
Universitat Politècnica de Catalunya
Facultat d’Informàtica de Barcelona

Degree: Grau en Enginyeria Informàtica Academic year: 2024–2025 (Final Exam)
Course: Randomized Algorithms (RA-MIRI) Date: January 17th, 2025
Time: 2 h 30 min

This exam has a total of 12 points in 4 questions. Each exam has 3 pages printed in 2
physical sheets of paper. Your score will be the sum of the points of the questions below,
capped to a maximum of 10 points.

The exam poses several questions, all around the following scenario. We have a large
collection of documents D = {D1, . . . , DT}. Each document Di consists of a sequence of
words (more generally, shingles): Di = z

(i)
1 , z

(i)
2 , . . . , z

(i)
Ni

. The set of distinct words in Di is
the vocabulary Vi = V (Di) of the document. There exists a predefined list SW of frequently
occurring words such as a, and, that, the, . . . which will likely appear in most or all the
documents, hence their presence in a given document conveys little or no information (these
words are known as stopwords). The normalized vocabulary for document Di is

V ′
i = Vi \ SW = {x(i)

1 , x
(i)
2 , . . . , x(i)

ni
}; ni = |V ′

i |

We denote nmax = max1≤i≤T{ni}. Although nmax can be equal or close to Nmax =
maxi{Ni}, we will often have nmax ≪ Nmax. Likewise, the total size of the document
collection N =

∑
1≤i≤T Ni will be often much less than T ·Nmax, since there are many more

short documents than large ones.
In all questions, unless it is stated otherwise, you must justify your answers.

1. (3 points) For each document Di, we will build a Bloom filter Bi as a sketch for the
document. All Bloom filters are bitvectors of M = Θ(nmax) bits and use the same
set of k hash functions.

procedure CreateSketch(D, SW)
F := BloomFilter(M,k)

▷ Creates an empty Bloom filter
for z ∈ D do

if z ̸∈ SW then
F.Insert(z)

end if
end for
return F

end procedure

procedure AltCreateSketch(D, SW)
F := BloomFilter(M,k)
count := 0
for z ∈ D do

if z ̸∈ SW ∧ ¬F.Contains(z) then
F.Insert(z)
count := count+ 1

end if
end for
return F

end procedure

1

(a) What are the (expected) complexities of the functions CreateSketch(D,SW)
and AltCreatSketch(D,SW) in terms of |D|, |SW | and the size of the nor-
malized vocabulary V ′ of D? Do they significantly differ? Which data structure
would you use for SW to get these complexities?

(b) What is the difference, if any, between the Bloom filters produced by the calls
Bi :=CreateSketch(Di, SW) and B′

i :=AltCreateSketch(Di, SW)? The
parameters M and k (and the k hash functions) used for both Bi and B′

i are the
same.

(c) What is the expected value of count after document Di has been processed with
algorithm AltCreateSketch? Give a lower bound using the probability of
false positives. The probability of false positives evolves as you keep inserting
elements in the Bloom filter, but you can use a pessimistic upper bound based
on the maximum number of inserted elements.
Give also the answer for the particular case in which we set M = 500000, k = 7
and we can take for granted that ni ≤ 50000. Give the simplest possible form
you can; but it’s OK to leave your answer without carrying a few final floating
point calculations, e.g., your expression might contain subexpressions such as√
2 + e−2.4.

2. (4 points)

(a) Devise an estimator for ni using the number of 1s in the bitvector held in Bi.
Use the approximation E[f(X)] ≈ f(E[X]) to propose your estimator; you need
not to prove that the estimator is (asymptotically) unbiased, nor to compute an
explicit factor to compensate the bias.

(b) Given two documents Di and Dj, i ̸= j, their similarity is defined as

σij = Jaccard(V ′
i , V

′
j) =

|V ′
i ∩ V ′

j |
|V ′

i ∪ V ′
j |
.

Provide a suitable scheme to estimate σij given the “sketches” Bi and Bj of
Di and Dj, computed using CreateSketch (with identical bitvector size and
hashes for both Bloom filters). That is, propose an estimator σ̂ij such that
E[σ̂ij] ≈ σij. You have not kept vocabularies V ′

i and V ′
j , and you cannot process

(again) the documents. Can you directly estimate |V ′
i ∩ V ′

j |? What about |V ′
i ∪

V ′
j |?

(c) What is the computational complexity of getting all possible
(
T
2

)
estimates σ̂ij

for pairwise similarities, compared to getting all
(
T
2

)
exact similarities σij? Your

computation of the costs of both alternatives must include the costs of process-
ing every document to create a sketch or to extract its normalized vocabulary.

2

Assume that you have enough memory to store all normalized vocabularies V ′
i ,

1 ≤ i ≤ T , once you have extracted them. Express the costs in terms of N , T ,
and nmax. Recall that the size of Bi is M bits, with M = Θ(nmax).

3. (2 points) The similarity between two documents can be the result of chance; we
want to compute, even if only approximately, the expected similarity of two “random”
documents. A random document with normalized vocabulary V ′

i of size ni is a random
sample of ni distinct words drawn without replacement from some base vocabulary V
(N.B. the base vocabulary does not contain any stopword: V ∩ SW = ∅). The base
vocabulary contains W distinct words. To get the sought answer, use

E[σij] ≈
E
[
|V ′

i ∩ V ′
j |
]

E
[
|V ′

i ∪ V ′
j |
] .

Express your answer in terms of the relative sizes ρi := ni/W and ρj := nj/W . A
useful formula to express your final answer in a simple way is x/(1− x) ∼ x+O(x2),
when x → 0.

4. (3 points) Define a discrete finite Markov chain such that its states are the documents
D = {Di}1≤i≤T and let the transition probabilities pi,j =

σij

σi
, where σi =

∑
1≤k≤T σik.

(a) Give sufficient conditions for the Markov chain to be regular. Express these
conditions in terms of properties to be satisfied by the document set D, avoid
phrasing them in terms of the directed graph underlying the Markov chain. Aim
for conditions which are not very restrictive. If all or some of the conditions are
always met by any document set, tell so and justify why.

(b) Assuming that the previous Markov chain is regular, show that π = (π1, . . . , πT)
is the unique stationary distribution with

πi =
σi

σ
,

and σ =
∑

1≤i≤T σi =
∑

1≤i≤T

∑
1≤j≤T σij.

3

