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What is this course about?

Analytic Combinatorics seeks to develop mathematical techniques
that help us to count combinatorial structures with given properties.

This is a shared goal with Combinatorics at large; results in this
particular sub�eld have proved immensely useful and fruitful in
many applications, e. g., Analysis of Algorithms, Analytic Number
Theory, Enumerative Combinatorics, . . .



What is this course about?

The key concept is that of generating function: Analytic
Combinatorics exploits GFs both as formal power series (algebra,
combinatorics) and as analytic functions on the complex plane
(analysis).



Outline of the course

Part I: Combinatorial methods

Part II: Complex analysis techniques

Part III: Applications



Outline of the course

Part I: Combinatorial methods + Applications

Part II: Complex analysis techniques + Applications



What is this course about?

It's probably better to understand what is this course about by
looking at a few problems that we can tackle using AC . . .



Some examples: Example #1

A derangement is a permutation without �xed points, that is,
� is a derangement i� �(i) 6= i for all i

To randomly generate a derangement, generate a random
permutation and check if it is a derangement; if not, discard
and repeat (rejection method)

Can we generate derangements uniformly at random better?
How?

What's the average number of times we have to produce a
random permutation before we get a derangement?

How many derangements of size n there are?



Some examples: Example #2

Ensure: n > 0
procedure Maximum(A, n)

max A[1]
for i 2 to n do

if A[i] > max then

max A[i]
end if

end for

return max
end procedure

How many times do we update max? The worst- and best-case
scenarios are easy, but what happens on average?



Some examples: Example #3

Modern hardware executes instructions in a pipeline fashion; in
order to avoid getting stalled at conditional jumps, it tries to
guess the most likely outcome of the condition

But if the prediction is wrong (branch misprediction), it is
costly to roll back

Simple predictors can be modellized using �nite automata



Some examples: Example #3

For example, in 1-bit prediction we have two states:

Astart B

0

1

1

0

In state A, we predict branch will be taken; if it is actually

taken we remain there, if not we �pay� a branch misprediction

and move to state B

In state B we predict not taken; if not taken we remain there,

else we �pay� and change to state A



Some examples: Example #3

Given a sequence of bits (0 = taken, 1 = not taken) of length
n with exactly t 0's, what's the probability of exactly r
mispredictions? What's the average number of mispredictions?



Some examples: Example #4

Mathematical expressions such as x+
p
x2 + w2 can be

conveniently represented by trees

+

x
p

+

"

x 2

"

w 2



Some examples: Example #4

What is the complexity of performing several symbolic
manipulations on them, say, derivatives?

Many symbolic operations are easy to analyze as they involve
traversal of the tree, with simple computations at each node
=) �(n) cost

Many interesting computations do not traverse all the tree,
and the computation to be done at each node depends on the
size of the subtree beneath



Some examples: Example #5

The expected cost of partial match in relaxed K-d trees (a data
structure to store K-dimensional points) satis�es the following
recurrence

Pn = 1 +
s

K

2

n

X
0�k<n

k

n
Pk +

�
1� s

K

�
2

n

X
0�k<K

Pk;

where 0 < s < K.
The goal is to �nd an asymptotic estimate of Pn. An elementary
proof yields Pn = O(n), but more precise information would be
needed.



What is this course about?

There are many excellent papers, surveys, books, etc. on the
subject. However, the most authoritative work is the recent
Analytic Combinatorics by Philippe Flajolet and Robert Sedgewick,
two researchers who have made fundamental contributions to the
�eld and have actually �shaped� it.

P. Flajolet, R. Sedgewick: Analytic Combinatorics. Cambridge
Univ. Press, 2008. It is freely downloadable from
http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html



Philippe Flajolet: In memoriam

Philippe Flajolet (December 1st, 1948�March, 22nd, 2011) and
Robert Sedgewick during the presentation of their book Analytic

Combinatorics on the occasion of Flajolet's 60th Anniversary in
Paris, December 2008



Combinatorial Methods



Two basic counting principles

Let A and B be two �nite sets.

The Addition Principle

If A and B are disjoint then

jA [ Bj = jAj+ jBj

The Multiplication Principle

jA � Bj = jAj � jBj



Combinatorial classes

De�nition

A combinatorial class is a pair (A; j � j), where A is a �nite or
denumerable set of values (combinatorial objects, combinatorial
structures), j � j : A ! N is the size function and for all n � 0

An = fx 2 A j jxj = ng is �nite



Combinatorial classes

Example

A = all �nite strings from a binary alphabet;
jsj = the length of string s

B = the set of all permutations;
j�j = the order of the permutation �

Cn = the partitions of the integer n; jpj = n if p 2 Cn



Labelled and unlabelled classes

In unlabelled classes, objects are made up of indistinguisable
atoms; an atom is an object of size 1

In labelled classes, objects are made up of distinguishable
atoms; in an object of size n, each of its n atoms bears a
distinct label from f1; : : : ; ng



Counting generating functions

De�nition

Let an = #An = the number of objects of size n in A. Then the
formal power series

A(z) =
X
n�0

anz
n =

X
�2A

zj�j

is the (ordinary) generating function of the class A.
The coe�cient of zn in A(z) is denoted [zn]A(z):

[zn]A(z) = [zn]
X
n�0

anz
n = an



Counting generating functions

Ordinary generating functions (OGFs) are mostly used to
enumerate unlabelled classes.

Example

L = fw 2 (0 + 1)� jw does not contain two consecutive 0'sg
= f�; 0; 1; 01; 10; 11; 010; 011; 101; 110; 111; : : :g

L(z) = zj�j + zj0j + zj1j + zj01j + zj10j + zj11j + � � �
= 1 + 2z + 3z2 + 5z3 + 8z4 + � � �

Exercise: Can you guess the value of Ln = [zn]L(z)?



Counting generating functions

De�nition

Let an = #An = the number of objects of size n in A. Then the
formal power series

Â(z) =
X
n�0

an
zn

n!
=
X
�2A

zj�j

j�j!

is the exponential generating function of the class A.



