
Randomized Algorithms—Problem Set #1—Fall 2022.

1. Intuition in gambling is a dangerous thing. We meet a swindler who offers
us the following game. There are three cards: one shows two spades, one
on each side; the second card has a diamond on both sides; the third has
a spade in one side and a diamond on the other. The swindler shakes the
three cards in his hat, picks one and puts it on the table. He bets the card
will show the same suit as the one visible at the top. Thus, for example, if
the chosen card shows a diamond on top, he bets $1 that the other side is
also a diamond. He says “if the card is diamond-diamond, you pay me $1;
if it is diamond-spade then I pay you $1. The card can’t be spade-spade,
so there is equal chance that any of us wins, it’s a fair game.”. After some
rounds you’re losing some money, so in order to keep playing he says you
must have been specially unlucky an he offers to pay $1.25 if you win,
whereas you’ll only have to pay $1 when you lose. However, after a few
more rounds the swindler has plucked you.

(a) What’s the catch? If the (first) game were fair your expected gain
(and well as his) per round would be 0. Show that the game is not
fair. What is your expected gain (actually, loss) if you play 100
rounds of the original game?

(b) What is your expected gain in the second variant? Show that it is not
−1/2 + 1/2× 1.25 = −0.5 + 0.625 = $0.125. What is your expected
total gain (loss) if you play 100 rounds of this second game?

2. You roll a standard die N = 10 times. What is the probability that the
sum of the N rolls is a multiple of 6? What if you throw the die N = 20?
Hint: use the principle of deferred decisions.

3. Given X ∼ Geom(p) compute P[X > k].

4. Show that if X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2) are independent
random variables then X1 +X2 ∼ Poisson(λ1 + λ2).

5. Median-of-(2t+ 1) quickselect is a variant of quickselect which picks uni-
formly at random and without replacement a sample of 2t + 1 elements
from the array and uses the median of these 2t+ 1 elements as the pivot
for each recursive stage (as long as n ≥ 2t + 1). So the probability πn,k
that the pivot choosen is the k-th smallest element is not uniform, while

πn,k =
1

n
, for all k, 1 ≤ k ≤ n,

in ordinary quickselect, when the pivot of each stage is choosen u.a.r.

When analyzing the expected cost of ordinary quickselect we set up a
recurrence for the expected number fn = E[Fn] of comparisons to select

an element of random rank as follows:

f1 = f0 = 0

fn = n− 1 +

n∑
k=1

πn,k × E[# of comparisons |pivot is the k-th element]

= n− 1 +

n∑
k=1

πn,k

(
k − 1

n
fk−1 +

n− k
n

fn−k

)
= n− 1 +

2

n2

n−1∑
k=0

kfk.

Similar steps can be applied in the case of median-of-(2t+ 1) quickselect,
but the so called splitting probabilities πn,k are different. Also the number
of comparisons of each recursive stage will be larger because we need some
comparisons to find the median of the sample. However, t is a constant
and hence the number of comparisons in a recursive stage of the algorithm
is n+O(1).

(a) Calculate the probability πn,k that the pivot is the k-th smallest
element, when it is choosen as the median of 2t+ 1 random elements
selected without replacement from the array of n elements.

(b) Set up the recurrence for the expected number f
(t)
n of comparisons

to select an element of random rank for quickselect with median-of-
(2t+ 1).

(c) Identify a shape function for the recurrence. Apply the continuous

master theorem to solve the recurrence. Show that f
(t)
n = 2t+3

t+1 n +

o(n) (for ordinary quickselect we have fn = f
(0)
n = 3n+ o(n)).

Useful formulas:

• If k is constant with respect to x and x→∞ then(
x

k

)
∼ xk

k!

• (Beta integral) For any m,n ≥ 0,∫ 1

0

xm(1− x)n dx =
m!n!

(m+ n+ 1)!

6. Modify the Randomized Selection algorithm so that it can be used to
select the j-th smallest element (the algorithm presented in class is only
to select the median). You will only need to carefully choose d and u so
that the j-th smallest element of the input array S belongs to C with high
probability. You’ll need a few other minor adjustements, e.g., in step 6,
the algorithm fails if ld > j or lu > n− j.

(a) Prove that the algorithm will either correctly report the j-th smallest
element in S or fail.

(b) Check that the modified algorithm still has cost Θ(n).

(c) Prove that the probability of failure is ≤ n−1/4.

(d) Suppose that in order to extract C in step 5, you compare first S[i] to
d if j < dn/2e and then to u only if S[i] ≥ d (for otherwise S[i] 6∈ C).
Likewise, if j ≥ dn/2e compare first S[i] to u and then compare to d
only S[i] ≤ u. The number of comparisons in step 5 will always be
between n and 2n, but what is the average number of comparisons
(as a function of j)?

