Random Variables and Expectation (III)

Josep Díaz Maria J. Serna Conrado Martínez U. Politècnica de Catalunya

RA-MIRI 2022-2023

Jensen's inequality

Recall $f: \mathbb{R} \to \mathbb{R}$ is convex if, for all $x_1, x_2 \in \mathbb{R}$ and for all $t \in [0, 1]$, we have

$$f(t\,x_1+(1-t)x_2)\leqslant t\,f(x_1)+(1-t)\,f(x_2).$$

If f is twice differentiable, a necessary and sufficient condition for f to be convex is that $f''(x) \ge 0$ for $x \in \mathbb{R}$.

Lemma

If f is convex then $\mathbb{E}[f(X)] \geqslant f(\mathbb{E}[X])$.

Jensen's inequality

Proof

Let $\mu = \mathbb{E}[X]$ ($\mu \in \mathbb{R}$). Using Taylor to expand f at $X = \mu$,

$$\begin{split} f(X) &= f(\mu) + f'(\mu)(X - \mu) + \frac{f''(\mu)(X - \mu)^2}{2} + \cdots \\ &\geqslant f(\mu) + f'(\mu)(X - \mu) \\ \mathbb{E}[f(X)] &\geqslant \mathbb{E}\big[f(\mu) + f'(\mu)(X - \mu)\big] \\ &= \mathbb{E}[f(\mu)] + f'(\mu)(\mathbb{E}[X] - \mu) = f(\mu) \end{split}$$

i.e.,
$$\mathbb{E}[f(X)] \geqslant f(\mathbb{E}[X])$$
.

Expectation of combinations of r.v.

Consider the following experiment:

 $X = Uniform(\{1,2\}) \text{ and } Y = Uniform(\{1,X+1\})$

Thus Y depends on X.

What is the expectation of the r.v. XY?

$$\Omega = \{(1,1), (1,2), (2,1), (2,2), (2,3)\}$$

$$\mathop{\mathbb{E}}[XY] = \sum_{\omega \in \Omega} X(\omega) Y(\omega) \mathop{\mathbb{P}}[\omega]$$

We have

$$\mathbb{P}[(1,1)] = \mathbb{P}[(1,2)] = 1/4;$$

 $\mathbb{P}[(2,1)] = \mathbb{P}[(2,2)] = \mathbb{P}[(2,3)] = 1/6$

$$\mathbb{E}[XY] = \frac{1}{4} \cdot 1 \cdot 1 + \frac{1}{4} \cdot 1 \cdot 2 + \frac{1}{6} \cdot 2 \cdot 1 + \frac{1}{6} \cdot 2 \cdot 2 + \frac{1}{6} \cdot 2 \cdot 3 = \frac{11}{4}.$$

Expectation of combinations of r.v.

Consider the following experiment:

$$X = Uniform(\{1,2\})$$
 and $Y = Uniform(\{1,X+1\})$

Thus Y depends on X.

What is the expectation of the r.v. XY?

$$\Omega = \{(1,1), (1,2), (2,1), (2,2), (2,3)\}$$

$$\mathop{\mathbb{E}}[XY] = \sum_{\omega \in \Omega} X(\omega) Y(\omega) \mathop{\mathbb{P}}[\omega]$$

We have

$$\mathbb{P}[(1,1)] = \mathbb{P}[(1,2)] = 1/4;$$

 $\mathbb{P}[(2,1)] = \mathbb{P}[(2,2)] = \mathbb{P}[(2,3)] = 1/6$

$$\mathbb{E}[XY] = \frac{1}{4} \cdot 1 \cdot 1 + \frac{1}{4} \cdot 1 \cdot 2 + \frac{1}{6} \cdot 2 \cdot 1 + \frac{1}{6} \cdot 2 \cdot 2 + \frac{1}{6} \cdot 2 \cdot 3 = \frac{11}{4}.$$

Expectation of combinations of r.v.

Consider the following experiment:

$$X = Uniform(\{1,2\})$$
 and $Y = Uniform(\{1,X+1\})$

Thus Y depends on X.