Counting generating functions

Exponential generating functions (EGFs) are used to enumerate
labelled classes.

Example

C = circular permutations

= f�; 1; 12; 123; 132; 1234; 1243; 1324; 1342;
1423; 1432; 12345; : : :g

Ĉ(z) =
1

0!
+
z

1!
+
z2

2!
+ 2

z3

3!
+ 6

z4

4!
+ � � �

cn = n! � [zn]Ĉ(z) = (n� 1)!; n > 0



Disjoint union

Let C = A+ B, the disjoint union of the unlabelled classes A and
B (A \ B = ;). Then

C(z) = A(z) +B(z)

And
cn = [zn]C(z) = [zn]A(z) + [zn]B(z) = an + bn



Cartesian product

Let C = A� B, the Cartesian product of the unlabelled classes A
and B. The size of (�; �) 2 C, where a 2 A and � 2 B, is the sum
of sizes: j(�; �)j = j�j+ j�j.
Then

C(z) = A(z) �B(z)

Proof.

C(z) =
X

2C

zj
j =
X

(�;�)2A�B
zj�j+j�j =

X
�2A

X
�2B

zj�j � zj�j

=

0
@X
�2A

zj�j
1
A �

0
@X
�2B

zj�j
1
A = A(z) �B(z)



Cartesian product

The nth coe�cient of the OGF for a Cartesian product is the
convolution of the coe�cients fang and fbng:

cn = [zn]C(z) = [zn]A(z) �B(z)

=
nX

k=0

ak bn�k



Sequences

Let A be a class without any empty object (A0 = ;). The class
C = Seq(A) denotes the class of sequences of A's.

C = f(�1; : : : ; �k) j k � 0; �i 2 Ag
= f�g+A+ (A�A) + (A�A�A) + � � � = f�g+A� C

Then

C(z) =
1

1� A(z)

Proof.

C(z) = 1 + A(z) + A2(z) + A3(z) + � � � = 1 + A(z) � C(z)



Bitstrings

Example

Let A = f0; 1g. Then C = Seq(A) = f�; 0; 1; 00; 01; 10; 11; : : :g is
the class of the sequences (strings) of bits.

A(z) = 2z =) C(z) =
1

1� 2z
= 1 + 2z + (2z)2 + (2z)3 + : : :

[zn]C(z) = 2n



Rooted ordered trees

Example

A general tree consists of a root to which we attach a sequence of
general trees.

G = f ; ; ; ; ; ; ; : : :g
G = Z � Seq(G); Z � f g

G(z) = z
1

1�G(z) =
(

1�p1�4z
2 ; z 6= 0;

0; z = 0:



Binary trees

Example

B = binary trees

B = f�g+ f�g � B � B

B(z) = 1 + zB2(z) =

(
1�p1�4z

2z ; z 6= 0;

1; z = 0:

zB(z) = G(z)  Z � B is isomorphic to G



Example: Formal languages

Example

L = fw 2 (0 + 1)� jw does not contain two consecutive 0'sg
= Seq(f1g+ f01g)� (f�g+ f0g)

L(z) =
1

1� (z + z2)
(1 + z) =

1 + z

1� z � z2



Example: Formal languages

Example

L(z) =
1 + z

1� z � z2
=

1p
5

�
��22

1

1� z=�1 + �21
1

1� z=�2

�
;

[zn]L(z) = � 1p
5
�22�

�n
1 +

1p
5
�21�

�n
2 � 1p

5

 
1 +
p
5

2

!n+2

� 1:17 � 1:618n

�1 =
�
p
5� 1

2
; �2 =

p
5� 1

2



Labelled objects

Disjoint unions of labelled classes are de�ned as for unlabelled
classes and Ĉ(z) = Â(z) + B̂(z), for C = A+ B. Also,
cn = an + bn.

To de�ne labelled products, we must take into account that for
each pair (�; �) where j�j = k and j�j+ j�j = n, we construct

�n
k

�
distinct pairs by consistently relabelling the atoms of � and �:

� = (2; 1; 4; 3); � = (1; 3; 2)

�� � = f(2; 1; 4; 3; 5; 7; 6); (2; 1; 5; 3; 4; 7; 6); : : : ;
(5; 4; 7; 6; 1; 3; 2)g

#(�� �) =
 
7

4

!
= 35

The size of an element in �� � is j�j+ j�j.



Labelled products

For a class C that is labelled product of two labelled classes A and
B

C = A� B =
[
�2A
�2B

�� �

the following relation holds for the corresponding EGFs

Ĉ(z) =
X

2C

zj
j

j
j! =
X
�2A

X
�2B

 
j�j+ j�j
j�j

!
zj�j+j�j

(j�j+ j�j)!

=
X
�2A

X
�2B

1

j�j!j�j!z
j�j+j�j =

0
@X
�2A

zj�j

j�j!

1
A �

0
@X
�2B

zj�j

j�j!

1
A

= Â(z) � B̂(z)



Labelled products

The nth coe�cient of Ĉ(z) = Â(z) � B̂(z) is also a convolution

cn = [zn]Ĉ(z) =
nX

k=0

 
n

k

!
ak bn�k



Marking (pointing)

Given a class A, the class C = �A is the class that we obtain by
marking an atom in each object, in all possible ways:

A = f01; 10; 11; 010; 011; 101; : : :g
�A = f01; 01; 10; 10; 11; 11; 010; 010; 010; : : :g

Marking works for both labelled and unlabelled objects. Since the
class �A has nan objects of size n (an = #An), we have

C(z) = z
d

dz
A(z);

Ĉ(z) = z
d

dz
Â(z)

We overload � to denote the operator z d
dz too



Sequences

Sequences of labelled objects are de�ned as in the case of unlabelled
objects. The construction C = Seq(A) is well de�ned if A0 = ;.
If C = Seq(A) = f�g+A� C then

Ĉ(z) =
1

1� Â(z)

Example

Permutations are labelled sequences of atoms, P = Seq(Z). Hence,

P̂ (z) =
1

1� z =
X
n�0

zn

n! � [zn]P̂ (z) = n!



