Universitat Politècnica de Catalunya
Facultat d'Informàtica de Barcelona
Name, First Name
ID number

Degree: Grau en Enginyeria Informàtica Exam)
Course: Randomized Algorithms (RA-MIRI)
Time: 1h 30m

Academic year: Q1 2021-2022 (Mid-term
Date: November 4th, 2020

1. (2 points)

You are participating in a contest. You have three closed doors in front of you. Behind one of the doors, there is a lastest model cell phone. The other two rooms are empty. You choose one of the doors, you'll win whatever is behind the chosen door. The host - who knows what do the rooms contain - opens one of the other two doors to show you an empty room. Then he makes a deal: "do you stick to your initial choice or do you want to change?"
What shall you do? Explain your answer. Give the probability of winning the cell for both strategies: (1) stick to your initial choice; (2) change your initial choice.

SOLUTION:

Name, First Name ID number

(Answer to Question 1 here.)
\square
2. (2.5 points) Let X and Y be two independent identically distributed geometric random variables, $X, Y \sim \operatorname{Geom}(p)$. Compute:
(a) $\mathbb{E}[X+Y]$
(b) $\mathbb{V}[X+Y]$
(c) $\mathbb{P}[X \leq k]$
(d) $\mathbb{E}[\min (X, Y)]$

Useful formula: if $x \neq 1$

$$
\sum_{k=a}^{b} x^{k}=\frac{x^{b+1}-x^{a}}{x-1}
$$

Another formula which might be of help: If Z is a discrete positive random variable then

$$
\mathbb{E}[Z]=\sum_{k \geq 0} \mathbb{P}[Z>k]
$$

SOLUTION:

Name, First Name
ID number

(Answer to Question 2 here.)
3. (2.5 points) Suppose we have three polynomials $p(x), q(x)$ and $r(x)$. Suppose $\operatorname{deg}(p)=\operatorname{deg}(q)=n$ and $\operatorname{deg}(r)=2 n$, and we want to check whether $p(x) \cdot q(x)=r(x)$ or not. We assume that all coefficents are $O(\log n)$ bits and any arithmetic operation has cost $O(1)$. Then computing the product $p(x) \cdot q(x)$ has cost $\Theta\left(n^{2}\right)$ (naïvely) or with cost $\Theta(n \log n)$ (using the Fast Fourier Transform); we would want to avoid such costly computation. We have a random number generator that will produce a random integer of m bits, that is, in the range $\left[0,2^{m}-1\right]$, in time $\Theta(m)$. Take $m=c \log _{2} n$ for some $c>1$.

Design an efficient Montecarlo randomized algorithm that will always correctly answer that $p(x) \cdot q(x)=r(x)$ if that is the case, and that if $p(x) \cdot q(x) \neq r(x)$ it might wrongly answer that $p(x) \cdot q(x)=r(x)$, but that will happen with probability at most $1 / n^{c-1}$. In other words, if the algorithm answers $p(x) \cdot q(x) \neq r(x)$ then it is the case for sure, whereas if the algorithm answers that $p(x) \cdot q(x)=r(x)$ then it might be wrong, albeit with very small probability $\left(O\left(1 / n^{c-1}\right)\right.$). Give the cost of your algorithm (number of arithmetic operations used, should be $\ll n^{2}$).

SOLUTION:

Name, First Name ID number

(Answer to Question 3 here.)
\square
4. (3 points) Median-of- $(2 t+1)$ quickselect is a variant of quickselect which picks uniformly at random and without replacement a sample of $2 t+1$ elements from the array and uses the median of these $2 t+1$ elements as the pivot for each recursive stage (as long as $n \geq 2 t+1$). So the probability $\pi_{n, j}$ that the pivot choosen is the j-th smallest element is not uniform, while

$$
\pi_{n, j}=\frac{1}{n}, \quad \text { for all } j, 1 \leq j \leq n
$$

in ordinary randomized quickselect, when the pivot of each stage is choosen u.a.r.
When analyzing the expected cost of ordinary quickselect we set up a recurrence for the expected number $f_{n}=\mathbb{E}\left[F_{n}\right]$ of comparisons to select an element of random rank as follows:

$$
\begin{aligned}
f_{1} & =f_{0}=0 \\
f_{n} & =n-1+\sum_{j=1}^{n} \pi_{n, j} \times \mathbb{E}[\# \text { of comparisons } \mid \text { pivot is the } j \text { th element }] \\
& =n-1+\sum_{j=1}^{n} \pi_{n, j}\left(\frac{j-1}{n} f_{j-1}+\frac{n-j}{n} f_{n-j}\right)=n-1+\frac{2}{n^{2}} \sum_{j=0}^{n-1} j f_{j} .
\end{aligned}
$$

Similar steps can be applied in the case of median-of- $(2 t+1)$ quickselect, but the so called splitting probabilities $\pi_{n, j}$ are different. Also the number of comparisons of each recursive stage will be larger because we need some comparisons to find the median of the sample. However, t is a constant and hence the number of comparisons in a recursive stage of the algorith is $n+\mathcal{O}(1)$.
(a) Calculate the probability $\pi_{n, j}$ that the pivot is the j-th smallest element, when it is choosen as the median of $2 t+1$ random elements selected without replacement from the array of n elements.
(b) Set up the recurrence for the expected number $f_{n}^{(t)}$ of comparisons to select an element of random rank for quickselect with median-of- $(2 t+1)$.
(c) Identify a shape function for the recurrence. Apply the continuous master theorem to solve the recurrence. Show that $f_{n}^{(t)}=\frac{2 t+3}{t+1} n+o(n)$ (for ordinary quickselect we have $\left.f_{n}=f_{n}^{(0)}=3 n+o(n)\right)$.

Useful formulas:

- If k is constant with respect to x and $x \rightarrow \infty$ then

$$
\binom{x}{k} \sim \frac{x^{k}}{k!}
$$

- (Beta integral) For any $m, n \geq 0$,

$$
\int_{0}^{1} x^{m}(1-x)^{n} d x=\frac{m!n!}{(m+n+1)!}
$$

SOLUTION:

Name, First Name ID number

(Answer to Question 4 here.)