What is the expectation of the r.v. XY?

$$\Omega = \{(1,1), (1,2), (2,1), (2,2), (2,3)\}$$

$$\mathbb{E}[XY] = \sum_{\omega \in \Omega} X(\omega)Y(\omega)\,\mathbb{P}[\omega]$$

We have

$$\mathbb{P}[(1,1)] = \mathbb{P}[(1,2)] = 1/4;$$

 $\mathbb{P}[(2,1)] = \mathbb{P}[(2,2)] = \mathbb{P}[(2,3)] = 1/6.$

$$\mathbb{E}[XY] = \frac{1}{4} \cdot 1 \cdot 1 + \frac{1}{4} \cdot 1 \cdot 2 + \frac{1}{6} \cdot 2 \cdot 1 + \frac{1}{6} \cdot 2 \cdot 2 + \frac{1}{6} \cdot 2 \cdot 3 = \frac{11}{4}.$$

We have, $\mathbb{P}[X = 1] = 1/2$; $\mathbb{P}[X = 2] = 1/2$ and

 $\mathbb{P}[Y = 1] = \mathbb{P}[Y = 1|X = 1] \mathbb{P}[X = 1] + \mathbb{P}[Y = 1|X = 2] \mathbb{P}[X = 2] = 1/4 + 1/6 = 5/12$; $\mathbb{P}[Y = 2] = \mathbb{P}[Y = 2|X = 1] \mathbb{P}[X = 1] + \mathbb{P}[Y = 2|X = 2] \mathbb{P}[X = 2] = 1/4 + 1/6 = 5/12$:

 $\mathbb{P}[Y = 3] = \mathbb{P}[Y = 3|X = 1] \mathbb{P}[X = 1] + \mathbb{P}[Y = 3|X = 2] \mathbb{P}[X = 2] = 0 + 1/6 = 1/6.$

Then $\mathbb{E}[X] = 3/2$ and $\mathbb{E}[Y] = 7/4$ so $\mathbb{E}[X] \mathbb{E}[Y] = 21/8$. Therefore,

 $\mathbb{E}[XY] \neq \mathbb{E}[X] \mathbb{E}[Y]$.

Joint Probability Mass Function

The joint PMF of r.v. X, Y is the function $p_{XY} : \mathbb{R}^2 \to \mathbb{R}$ defined by $p_{XY}(x,y) = \mathbb{P}[X = x \land Y = y]$.

With the joint PMF of r.v. X, Y you can compute the expectation of any function f(X, Y):

$$\mathbb{E}[f(X,Y)] = \sum_{x,y} f(x,y) \cdot p_{XY}(x,y).$$

Compute $\mathbb{E}\left[\frac{X}{Y}\right]$ for the previous r.v. X, Y

$$\begin{split} \mathbb{E}\left[\frac{X}{Y}\right] &= p_{XY}(1,1)\frac{1}{1} + p_{XY}(1,2)\frac{1}{2} \\ &+ p_{XY}(2,1)\frac{2}{1} + p_{XY}(2,2)\frac{2}{2} + p_{XY}(2,3)\frac{2}{3} \\ &= \frac{1}{4} \cdot (1+1/2) + \frac{1}{3} \cdot (2+1+2/3) = \frac{3}{8} + \frac{11}{3} = \frac{97}{24} = 4\frac{1}{24} \end{split}$$

Independent r.v.: Main result

Theorem

If X and Y are independent r.v. then $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$.

Proof

$$\begin{split} \mathbb{E}[X \cdot Y] &= \sum_{x,y} p_{XY}(x,y) \cdot x \cdot y \\ &= \sum_{x,y} p_{X}(x) \cdot p_{Y}(y) \cdot x \cdot y \text{ (by independence)} \\ &= \sum_{x,y} x \cdot p_{X}(x) \cdot y \cdot p_{Y}(y) \\ &= \left(\sum_{x} x \cdot p_{X}(x)\right) \cdot \left(\sum_{y} y \cdot p_{Y}(y)\right) \\ &= \mathbb{E}[X] \cdot \mathbb{E}[Y] \end{split}$$

The Poisson approximation to the Binomial

For $X \sim \text{Bin}(n,p)$, for large n, computing the PMF $\mathbb{P}[X=x]$ could be quite nasty.

It turns out that for large $\mathfrak n$ and small $\mathfrak p$, $\mathsf{Bin}(\mathfrak n,\mathfrak p)$ can be easily approximated by the PMF of a simpler Poisson random variable.