Sets

Given a labelled class A with no object of size 0, C = Set(A) is the
class of all �nite subsets whose elements are objects from A:

C = ff�1; : : : ; �kg j k � 0; �i 2 Ag

Since the objects must be labelled, the labels f1; : : : ; ng are
distributed among the components of a set 
 = f�1; : : : ; �kg 2 C
of size n = j�1j+ � � �+ j�kj and the atoms of each �i are
consistenly relabelled.

Despite we may have �i = �j for some i 6= j, after assigning labels
to �i and �j , they will be distinct (they'll have the same �shape�
but not the same labels)



Sets

Let C = Set(A). If we mark one of the atoms of one of the
components of a set in C, we tell this component apart and the
remaining components form a set. Since the marked component
belongs to �A

�C = �A� C
Solving the corresponding di�erential equation with Ĉ(0) = 1, we
have

Ĉ(z) = exp(Â(z))



Sets

Alternatively, let � denote the equivalence relation between two
sequences (�1; : : : ; �k) � (�01; : : : ; �0k) if and only if one is a
permutation of the other.
Then

C = f;g+ (A=�) + (A2=�) + (A3=�) + � � �+ (Ak=�) + � � �

and

Ĉ(z) = 1+Â(z)+
Â2(z)

2!
+
Â3(z)

3!
+ � � �+ Âk(z)

k!
+ � � � = exp(Â(z))



Example: The number of derangements

A derangement � is a permutation without �xed points, i. e.,
�(i) 6= i. Therefore, if D is the class of all derangements

P = D � Set(Z)

(a permutation = a derangement � a set of �xed points)

P̂ (z) =
1

1� z = D̂(z) � exp(z)

D̂(z) =
e�z

1� z =
X
`�0

(�1)`z`
`!

X
m�0

zm =
X
n�0

zn
 

nX
k=0

(�1)k
k!

!

n! � [zn]D̂(z) = n!
nX

k=0

(�1)k
k!

= n!

�
1

0!
� 1

1!
+

1

2
� 1!

3!
+

1

4!
� 1

5!
+ � � �

�

� n!

e



Example: The number of derangements

The probability that a random permutation is a derangement
quickly tends to � 1

e = 0:3678 : : :
If we want to generate random derangements of size n with the
rejection method, the number of iterations follows a geometric
distribution of parameter p = Dn=n! � e�1.
The expected number of iterations to produce a derangement is
� e = 2:71828 : : :

E[# of iterations] =
X
k>0

kp(1� p)k�1 = p
d

dx

X
k>0

xk

������
x=1�p

= p
d

dx

�
1

1� x � 1

�
x=1�p

=
1

p



Cycles

Given a labelled class A with no object of size 0, C = Cycle(A) is
the class of all non-empty cycles whose elements are objects from
A:

C = fh�1; : : : ; �ki j k > 0; �i 2 Ag
Here h�1; : : : ; �ki denotes a cycle of length k and size
j�1j+ � � �+ j�kj

α

α

α

α

k

1

2

3

k−1
α



Cycles

Let C = Cycle(A). If we mark one of the atoms of one of the
components of a cycle in C, we tell this component apart and the
remaining components form a sequence�we break the
ring/necklace at that point. Since the marked component belongs
to �A

�C = �A� Seq(A)
Solving the corresponding di�erential equation with Ĉ(0) = 0, we
have

Ĉ(z) = ln

 
1

1� Â(z)

!



Cycles

Alternatively, let � denote the equivalence relation between two
sequences (�1; : : : ; �k) � (�01; : : : ; �0k) if and only if one is a cyclic
permutation of the other, that is, �1 = �0i, �2 = �0i+1, . . . ,
�k�i+1 = �0k, �k�i+2 = �01, . . . Then

C = (A=�) + (A2=�) + (A3=�) + � � �+ (Ak=�) + � � �
and

Ĉ(z) = Â(z)+
Â2(z)

2
+
Â3(z)

3
+� � �+ Â

k(z)

k
+� � � = ln

 
1

1� Â(z)

!

Remark

Z
dz

X
n�0

zn =
X
n�0

zn+1

n+ 1
=
X
n>0

zn

nZ
dz

1� z = ln

�
1

1� z
�
+ �



Examples

A permutation is a set of cycles. For example, the permutation

� =

 
1 2 3 4 5 6 7 8
3 7 4 1 5 2 8 6

!

can be (uniquely) represented by the set of cycles
fh1; 3; 4i; h2; 7; 8; 6i; h5ig.
Thus

P = Set(Cycle(Z)) =) P̂ (z) = exp

�
ln

�
1

1� z
��

=
1

1� z



Restricted cardinalities

Restrictions in the cardinalities (number of components) of
sequences, sets and cycles are easy to deal with.
For example, the generating function for sequences of A's with at
least m components (C = Seq(A; card � m) is

Ĉ(z) = Âm(z) + Âm+1(z) + � � � = Âm(z)

1� Â(z)

Example

An involution is a permutation � such that �2 = Id. Such a
permutation is a set of cycles, each with only one or two elements.

I = Set(Cycle(Z; card � 2)

Hence,

Î(z) = exp

 
z +

z2

2

!



Set partitions

The nth Bell number Bn is the number of partitions of a set of size
n (with no empty parts). For instance, some of the B4 = 15
partitions of the set f1; : : : ; 4g are
ff1g; f2; 3; 4gg; ff2g; f1; 3; 4gg; ff1; 3g; f2; 4gg; : : :
Thus, a partition is a set of non-empty sets of atoms. The class of
set partitions can be speci�ed as

S = Set(Set(Z; card > 0))

Hence the EGF for S is

Ŝ(z) = exp(exp(z)� 1) =
X
n�0

Bn
zn

n!



