, ; instead of C, ; to compute this “grand” average.

156 KIRSCHENHOFER, MARTINEZ, AND PRODINGER

REFERENCES

[1] D. H. Anderson and R. Brown, Combinatorial aspects of C. A. R. Hoare’s Find
algorithm, Australasian J. Combinat., 5, 109-119 (1992).

[2] M. Blum, R. W. Floyd, V. R. Pratt, R. Rivest, and R. Tarjan, Time bounds for selection,
J. Comput. Syst. Sci., 7, 448—461 (1973).

[3] L. Devroye, Exponential bounds for the running time of a selection algorithm, J.
Comput. Syst. Sci., 29, 1-7 (1984).

[4] G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures—In
Pascal and C, 2nd ed., Addison-Wesley, Reading, MA, 1991.

[5] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley,
Reading, MA, 1989.

[6] C. A. R. Hoare, Find (Algorithm 65), Commun. ACM, 4, 321-322 (1961).
[7]1 C. A. R. Hoare, Quicksort, Comput. J., 5, 10-15 (1962).

[8] E. Kamke, Differentialgleichungen: Losungsmethoden und Losungen, Teubner, Stuttgart,
1977.

[9] D. E. Knuth, Mathematical analysis of algorithms, in Information Processing 71, Proc.
of the 1971 IFIP Congress, North-Holland, Amsterdam, 1972, pp. 19-27.

[10] D. E. Knuth, The Art of Computer Programming: Sorting and Searching, Addison-Wesley,
Reading, MA, 1973, Vol. 3.

[11] H. M. Mahmoud, R. M. Modarres, and R. T. Smythe, Analysis of one-sided quicksort:
an algorithm for order statistics, RAIRO Theor. Inf. Appl., 29, 255-276 (1995).

[12] R. Sedgewick, Quicksort, Garland, New York, 1978.

[13] M. H. van Emden, Increasing the efficiency of Quicksort, Commun. ACM, 13, 563-567
(1970).