A discrete r.v. X is Poisson with parameter λ $(X \sim \text{Poisson}(\lambda))$, if it has PMF $\mathbb{P}[X = \mathfrak{i}] = \frac{\lambda^{\mathfrak{i}} e^{-\lambda}}{\mathfrak{i}!}$, for $\mathfrak{i} \in \{0,1,2,3,\ldots\}$

If
$$X \sim \mathsf{Poisson}(\lambda)$$
 then $\mathbb{E}[X] = \lambda$.

This is the reason that sometimes λ is denoted μ .

Proof

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} i \frac{\lambda^i e^{-\lambda}}{i!} = e^{-\lambda} \lambda \underbrace{\sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{(i-1)!}}_{\text{Taylor for } e^{\lambda}} = e^{-\lambda} \lambda e^{\lambda} = \lambda$$

The Poisson approximation to the Binomial

If $X \in Bin(\mathfrak{n},\mathfrak{p})$, with $\mu = \mathfrak{pn}$, then as $\mathfrak{n} \to \infty$, for each fixed $i \in \{0,1,2,3,\ldots\}$,

$$\mathbb{P}[X=i] \sim \frac{\mu^i e^{-\mu}}{i!}.$$

$$\begin{split} & \text{Proof} \\ & \text{As } \mu = np, \\ & \mathbb{P}[X = i] = \binom{n}{i} (\frac{\mu}{n})^i (1 - \frac{\mu}{n})^{n-i} \\ & = \frac{n(n-1) \cdots (n-i+1)}{i!} \frac{\mu^i}{n^i} (1 - \frac{\mu}{n})^n (1 - \frac{\mu}{n})^{-i} \\ & = \frac{\mu^i}{i!} (1 - \frac{\mu}{n})^n \frac{n(n-1) \cdots (n-i+1)}{n^i} (1 - \frac{\mu}{n})^{-i} \\ & \sim \frac{\mu^i}{i!} e^{-\mu} \text{ as } n \to \infty. \end{split}$$

Example

The population of Catalonia is around 7 million people. Assume that the probability that a person is killed by lightning in a year is $p = \frac{1}{5 \times 10^8}$.

a) Let's compute the exact probability that 3 or more people will be killed by lightning next year in Catalonia.

Let X be a r.v. counting the number of people that will be killed in Cat. next year by a lightning.

We want to compute

$$\mathbb{P}[X\geqslant 3]=1-\mathbb{P}[X=0]-\mathbb{P}[X=1]-\mathbb{P}[X=2],$$
 where $X\sim Bin(7\times 10^6,\frac{1}{5\times 10^8}).$

Then,

$$\mathbb{P}[X\geqslant 3] = 1 - (1-p)^n - np(1-p)^{n-1} - \binom{n}{2}p^2(1-p)^{n-2} = 1.65422 \times 10^{-7}$$

Example

b) Use Poisson approximation to approximate $\mathbb{P}[X \geqslant 3]$.

$$\lambda = np = 7/500 \text{ so}$$

$$\mathbb{P}[X \geqslant 3] \sim 1 - e^{\lambda} - \lambda e^{-\lambda} - \frac{\lambda^2}{2} e^{-\lambda} = 1.52558 \times 10^{-7}$$

c) Approximate the probability that 2 or more people will be killed by lightning the first 6 months of the year Notice we are considering λ as a rate. Then we have now $\lambda = (7/500)/2$

$$\mathbb{P}[X\geqslant \text{2 during 6 months}] \sim 1 - e^{\lambda} - \lambda e^{-\lambda} = 5.79086 \times 10^{-7}$$

d) Approximate the probability that in 3 of the next 10 years exactly 3 people will be killed

We have $\lambda=7/500$, then the probability that in any particular year 3 people are killed is $=\frac{e^{-\lambda}\lambda^3}{3!}$. Let Y be a r.v. counting the number of years with exactly 3 kills.

Assuming independence between years, Y \sim Bin(10, $\frac{e^{-\lambda}\lambda^3}{3!}$), therefore the answer is $\binom{10}{3}(\frac{e^{-\lambda}\lambda^3}{3!})^3(1-\frac{e^{-\lambda}\lambda^3}{3!})^7 \approx 1.1\cdot 10^{-17}$