Lagrange Inversion

Theorem

Let y(z) a GF such that

y(z) = z�(y(z))

for some analytic function �(w) with �(0) 6= 0.
Then

[zn]y(z) =
1

n
[wn�1]�(w)n



Lagrange-Bürmann Formula

Theorem

Let y(z) a GF such that

y(z) = z�(y(z))

for some analytic function �(w) with �(0) 6= 0.
Then, if g(w) is an arbitrary analytic function,

[zn]g(y(z)) =
1

n
[un�1](g0(u)�(u)n)



Example: Cayley trees

A Cayley tree is a labelled rooted tree; it is either a single root
node, or a root with a set of subtrees attached to it.

T = Z � Set(T )
T̂ (z) = z exp(T̂ (z))

Using Lagrange's inversion formula with �(w) = ew

[zn]T̂ (z) =
1

n!
nn�1 enuju=0 =

nn�1

n!

T̂ (z) =
X
n>0

nn�1
zn

n!



Examples

Given a function f : [1::n]! [1::n], its functional graph has n
nodes and there is an arc (i; j) whenever f(i) = j. Such a graph
consists in a collection of (weakly) connected components, each
one a directed cycle of directed trees.

6

9

7

3

2

1

8

4

5

10

i 1 2 3 4 5 6 7 8 9 10

f(i) 2 3 4 2 4 7 2 4 7 4



Example: Functional graphs

The class F of functional graphs is hence

F = Set(C)
C = Cycle(T )
T = Z � Set(T )

The EGF is

F̂ (z) = exp

 
ln

1

1� T̂ (z)

!

=
1

1� T̂ (z)

Exercise: Functional graphs are isomorphic to sequences of Cayley
trees. Why? Find a bijection.



Unlabelled sets and cycles

Since atoms in unlabelled objects are indistinguishable, we consider
two di�erent combinatorial constructs: multisets and powersets.
The class C = MSet(A) is the set of multisets of objects from A.
A multiset 
 = f�1; : : : ; �kg may contain several repetitions of
some object in A, say �1 = �2 = �3.
Thus

C = MSet(A) =
Y
�2A

Seq(f�g);

that is, a �nite object in C is a tuple where each � 2 A may appear
any number of times (including zero), but only a �nite number of
�'s appear one or more times.
From there

C(z) =
Y
�2A

1

1� zj�j



Unlabelled sets and cycles

Taking logarithms and interchanging summations

lnC(z) =
X
�2A

ln
1

1� zj�j

=
X
�2A

X
k>0

(zj�j)k

k

=
X
k>0

1

k

X
�2A

(zk)j�j

=
X
k>0

A(zk)

k

Hence

C(z) = exp

0
@X
k>0

A(zk)

k

1
A



Unlabelled sets and cycles

Example

Integer partitions

I = Seq(Z; card � 1); Positive integers;

P = MSet(I); Integer partitions;

I(z) =
z

1� z ;

P (z) =
Y
j>0

1

1� zj = exp

0
@X
k>0

1

k

zk

1� zk

1
A

= 1 + z + 2z2 + 3z3 + 5z4 + 7z5 + : : :



Unlabelled sets and cycles

The construction C = PSet(A) gives the class of sets of objects in
A, that is, with no repetitions.
We have

C =
Y
�2A

(f�g+ f�g)

using a reasoning analogous to that before, but now each � 2 A
either appears (once) or does not in a given set in C.
The OGF is then

C(z) =
Y
�2A

(1 + zj�j) = exp

0
@X
k>0

(�1)kA(z
k)

k

1
A ;

where the last equalitiy can be proved using the exp� log trick.



Unlabelled sets and cycles

Unlabelled cycles (necklaces) are is one of the most complicated
combinatorial constructions to enumerate.
The OGF for C = Cycle(A) is

C(z) =
X
k>0

�(k)

k
ln

1

1� A(zk) ;

wher �(k) = #fi < n j gcd(i; n) = 1g is Euler's totient function.
The proof relies on Pólya's theory for the enumeration of
combinatorial structures that remain invariant under the symmetric
group of transformations.



Admissible combinatorial classes

A combinatorial operator � over combinatorial classes is called
admissible if C = �(A1; : : : ; Aj) implies that there exists some
operator 	 over OGF (or EGFs) such that
C(z) = 	(A1(z); : : : ; Aj(z)).
We have seen that disjoint unions, products, sequences, marking,
multisets, powersets, and cycles are all admissible.
A class is called admissible if it is an �-class (contains a single
object of size 0), or it is an atomic class (contains a single object of
size 1), or it can be �nitely speci�ed by application of admissible
operators on admissible classes.



A dictionary of admissible unlabelled operators

Class OGF Name

� 1 Epsilon
Z z Atomic
A+ B A(z) +B(z) Disjoint union
A� B A(z) �B(z) Product
Seq(A) 1

1�A(z) Sequence

�A �A(z) = zA0(z) Marking

MSet(A) exp
�P

k>0A(z
k)=k

�
Multiset

PSet(A) exp
�P

k>0(�1)kA(zk)=k
�

Powerset

Cycle(A) P
k>0

�(k)
k ln 1

1�A(zk) Cycle



A dictionary of admissible labelled operators

Class EGF Name

� 1 Epsilon
Z z Atomic

A+ B Â(z) + B̂(z) Disjoint union

A� B Â(z) � B̂(z) Product
Seq(A) 1

1�Â(z) Sequence

�A �Â(z) = zÂ0(z) Marking

Set(A) exp(Â(z)) Set

Cycle(A) ln
�

1
1�Â(z)

�
Cycle



Bivariate generating functions

We need often to study some characteristic of combinatorial
structures, e. g., the number of left-to-right maxima in a
permutation, the height of a rooted tree, the number of complex
components in a graph, etc.
Suppose X : An ! N is a characteristic under study. Let

an;k = #f� 2 A j j�j = n;X(�) = kg

We can view the restriction Xn : An ! N as a random variable.
Then under the usual uniform model

P[Xn = k] =
an;k
an



Bivariate generating functions

De�ne

A(z; u) =
X
n;k�0

an;kz
nuk

=
X
�2A

zj�juX(�)

Then an;k = [znuk]A(z; u) and

P[Xn = k] =
[znuk]A(z; u)

