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1. (2.5 points) We need to send a signal S which might be S = −1 or S = +1 over
a wireless network. Because of other sources emitting signals Si, 1 ≤ i ≤ n, at the
same time, the received signal R can be expressed as

R = S +
n∑

i=1

piSi,

where the pi ≥ 0 measures the strength of signal Si; the pi's are not probabilities,
since

∑
i pi might be 6= 1. If R > 0, we assume that the original signal S = +1;

conversely, if R < 0 then we assume that S = −1 (if R = 0, we choose at random).
We want to bound the probability of that we identify S wrongly. That will happen
whenever |R− S| > 1.

Let X =
∑n

i=1 piSi denote the � `noise�, and assume the Si's are i.i.d. with

P[Si = +1] = P[Si = −1] =
1

2
, 1 ≤ i ≤ n.

(a) Compute E[X] and V[X].

(b) Compute the moment generating function E
[
etX
]
and show that it is bounded

by e(
∑

i p
2
i )t2/2. Useful formula: (ex + e−x)/2 ≤ ex

2/2 (it can be shown using the
Taylor series expasions of both sides of the inequality).

(c) Using Markov's inequality we can derive a Cherno�-like bound as

P[X ≥ a] = P
[
etX ≥ eat

]
≤ E

[
etX
]
e−at.

Use the bound on E
[
etX
]
and set t = 1/

∑
i p

2
i to obtain an exponentially de-

caying upper bound for P[X ≥ a].

(d) Using analogous arguments, the upper bound above also applies to P[−X ≥ a],
and then we can combine this result to obtain a bound for P[|X| ≥ a]. Using
that bound, give a lower bound for the probability of a correct identi�cation of
S.
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2. (2.5 points) We have a computer monitoring a sensor, by requesting data from the
sensor from time to time. It does so at randomly picked moments, to avoid any easily
predictable pattern which could be exploited by a malicious adversary. However,
we are guaranteed that the computer will monitor the sensor λ = 3 times on each
interval of 10 minutes on average (we will call a time frame or just a frame, each such
10-minutes interval).

(a) Give a formula for the probability that the computer monitors the sensor exactly
j times in a frame. To compute it, consider that the frame is subdivided in a big
number n tiny time intervals, each one a potential moment in which the computer
issues a monitoring request to the sensor. Thus, each tiny time interval contains,
with some probability, a monitoring request, independently of the others, and
of those n intervals, on average, λ of them have monitoring requests (and the
other don't).

(b) If there is no monitoring request during a frame we say that it is non-monitored.
Consider m consecutive non-overlapping frames. What is the expected number
of non-monitored frames? Let Y denote the number of non-monitored frames
out of m. Prove

P
[
|Y − E[Y ] | ≥ b

√
E[Y ]

]
≤ 1

b2
.

3. (2.5 points) A certain city has N bus lines numbered 1, 2, . . . , N . Walking around
the city you have seen buses with numbers 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ N . You might
have observed less than k di�erent bus lines, because you could have observed more
than one bus of the same line. You do not know N , that is, how many bus lines
there are in the city, but you can give an estimate N̂ of N as a function of k and

the observed numbers i1,. . . ,ik, such that E
[
N̂
]
∼ N . Here, the expectation is on

the sample of k lines that you have observed; each one of the Nk possible choices is
assumed equally likely.

(a) Compute the probability that X ≡ ik, the largest of k randomly drawn numbers
from {1, . . . , N} is ≤ j, for 1 ≤ j ≤ N . The k draws are independent and �with
replacement� as any particular bus line can be observed several times.

(b) Compute the expected value of X. To that end, prove �rst that E[X] =∑
1≤j<N P[X > j]. Useful fact:

∑n
i=1 i

r = nr+1

r+1
+O(nr).

(c) Propose an asymptotically unbiased estimator N̂ for N : N̂ := f(k,X) and

E
[
N̂
]
= N + o(N) as N →∞.
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4. (2.5 points) Modern hardware tries to optimize the execution of instructions in
a pipelined fashion by predicting on each conditional instruction which of the two
branches will be taken. Many solutions have been proposed, but branch predictions
must be carried out at a very low level, so very sophisticated solutions must be
avoided. One such mechanism is using a �nite automaton that keeps information
about the behavior of the conditional instruction on the last k times it has been
executed. One such particular automaton for k = 2 is the so-called 2-bit �ip-on-
consecutive counter. To analyze the performance of this branch prediction mechanism
we are lead to consider the Markov chain below

1

2 4

3

qp

q

p

qp

p

q

where 0 ≤ p ≤ 1 and q = 1− p.

(a) Write the transition matrix P (2) for two steps of the Markov chain. That is, p
(2)
uv

is the probability that we are at state v after two steps of the Markov chain if
we started at state u, for all u and v.

(b) Find the stationary distribution π = π(p) for the Markov chain. Identities such
as p2q + pq2 = pq or p2 + q = 1 − pq might be helpful here and in the next
question.

(c) Compute a closed form for the probability of a misprediction, which is, by de�-
nition

Pmisprediction = π(p) · (q, q, p, p)T

Prove that Pmisprediction = 0 if p = 0 or p = 1. Prove also that it is maximum if
p = q = 1/2; for that case, Pmisprediction = 1/2.
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