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Jensen’s inequality

Recall f : R→ R is convex if, for all x1, x2 ∈ R and for all
t ∈ [0, 1], we have

f(t x1 + (1 − t)x2) 6 t f(x1) + (1 − t) f(x2).

If f is twice differentiable, a necessary and sufficient condition
for f to be convex is that f ′′(x) > 0 for x ∈ R.

If f is convex then E[f(X)] > f(E[X]).
Lemma



Jensen’s inequality

Let µ = E[X] (µ ∈ R). Using Taylor to expand f at X = µ,

f(X) = f(µ) + f ′(µ)(X− µ) +
f ′′(µ)(X− µ)2

2
+ · · ·

> f(µ) + f ′(µ)(X− µ)

E[f(X)] > E
[
f(µ) + f ′(µ)(X− µ)

]
= E[f(µ)] + f ′(µ)(E[X] − µ) = f(µ)

i.e., E[f(X)] > f(E[X]). �

Proof



Expectation of combinations of r.v.
Consider the following experiment:
X = Uniform({1, 2}) and Y = Uniform({1,X+ 1})
Thus Y depends on X.
What is the expectation of the r.v. XY?

Ω = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3)}

E[XY] =
∑
ω∈Ω

X(ω)Y(ω)P[ω]

We have

P[(1, 1)] = P[(1, 2)] = 1/4;

P[(2, 1)] = P[(2, 2)] = P[(2, 3)] = 1/6.

E[XY] =
1
4
· 1 · 1 +

1
4
· 1 · 2 +

1
6
· 2 · 1 +

1
6
· 2 · 2 +

1
6
· 2 · 3 =

11
4

.
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We have, P[X = 1] = 1/2; P[X = 2] = 1/2 and

P[Y = 1] = P[Y = 1|X = 1]P[X = 1] + P[Y = 1|X = 2]P[X = 2] = 1/4 + 1/6 = 5/12;

P[Y = 2] = P[Y = 2|X = 1]P[X = 1] + P[Y = 2|X = 2]P[X = 2] = 1/4 + 1/6 = 5/12;

P[Y = 3] = P[Y = 3|X = 1]P[X = 1] + P[Y = 3|X = 2]P[X = 2] = 0 + 1/6 = 1/6.

Then E[X] = 3/2 and E[Y] = 7/4 so E[X]E[Y] = 21/8.
Therefore,

E[XY] 6= E[X]E[Y] .



Joint Probability Mass Function
The joint PMF of r.v. X, Y is the function pXY : R2 → R defined
by pXY(x,y) = P[X = x∧ Y = y].

With the joint PMF of r.v. X, Y you can compute the expectation
of any function f(X, Y):

E[f(X, Y)] =
∑
x,y

f(x,y) · pXY(x,y).

Compute E
[
X
Y

]
for the previous r.v. X, Y

E
[
X

Y

]
= pXY(1, 1)

1
1
+ pXY(1, 2)

1
2

+ pXY(2, 1)
2
1
+ pXY(2, 2)

2
2
+ pXY(2, 3)

2
3

=
1
4
· (1 + 1/2) +

1
3
· (2 + 1 + 2/3) =

3
8
+

11
3

=
97
24

= 4
1
24



Independent r.v.: Main result

If X and Y are independent r.v. then E[XY] = E[X]E[Y].
Theorem

E[X · Y] =
∑
x,y

pXY(x,y) · x · y

=
∑
x,y

pX(x) · pY(y) · x · y (by independence)

=
∑
x,y

x · pX(x) · y · pY(y)

=

(∑
x

x · pX(x)

)
·

(∑
y

y · pY(y)

)
= E[X] · E[Y]

�

Proof

Recall that if X and Y are independent, then for any real value f
and g, f(X) and g(Y) also are independent.
⇒ E[f(X) · g(Y)] = E[f(X)] · E[g(Y)]



The Poisson approximation to the Binomial
For X ∼ Bin(n,p), for large n, computing the PMF P[X = x]

could be quite nasty.
It turns out that for large n and small p, Bin(n,p) can be easily
approximated by the PMF of a simpler Poisson random
variable.

A discrete r.v. X is Poisson with parameter λ (X ∼ Poisson(λ)), if
it has PMF P[X = i] = λie−λ

i! , for i ∈ {0, 1, 2, 3, . . .}

If X ∼ Poisson(λ) then E[X] = λ.

This is the reason that sometimes λ is denoted µ.

E[X] =
∞∑
i=1

i
λie−λ

i!
= e−λλ

∞∑
i=1

λi−1

(i− 1)!︸ ︷︷ ︸
Taylor for eλ

= e−λλeλ = λ

�

Proof



The Poisson approximation to the Binomial

If X ∈ Bin(n,p), with µ = pn, then as n → ∞, for each
fixed i ∈ {0, 1, 2, 3, . . .},

P[X = i] ∼
µie−µ

i!
.

Theorem

As µ = np,

P[X = i] =

(
n

i

)
(
µ

n
)i(1 −

µ

n
)n−i

=
n(n− 1) · · · (n− i+ 1)

i!
µi

ni
(1 −

µ

n
)n(1 −

µ

n
)−i

=
µi

i!
(1 −

µ

n
)n
n(n− 1) · · · (n− i+ 1)

ni
(1 −

µ

n
)−i

∼
µi

i!
e−µ as n→∞.

�

Proof



Example

The population of Catalonia is around 7 million people. Assume
that the probability that a person is killed by lightning in a year
is p = 1

5×108 .

a) Let’s compute the exact probability that 3 or more people will
be killed by lightning next year in Catalonia.
Let X be a r.v. counting the number of people that will be killed
in Cat. next year by a lightning.
We want to compute
P[X > 3] = 1 − P[X = 0] − P[X = 1] − P[X = 2], where
X ∼ Bin(7× 106, 1

5×108 ).
Then,
P[X > 3] = 1 − (1 − p)n − np(1 − p)n−1 −

(
n
2

)
p2(1 − p)n−2 = 1.65422× 10−7



Example
b) Use Poisson approximation to approximate P[X > 3].
λ = np = 7/500 so
P[X > 3] ∼ 1 − eλ − λe−λ − λ2

2 e
−λ = 1.52558× 10−7

c) Approximate the probability that 2 or more people will be
killed by lightning the first 6 months of the year
Notice we are considering λ as a rate. Then we have now
λ = (7/500)/2
P[X > 2 during 6 months] ∼ 1 − eλ − λe−λ = 5.79086× 10−7

d) Approximate the probability that in 3 of the next 10 years
exactly 3 people will be killed
We have λ = 7/500, then the probability that in any particular
year 3 people are killed is = e−λλ3

3! . Let Y be a r.v. counting the
number of years with exactly 3 kills.
Assuming independence between years, Y ∼ Bin(10, e

−λλ3

3! ),
therefore the answer is

(10
3

)
(e

−λλ3

3! )3(1 − e−λλ3

3! )7 ≈ 1.1 · 10−17