[zn]A(z; 1)



Bivariate generating functions

We can also de�ne

B(z; u) =
X
n;k�0

P[Xn = k] znuk

=
X
�2A

P[�] zj�juX(�)

and thus B(z; u) is a generating function whose coe�cient of zn is
the probability generating function of the r.v. Xn

B(z; u) =
X
n�0

Pn(u)z
n

Pn(u) = [zn]B(z; u) =
X
k�0

P[Xn = k]uk

=
X
�2An

P[�]uX(�)



Bivariate generating functions

Proposition

If P (u) is the probability generating function of a random variable

X then

P (1) = 1;

P 0(1) = E[X] ;

P 00(1) = E
h
X2
i
= E[X(X � 1)] ;

V[X] = P 00(1) + P 0(1)� (P 0(1))2



Bivariate generating functions

We can study the moments of Xn by successive di�erentiation of
B(z; u) (or A(z; u)). For instance,

B(z) =
X
n�0

E[Xn] z
n =

@B

@u

����
u=1

For the rth factorial moments of Xn

B(r)(z) =
X
n�0

E[Xn
r] zn =

@rB

@ur

����
u=1

Xn

r

= Xn(Xn � 1) � � � � � (Xn � r + 1)



The number of left-to-right maxima in a permutation

Consider the following speci�cation for permutations

P = f;g+ P � Z

The BGF for the probability that a random permutation of size n
has k left-to-right maxima is

M(z; u) =
X
�2P

zj�j

j�j!u
X(�);

where X(�) = # of left-to-right maxima in �



The number of left-to-right maxima in a permutation

With the recursive descomposition of permutations and since the
last element of a permutation of size n is a left-to-right maxima i�
its label is n

M(z; u) =
X
�2P

X
1�j�j�j+1

zj�j+1

(j�j+ 1)!
uX(�)+[[j=j�j+1]]

[[P ]] = 1 if P is true, [[P ]] = 0 otherwise.



The number of left-to-right maxima in a permutation

M(z; u) =
X
�2P

zj�j+1

(j�j+ 1)!
uX(�)

X
1�j�j�j+1

u[[j=j�j+1]]

=
X
�2P

zj�j+1

(j�j+ 1)!
uX(�)(j�j+ u)

Taking derivatives w.r.t. z

@

@z
M =

X
�2P

zj�j

j�j!u
X(�)(j�j+ u) = z

@

@z
M + uM

Hence,

(1� z) @
@z
M(z; u)� uM(z; u) = 0



The number of left-to-right maxima in a permutation

Solving, since M(0; u) = 1

M(z; u) =

�
1

1� z
�u

=
X
n;k�0

"
n

k

#
zn

n!
uk

where
�n
k

�
denote the (signless) Stirling numbers of the �rst kind,

also called Stirling cycle numbers.
Taking the derivative w.r.t. u and setting u = 1

m(z) =
@

@z
M(z; u)

����
u=1

=
1

1� z ln
1

1� z
Thus the average number of left-to-right maxima in a random
permutation of size n is

[zn]m(z) = E[Xn] = Hn = 1+
1

2
+
1

3
+� � �+ 1

n
= lnn+
+O(1=n)

1

1� z ln
1

1� z =
X
`

z`
X
m>0

zm

m
=
X
n�0

zn
nX

k=1

1

k



Analyzing branch mispredictions

In the analysis of the 1-bit prediction scheme for branch
mispredictions, we need to analyze how many times we will jump
from state A to state B and viceversa for a random bit string of
lenght n

Astart B

0

1

1

0



Analyzing branch mispredictions

Let An;k be the number of bitstrings of length n with k
mispredictions that end at state A (they end with a 1). Similarly,
Bn;k for bitstrings ending at state B (ending with a 0).
De�ne A(z; u) and B(z; u) the corresponding BGF with z marking
the size and u the number of mispredictions. Then

A = 1 + Az +Bzu;

B = Bz + Azu

Solving the linear system

A =
1� z

(1� z)2 � z2u2 ; B =
zu

(1� z)2 � z2u2 ;



Analyzing branch mispredictions

The BGF for all bitstrings is

C(z; u) = A(z; u) +B(z; u) =
1

1� z(1 + u)
=
X
n�0

(z(1 + u))n

=
X
n�0

zn
nX

k=0

 
n

k

!
uk

Hence, the number of bitstrings of length n that incur k branch
mispredictions is  

n

k

!

The PGF for the r.v.
Xn = # of branch mispredictions in a random bistring of lenght n
is

[zn]C(z; u)

2n
=

(1 + u)n

2n



Analyzing branch mispredictions

The average number number of branch mispredictions is

1

2n
[zn]

@

@u
C(z; u)

����
u=1

=
1

2n
[zn]

z

(1� z � zu)2
����
u=1

1

2n
[zn]

z

(1� 2z)2
=

1

2n
[zn]

1

2
�

1

1� 2z
=
n

2

Other moments can be computed easily as well. Notice that Xn

has binomial distribution with parameters n and p = 1=2.



Complex Analysis Techniques



Why complex analysis?

We now look to GFs as functions in the complex plane. The
behavior of a GF in the complex plane gives valuous information
about its coe�cients (which are the quantities we actually are
interested in). For many counting GFs we have

[zn]F (z) = Rn (n)

where lim supn!1 j (n)j1=n = 1 and R > 0.

First principle: The exponential growth Rn of the coe�cients is
determined by the location of the singularities of F (z)

Second principle: The subexponential factor  (n) is dictated by
the �nature� (local behavior) of F (z) around the
singularities



Example

Recall that the OGF for the language of all words without two
consecutive 0's was

L(z) =
1 + z

1� z � z2
A plot of jL(z)j

The two peaks (singularities) occur at the roots of the denominator

z = �2 =
p
5�1
2 and z = �1 = �1=�2



Example

The exponential growth is dictated by the �singularity� of smallest
modulus z = �2

[zn]L(z) ./ ��n2

an ./ K
n

means an � (K � �)n in�nitely often and an � (K + �)n almost everywhere, for all � > 0



Example: Surjections

A surjection is a function f from A to B such that for all b 2 B
there exists at least one a such that f(a) = b.

A surjection from [1::n] to [1::r] with r � n can be put into
one-to-one correspondence with a sequence (actually an r-tuple) of
non-empty sets; we have a set for the antiimages of every element
in [1::r]. The �size� of such a surjection is n.

S = Seq(Set(Z; card � 1))

Ŝ(z) =
1

1� (ez � 1)
=

1

2� ez



Example: Surjections

The EGF

Ŝ(z) =
1

2� ez
has in�nitely many singularities at z = ln 2 + 2�ik, k 2 Z.

The one of smallest modulus is z = ln 2 and

[zn]Ŝ(z) ./

�
1

ln 2

�n

Thus, the number Sn of surjections from [1::n] onto another set is
n!(ln 2)�n (n), for some subexponential function  (n)



Analiticity

De�nition

A function f : C! C de�ned in some region 
 is analytic at z0 i�
there exists an open disc D � 
 centered at z0 such that f(z) is
representable by a convergent series for all z 2 D, i. e.,

f(z) =
X
n�0

fn(z � z0)n; z 2 D

By a region we mean an open connected subset of C



Analiticity

Proposition

A function f : C! C de�ned in some region 
 is analytic at z0 i�

f is di�erentiable at z0

Fact

If f is analytic at z0 then it is in�nitely di�erentiable at z0;
furthermore, for z in a small neighborhood of z0

f(z) =
X
n�0

f (n)(z0)

n!
(z � z0)n

Fact

If f and g are analytic at z0 then f + g, f � g, and df
dz are analytic

at z0; furthermore, if f is analytic at g(z0) then f � g is analytic at
z = z0 too



Analiticity and combinatorial structures

The counting GF (OGF or EGF) of admissible combinatorial classes
are analytic at z = 0

This can be proved by structural induction. It is easy for disjoint
unions, products, sequences, labelled sets and cycles, and more
involved for unlabelled multisets, powersets and cycles.



Analiticity

De�nition

A function f is analytic in a region 
 i� it is analytic for all z 2 


Analytic continuation

If f is analytic in 
, then there is at most an analytic function in

0 � 
 equal to f in 


Example

The function f(z) = 1=(1� z) is analytic in C n f1g; even though
the representation X

n�0
zn

only holds in the open disc jzj < 1, the function f(z) can be
�continued� everywhere except for z = 1.



Singularities

De�nition

A function f has a singularity at z0 if it is not analytic at z0

Example

Function Singularities Why?

Polynomial ;
exp(z) ;
1

1�z f1g f(z) in�nite
1�p1�4z

2 f1=4g f 0(z) in�nite
1=z f0g f(z) in�nite



Meromorphic functions and poles

De�nition

The point z = � is a pole (or polar singularity) of f(z) if there
exists M > 0 such that (1� z=�)m � f(z) is analytic at z = �.
The pole is said to be of order M if M is the least positive
such integer.

If f(z) has a pole of order M at z = � then

f(z) =
X

n��M
fn(z � �)n

The residue of f(z) at z = � is the coe�cient f�1; we denote
it Res(f; �)

A function f(z) is meromorphic in a region 
 if the only
singularities of f(z) in 
 are polar.



Meromorphic functions and poles

Example

The OGF for binary strings 1=(1� 2z) is meromorphic with a
pole of order 1 at z = 1=2

The EGF for derangements e�z=(1� z) is meromorphic with a
pole of order 1 at z = 1

The OGF for the language of bitstrings without two
consecutive 0's is meromorphic with poles of order one at
z = �2 = (

p
5� 1)=2 and z = �1=�2



Dominant singularities

We know that an analytic function f(z) at z = 0 can be
represented by a convergent power series

f(z) =
X
n�0

fnz
n

in some open disc D = fz 2 C j jzj < Rg for some R > 0 or
R = +1.
The radius of the largest such disc is called the radius of
convergence of f(z).



Dominant singularities

Theorem

If f(z) is analytic at z = 0 and has a �nite radius of convergence R
then f(z) has at least a singularity at jzj = R, and it is analytic in

the region fz j jzj < Rg.

This theorem is easily proved by reductio ad absurdum and using
Cauchy's coe�cient formula (we'll see that later).



Dominant singularities

Theorem (Pringsheim's Theorem)

If f(z) is representable at the origin by a convergent power series

with non-negative coe�cients and radius of convergence R then

z = R is a singularity of f(z).

Pringsheim's Theorem is very useful since combinatorial GFs have
non-negative coe�cients; therefore we can focus the search for
singularities in the real axis.



Dominant singularities

De�nition

A singularity in the boundary of the disc of convergence of the seriesX
n�0

fnz
n

is called a dominant singularity

Theorem

If f(z) is analytic at z = 0 and the radius of convergence R of the

power series representation

f(z) =
X
n�0

fnz
n

is �nite then

fn ./ R
�n



Dominant singularities

Sketch of the proof

The theorem formalizes our previous observations. By de�nition of
radius of convergence fn(R� �)n must tend to 0 for any small
� > 0 �otherwise the series wouldn't converge in z = R� � and it
does. In particular, fn(R� �)n < 1 for all n large enough, that is

fn � (R� �)�n

almost everywhere.
The other bound follows from the fact that fn(R+ �)n cannot be
bounded; otherwise, fn(R+ �=2)n would be convergent. Thus
fn(R+ �)n > 1 in�nitely often.



�Chasing� dominant singularities

The following rules of thumb help us locate dominant singularities

Function Dominant singularity �(f)

exp(f) �(f)
polynomial ;
1=(1� f) min(�(z); fz j f(z) = 1g
log(1=(1� f)) min(�(z); fz j f(z) = 1g)
f � g, f + g min(�(f);�(g))
f=g min(�(f);�(g); fz j g(z) = 0g)
f��; � 2 R+ min(�(f); fz j f(z) = 0g)



Dominant singularities

Sometimes there are several dominant singularities (there might
even be an in�nite number!) =) periodic �uctuations,
cancellations of the main exponential growth, irregular oscillating
behaviors . . .

Example

A(z) =
X
n�0

(�1)nz2n = 1� z2 + z4 � z6 + z8 : : :

B(z) =
X
n�0

z3n = 1 + z3 + z6 + : : :

[zn]A(z) +B(z) =

(
0 if 2 6 jn and 3 6 jn, or n = 6m, m odd

6= 0 otherwise

A(z) +B(z) has dominant singularities at z = �i and the cubic

roots of unity z = 1,z = e
2�i
3 , z = e

4�i
3 ; all of modulus 1.



Inverse functions

In many instances, we do not have explicit forms for GFs, but only
functional equations they satisfy, e. g., the tree function
T̂ (z) = zeT̂ (z) that counts Cayley trees.
Given a function � analytic at y0 and z0 = �(y0), what is the
behavior of its inverse, that is, the solution y(z) of the equation
z = �(y(z))?

Lemma (Analytic Inversion)

Let � analytic at y0 and z0 = �(y0). Assume �0(y0) 6= 0. Then

there exists a function y(z) which is analytic in a small

neighborhood of z0 such that �(y(z)) = z and y(z0) = y0.



Analytic Inversion

Solutions to systems of equations stemming from admissible
combinatorial speci�cations are analytic in a neighborhood of the
origin.

Theorem (Implicit Function Theorem)

The system of n equations

~y(z) = ~�(z; ~y(z))

admits an analytic solution at z0 if

1 ~�(z; ~y) is analytic (in n+ 1 variables) at (z0; ~y0) with
~y0 = ~y(z0).

2 ~�(z0; ~y0) = ~y0 and det(I � @~�
@~y ) 6= 0 at (z0; ~y0)



Analytic Inversion

Example

T̂ (z) = zeT̂ (z)

Here, y(z) � T̂ (z) and �(z; y) = zey. take z0 = 0. The conditions
of the theorem hold, in particular, 1� zey 6= 0 at z = 0. Actually,
the only singularity occurs when 1� zey = 1� y = 0, that is,
y = 1, hence z = e�1 and

Tn = # of Cayle trees of size n

./ n!en



Complex integration

Theorem

If f(z) is analytic in 
 and 
 is a simple closed path in 
 thenZ


f(z) dz = 0

Furthermore for any two homotopic paths 
1 and 
2 (we can

continuously deformate one into the other inside 
) thenZ

1
f(z) dz =

Z

2
f(z) dz

γ

Ω



Residue Theorem

Theorem

If f is meromorphic in 
 and 
 is a simple closed path that

encircles clockwise and only once the poles �1, . . . , �k of f(z) thenZ


f(z) dz = 2�i

X
j

Res(f ;�j)

Sketch of the proof

γ

Ω



Residue Theorem

Theorem

If f is meromorphic in 
 and 
 is a simple closed path that

encircles clockwise and only once the poles �1, . . . , �k of f(z) thenZ


f(z) dz = 2�i

X
j

Res(f ;�j)

Sketch of the proof

Ω

γ1

γ2

γ3



Residue Theorem

Theorem

If f is meromorphic in 
 and 
 is a simple closed path that

encircles clockwise and only once the poles �1, . . . , �k of f(z) thenZ


f(z) dz = 2�i

X
j

Res(f ;�j)

Sketch of the proof

Ω

γ1

γ2

γ3



Residue Theorem

Sketch of the proof (cont'd)

Z


f(z) dz =

X
j

Z

j

f(z) dz =
X
j

Z

j

X
n�Mj

fn;j(z � �j)n dz

=
X
j

2
6664
X
n�Mj

n 6=�1

fn;j

Z

j

(z � �j)n dz + f�1;j
Z

j

dz

z � �j

3
7775

=
X
j

2
6664
X
n�Mj

n 6=�1

fn;j
(z � �j)n+1

n+ 1

�����

j

+ f�1;j
Z

j

dz

z � �j

3
7775



Residue Theorem

Sketch of the proof (cont'd)

Z


f(z) dz =

X
j

Z

j

f(z) dz =
X
j

Z

j

X
n�Mj

fn;j(z � �j)n dz

=
X
j

2
6664
X
n�Mj

n 6=�1

fn;j

Z

j

(z � �j)n + f�1;j
Z

j

dz

z � �j

3
7775

=
X
j

2
666666664
X
n�Mj

n 6=�1

fn;j
(z � �j)n+1

n+ 1

�����

j| {z }

=0

+f�1;j
Z

j

dz

z � �j

3
777777775



Residue Theorem

Sketch of the proof (cont'd)

Z


f(z) dz =

X
j

Z

j

f(z) dz =
X
j

Z

j

f�1;j
dz

z � �j

=
X
j

Res(f ;�j)

Z

j

dz

z � �j =
X
j

Res(f ;�j)

Z 2�

0
id�

= 2�i
X
j

Res(f ;�j)

We take each 
j a circle centered at �j of radius r small enough;
z = �j + rei�, dz = irei�d�



Cauchy's formula

Theorem

If f(z) is analytic in a region 
 enclosing the origin, then for any

simple closed curve inside 
 that encircles clockwise and only once

the origin

fn = [zn]f(z) =
1

2�i

I
f(z)

dz

zn+1

Proof.

f(z)=zn+1 is meromorphic in 
 with a pole of order n+ 1 at
z = 0

Res(f(z)=zn+1; z = 0) = fn

Apply Residue Theorem



Applying Cauchy's formula

The idea is to extend the contour of integration so that the integral
can be approximated by the behavior of the integrand very close to
the singularities and the rest ! 0

Singularities



Applying Cauchy's formula

The idea is to extend the contour of integration so that the integral
can be approximated by the behavior of the integrand very close to
the singularities and the rest ! 0



Applying Cauchy's formula

The idea is to extend the contour of integration so that the integral
can be approximated by the behavior of the integrand very close to
the singularities and the rest ! 0



Singularity Analysis

The plan:

1 Locate the dominant singularity�

2 Obtain a local expansion of f(z) near the singularity

3 Transfer the asymtotic estimate of f(z) to coe�cients

� We will consider here the case of a single dominant singularity
here. The techniques generalize to multiple dominant singularities.



Singularity Analysis

Example

The dominant singularity of T̂ (z) is at z = e�1

Near z = e�1,

T̂ (z) � 1�p2� 2ez +
2

3
(1� ez) +O((1� ez)3=2)

Preview: T̂ (z) behaves like
p
1� z near the singularity; this

transfers to a subexponential growth n�3=2

Tn = n![zn]T̂ (z) � n! � e
n

p
2�
n�3=2(1 +O(1=n))

Using n! � nne�np2�n, we get

Tn � nn�1

Not too bad :)



Transfer lemma

Lemma (Flajolet, Odlyzko)

Let z = 1 be the dominant singularity of f(z), with f(z) analytic
in the region 
(R; �), R > 1 (see �gure). If

f(z) � (1� z)�� log� 1

1� z ; z ! 1

for some � 62 f�1;�2;�3; : : :g, then

fn = [zn]f(z) =
n��1

�(�)
log� n(1 +O

�
1

n

�

R

θ



Singularity Analysis

Similar results hold when we have O(�) and o(�) estimates of
f(z) near z = 1.

Furthermore, the complete version of the transfer lemma yields
full asymptotic expansions of fn

Other slow growing factors, e. .g., (log log(1=(1� z)))
 can
also be taken into account
((log log(1=(1� z)))
 ! (log logn)
)

There's a generalization to cope with any �xed number of
dominant singularities

If the dominant singularity of f(z) is located at z = �, the
lemma can be applied with g(z) = f(z=�), since
[zn]f(z) = ��n[zn]g(z) and g(z) has its dominant singularity
at z = 1



Singularity Analysis

Example

The OGF of binary trees is B(z) = (1�p1� 4z)=2z.
The dominant singularity is at z = 1=4.
Locally around z ! 1=4,

B(z) � �2p1� 4z

Applying the transfer lemma with � = �1=2, yields

Bn � 4n
n�3=2p
�

(1 +O(1=n))



Singularity Analysis

Example

The recurrence for the expected cost of partial matches in relaxed
K-d trees is

Pn = 1 +
s

K

2

n

X
0�k<n

k

n
Pk +

�
1� s

K

�
2

n

X
0�k<K

Pk;

where 0 < s < K, and P0 = 0.
Multiplying both sides by zn and summing over all n � 0, the
recurrence translates to a second-order linear di�erential equation

zP 00(z)� 2
2z � 1

1� z P
0(z)� 2

2� x� z
(1� z)2 P (z) = 2

1

(1� z)3

for P (z) =
P

n�0 Pn zn and x = s=K; the initial conditions are
P (0) = 0 and P 0(0) = 1.



Singularity Analysis

Example (cnt'd)

The ODE can be solved in this case, because it is hypergeometric;
this yields

P (z) =
1

1� x
�
2F1([a; b; 2]; z)

(1� z)�� � 1

1� z
�
;

where 2F1(�) is the hypergeometric function, a = 2� �, b = 1� �
and � = (1 +

p
9� 8x)=2.

The dominant singularity of P (z) is at z = 1, since the
hypergeometric function is analytic there. Then, as z ! 1

P (z) � 1

1� x2F1([a; b; 2]; 1)(1� z)��



Singularity Analysis

Example (cnt'd)

Finally, applying the transfer lemma

Pn � 1

(1� x)�(�)2F1([a; b; 2]; 1)n
��1

For any value of x = s=K 2 (0; 1), 1 � � � 2; furthermore,
�� 1 � 1� x for all x 2 [0; 1].



Saddle point methods

What if f(z) has no singularities?
Saddle point methods estimate contour integrals by choosing a
circle centered at the origin and passing through a saddle point

De�nition

A saddle point z0 of f(z) is a point such that f(z0) 6= 0 and
f 0(z0) = 0



Saddle point methods

A plot of
��� Ŝ(z)z5

���, with Ŝ(z) = exp(exp(z)� 1) (EGF of set

partitions)
The �small� peak at the left is actually the singularity at z = 0; the
�peak� to the right is due to the rapid variation of the function



Saddle point methods

Suppose f(z) has non-negative coe�cients and it is entire (analytic
in C)
Take exp(h(z)) = f(z)=zn+1. Then the saddle point occurs at �n
such h0(�n) = 0, that is,

�n
f 0(�n)
f(�n)

= n+ 1

Under suitable conditions we can use the expansion
h(z) = h(�n) + 1=2h00(�n)(z � �n)2 +O((z � �n)3) on a local
neighborhood of �n and integrate termwise Cauchy's integral

fn � 1

2�i

�
exp(h(�n)) +

Z

(0)

exp(
1

2
h00(�n)(z � �n)2) dz

+

Z

(1)

exp(h(z)) dz

�

� f(�n)

�n+1
n

p
2�h00(�n)



Saddle point methods

Example

Consider f(z) = exp(z). Then [zn]f(z) = 1=n!. The saddle point
method can be applied to f(z), with h(z) = z � (n+ 1) log z,
h0(z) = 1� n+1

z and h00(z) = (n+ 1)=z2.

The saddle point is at � = n+ 1. Hence we get the estimate

1

n!
� en+1

(n+ 1)n
p
2�(n+ 1)

Since (1 + 1=n)n � e,

n! � e�nnn
p
2�n



Saddle point methods

Example

The EGF of set partitions is Ŝ(z) = exp(exp(z)� 1). Hence,
h(z) = ez � 1� (n+ 1) log z and the saddle point occurs at �, the
solution of �e� = n+ 1.

� = logn� log logn+ o(1)

But we have

Bn = n! � [zn]Ŝ(z) � nnee
��1�n

�n+1=2

since the asymptotic estimate of � cannot be used to get an
asymptotic estimate of Bn

However, taking log's

1

n
logBn = logn� log logn+O(1)
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